Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.992
Filtrar
1.
Gene ; 808: 145996, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34634440

RESUMO

Russula griseocarnosa is a well-known ectomycorrhizal mushroom, which is mainly distributed in the Southern China. Although several scholars have attempted to isolate and cultivate fungal strains, no accurate method for culture of artificial fruiting bodies has been presented owing to difficulties associated with mycelium growth on artificial media. Herein, we sequenced R. griseocarnosa genome using the second- and third-generation sequencing technologies, followed by de novo assembly of high-throughput sequencing reads, and GeneMark-ES, BLAST, CAZy, and other databases were utilized for functional gene annotation. We also constructed a phylogenetic tree using different species of fungi, and also conducted comparative genomics analysis of R. griseocarnosa against its four representative species. In addition, we evaluated the accuracy of one already sequenced genome of R. griseocarnosa based on the internal transcribed spacer (ITS) sequencing of that type of species. The assembly process resulted in identification of 230 scaffolds with a total genome size of 50.67 Mbp. The gene prediction showed that R. griseocarnosa genome included 14,229 coding sequences (CDs). In addition, 470 RNAs were predicted with 155 transfer RNAs (tRNAs), 49 ribosomal RNAs (rRNAs), 41 small noncoding RNAs (sRNAs), 42 small nuclear RNAs (snRNAs), and 183 microRNAs (miRNAs). The predicted protein sequences of R. griseocarnosa were analyzed to indicate the existence of carbohydrate-active enzymes (CAZymes), and the results revealed that 153 genes encoded CAZymes, which were distributed in 58 CAZyme families. These enzymes included 78 glycoside hydrolases (GHs), 34 glycosyl transferases (GTs), 30 auxiliary activities (AAs), 2 carbohydrate esterases (CEs), 8 carbohydrate-binding modules (CBMs), and only one polysaccharide lyase (PL). Compared with other fungi, R. griseocarnosa had fewer CAZymes, and the number and distribution of CAZymes were similar to other mycorrhizal fungi, such as Tricholoma matsutake and Suillus luteus. Well-defined effector proteins that were associated with mycorrhiza-induced small-secreted proteins (MiSSPs) were not found in R. griseocarnosa, which indicated that there may be some special effector proteins to interact with host plants in R. griseocarnosa. The genome of R. griseocarnosa may provide new insights into the energy metabolism of ectomycorrhizal (ECM) fungi, a reference to study ecosystem and evolutionary diversification of R. griseocarnosa, as well as promoting the study of artificial domestication.


Assuntos
Basidiomycota/genética , Basidiomycota/metabolismo , Agaricales/genética , China , Genoma Fúngico/genética , Genômica/métodos , Anotação de Sequência Molecular/métodos , Micorrizas/genética , Micorrizas/metabolismo , Filogenia , Sequenciamento Completo do Genoma/métodos
2.
Int J Med Mushrooms ; 23(11): 85-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34936311

RESUMO

In this study, the antioxidant status, oxidant status, antimicrobial activity, and antiproliferative activity of wild mushroom, Laeticutis cristata, were determined. Total antioxidant status (TAS) and total oxidant status (TOS) were determined using the Rel Assay TAS kit and the Rel Assay TOS kit, respectively. Antibacterial and antifungal activities were determined using the modified agar dilution method. An antiproliferative effect was determined by the MTT cell viability assay against lung cancer cell line A549. L. cristata demonstrated significant antioxidant potential, with a TAS value of 3.623 ± 0.250, TOS of 27.476 ± 0.314, and oxidative stress index of 0.765 ± 0.051. In addition, its antifungal activity was high (25 µg/mL). L. cristata was determined to have a strong antiproliferative effect against A549. As a result, it is thought that L. cristata can be used as a natural material in pharmacological designs.


Assuntos
Agaricales , Anti-Infecciosos , Basidiomycota , Agaricales/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Basidiomycota/metabolismo , Estresse Oxidativo
3.
BMC Genomics ; 22(1): 840, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798813

RESUMO

BACKGROUND: Sanghuangporus sanghuang is a well-known traditional medicinal mushroom associated with mulberry. Despite the properties of this mushroom being known for many years, the regulatory mechanisms of bioactive compound biosynthesis in this medicinal mushroom are still unclear. Lysine malonylation is a posttranslational modification that has many critical functions in various aspects of cell metabolism. However, at present we do not know its role in S. sanghuang. In this study, a global investigation of the lysine malonylome in S. sanghuang was therefore carried out. RESULTS: In total, 714 malonyl modification sites were matched to 255 different proteins. The analysis indicated that malonyl modifications were involved in a wide range of cellular functions and displayed a distinct subcellular localization. Bioinformatics analysis indicated that malonylated proteins were engaged in different metabolic pathways, including glyoxylate and dicarboxylate metabolism, glycolysis/gluconeogenesis, and the tricarboxylic acid (TCA) cycle. Notably, a total of 26 enzymes related to triterpene and polysaccharide biosynthesis were found to be malonylated, indicating an indispensable role of lysine malonylation in bioactive compound biosynthesis in S. sanghuang. CONCLUSIONS: These findings suggest that malonylation is associated with many metabolic pathways, particularly the metabolism of the bioactive compounds triterpene and polysaccharide. This paper represents the first comprehensive survey of malonylation in S. sanghuang and provides important data for further study on the physiological function of lysine malonylation in S. sanghuang and other medicinal mushrooms.


Assuntos
Basidiomycota , Lisina , Basidiomycota/metabolismo , Biologia Computacional , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
4.
J Agric Food Chem ; 69(44): 13227-13234, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709809

RESUMO

Succinate dehydrogenase (SDH, EC 1.3.5.1) has proven to be an important fungicidal target, and the inhibition of SDH is useful in the treatment of plant pathogens. The discovery of a novel active SDH inhibitor is of high value. Herein, we disclose the discovery of a potent, highly active inhibitor as a fungicide candidate by using a computational substitution optimization method, a fast drug design method developed in our laboratory. The greenhouse experiments showed that compound 17c exhibited high protective activity against south corn rust, soybean rust (SBR), and rice sheath blight at a very low dosage of 0.781 mg/L. Moreover, the field trials indicated that compound 17c is comparable to and even better than commercial fungicides against SBR and cucumber powdery mildew at 50 mg/L concentration. Most surprisingly, compound 17c resulted to be strictly better in curative activity than the commercial fungicide benzovindiflupyr. The computation results indicated that 17c could form another hydrogen bond with C_S42 and then lead to strong van der Waals and electronic interactions with SDH. Our results suggested that 17c is a potential fungicide candidate for SDH.


Assuntos
Basidiomycota , Cucumis sativus , Fungicidas Industriais , Basidiomycota/metabolismo , Cucumis sativus/metabolismo , Desenho de Fármacos , Fungicidas Industriais/farmacologia , Doenças das Plantas , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
5.
Biol Res ; 54(1): 34, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702374

RESUMO

Xanthophyllomyces dendrorhous is a basidiomycete yeast that naturally produces the red-orange carotenoid astaxanthin, which has remarkable antioxidant properties. The biosynthesis of carotenoids and sterols share some common elements that have been studied in X. dendrorhous. For example, their synthesis requires metabolites derived from the mevalonate pathway and in both specific pathways, cytochrome P450 enzymes are involved that share a single cytochrome P450 reductase, CrtR, which is essential for astaxanthin biosynthesis, but is replaceable for ergosterol biosynthesis. Research on the regulation of carotenoid biosynthesis is still limited in X. dendrorhous; however, it is known that the Sterol Regulatory Element-Binding Protein (SREBP) pathway, which is a conserved regulatory pathway involved in the control of lipid metabolism, also regulates carotenoid production in X. dendrorhous. This review addresses the similarities and differences that have been observed between mammal and fungal SREBP pathways and what it is known about this pathway regarding the regulation of the production of carotenoids and sterols in X. dendrorhous.


Assuntos
Basidiomycota , Basidiomycota/metabolismo , Proteínas de Transporte , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Esteróis
6.
Molecules ; 26(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34361649

RESUMO

Hispolon, a polyphenol compound isolated from Phellinus linteus, has been reported to exhibit antioxidant, antiproliferative, and antitumor activities. This study aimed to explore the antitumor effects of hispolon on glioblastoma multiforme (GBM) cells in vitro and in vivo. The results revealed that hispolon significantly inhibited GBM cell proliferation and induced apoptosis through caspase-9 and caspase-3 activation and PARP cleavage. Hispolon also induced cell cycle G2/M phase arrest in GBM cells, as supported by flow cytometry analysis and confirmed by a decrease in cyclin B1, cdc2, and cdc25c protein expressions in a dose- and time-dependent manner. Furthermore, hispolon suppressed the migration and invasion of GBM cells by modulating epithelial-mesenchymal transition (EMT) markers via wound healing, transwell assays, and real-time PCR. Moreover, hispolon significantly reduced tumor growth in DBTRG xenograft mice and activated caspase-3 in hispolon-treated tumors. Thus, our findings revealed that hispolon is a potential candidate for the treatment of GBM.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Catecóis/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Animais , Basidiomycota/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos
7.
Chem Biol Interact ; 347: 109614, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34364835

RESUMO

Ochratoxin A (OTA), an important fungal metabolite in foods and feeds has been shown to induce oxidative stress and cellular injuries to human and animal subjects. This study was designed to investigate the mode of action of a biological modifier Trichosporon mycotoxinivorans (TM), against OTA-mediated oxidative stress and tissue toxicity on broiler chickens. The birds were offered diets supplemented with OTA (0.15 and 0.3 mg/kg feed) and/or TM (0.5, 1.0 g/kg) for 42 days of age, and blood and tissue samples were collected to examine the oxidative stress, biochemical and histopathological parameters. Dietary OTA at all the tested levels induced the hepatic and renal tissue injury as indicated by significant decreased total antioxidant capacity in these organs along with significant decreased (p ≤ 0.05) serum concentrations of total proteins and albumin. The serum concentrations of alanine aminotransferase (ALT) and urea were significantly increased, and these observations were further supported by degenerative changes and increased relative weights of liver and kidneys. The dietary supplementation of TM at both tested levels relieved the detrimental impact of 0.15 and 0.3 mg OTA/kg on the studied parameters. The results of the study demonstrated that dietary TM significantly protects broiler chickens by reducing OTA-induced oxidative damage and tissue injury.


Assuntos
Basidiomycota/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/dietoterapia , Suplementos Nutricionais/microbiologia , Nefropatias/dietoterapia , Micotoxinas/toxicidade , Ocratoxinas/toxicidade , Animais , Aspergillus ochraceus , Galinhas , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Micotoxinas/metabolismo , Ocratoxinas/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Trichosporon
8.
Biomolecules ; 11(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200257

RESUMO

Water content is an important factor in lipase-catalyzed reactions in organic media but is frequently ignored in the study of lipases by molecular dynamics (MD) simulation. In this study, Candida antarctica lipase B, Candida rugosa lipase and Rhizopus chinensis lipase were used as research models to explore the mechanisms of lipase in micro-aqueous organic solvent (MAOS) media. MD simulations indicated that lipases in MAOS systems showed unique conformations distinguished from those seen in non-aqueous organic solvent systems. The position of water molecules aggregated on the protein surface in MAOS media is the major determinant of the unique conformations of lipases and particularly impacts the distribution of hydrophilic and hydrophobic amino acids on the lipase surface. Additionally, two maxima were observed in the water-lipase radial distribution function in MAOS systems, implying the formation of two water shells around lipase in these systems. The energy landscapes of lipases along solvent accessible areas of catalytic residues and the minimum energy path indicated the dynamic open states of lipases in MAOS systems differ from those in other solvent environments. This study confirmed the necessity of considering the influence of the microenvironment on MD simulations of lipase-catalyzed reactions in organic media.


Assuntos
Microambiente Celular/fisiologia , Biologia Computacional/métodos , Lipase/química , Simulação de Dinâmica Molecular , Água/química , Basidiomycota/química , Basidiomycota/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipase/análise , Lipase/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomycetales/química , Saccharomycetales/metabolismo , Água/metabolismo
9.
Commun Biol ; 4(1): 871, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267314

RESUMO

Fungal biotechnology is set to play a keystone role in the emerging bioeconomy, notably to address pollution issues arising from human activities. Because they preserve biological diversity, Biological Resource Centres are considered as critical infrastructures to support the development of biotechnological solutions. Here, we report the first large-scale phenotyping of more than 1,000 fungal strains with evaluation of their growth and degradation potential towards five industrial, human-designed and recalcitrant compounds, including two synthetic dyes, two lignocellulose-derived compounds and a synthetic plastic polymer. We draw a functional map over the phylogenetic diversity of Basidiomycota and Ascomycota, to guide the selection of fungal taxa to be tested for dedicated biotechnological applications. We evidence a functional diversity at all taxonomic ranks, including between strains of a same species. Beyond demonstrating the tremendous potential of filamentous fungi, our results pave the avenue for further functional exploration to solve the ever-growing issue of ecosystems pollution.


Assuntos
Biotecnologia/métodos , Corantes/metabolismo , Fungos/metabolismo , Microbiologia Industrial/métodos , Lignina/metabolismo , Plásticos/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/metabolismo , Fungos/classificação , Fungos/genética , Variação Genética , Geografia , Humanos , Fenótipo , Filogenia , Especificidade da Espécie
10.
J Oleo Sci ; 70(8): 1175-1179, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34248100

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a promising tool for the screening of glycolipid-type biosurfactants (BSs) from a crude extract of microbial products. However, it is unsuitable for the detection of lower molecular weight products because the observed ions are overlapped with matrix-derived ions at lower mass range. In this study, we applied a "matrix-free" surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) analysis using a through-hole alumina membrane as an ionization-assisting substrate. Using this method, we could detect a variety of lower molecular weight products in an extract of a glycolipid BS producer with good sensitivity. In addition, the culture solution could be analyzed directly by this method.


Assuntos
Glicolipídeos/análise , Tensoativos/análise , Óxido de Alumínio/química , Basidiomycota/metabolismo , Glicolipídeos/biossíntese , Glicolipídeos/química , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Membranas Artificiais , Peso Molecular , Tensoativos/química , Tensoativos/metabolismo
11.
Biomolecules ; 11(6)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208762

RESUMO

Interactions between plant-associated fungi and their hosts are characterized by a continuous crosstalk of chemical molecules. Specialized metabolites are often produced during these associations and play important roles in the symbiosis between the plant and the fungus, as well as in the establishment of additional interactions between the symbionts and other organisms present in the niche. Serendipita indica, a root endophytic fungus from the phylum Basidiomycota, is able to colonize a wide range of plant species, conferring many benefits to its hosts. The genome of S. indica possesses only few genes predicted to be involved in specialized metabolite biosynthesis, including a putative terpenoid synthase gene (SiTPS). In our experimental setup, SiTPS expression was upregulated when the fungus colonized tomato roots compared to its expression in fungal biomass growing on synthetic medium. Heterologous expression of SiTPS in Escherichia coli showed that the produced protein catalyzes the synthesis of a few sesquiterpenoids, with the alcohol viridiflorol being the main product. To investigate the role of SiTPS in the plant-endophyte interaction, an SiTPS-over-expressing mutant line was created and assessed for its ability to colonize tomato roots. Although overexpression of SiTPS did not lead to improved fungal colonization ability, an in vitro growth-inhibition assay showed that viridiflorol has antifungal properties. Addition of viridiflorol to the culture medium inhibited the germination of spores from a phytopathogenic fungus, indicating that SiTPS and its products could provide S. indica with a competitive advantage over other plant-associated fungi during root colonization.


Assuntos
Alquil e Aril Transferases/isolamento & purificação , Basidiomycota/enzimologia , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Basidiomycota/metabolismo , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Lycopersicon esculentum/metabolismo , Raízes de Plantas/metabolismo , Simbiose/genética , Terpenos/química , Terpenos/metabolismo
12.
Folia Microbiol (Praha) ; 66(5): 775-786, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34120307

RESUMO

Members of Hymenochaetaceae fungi are among well-known macromycetes with various medicinal properties. The aim of this study was to investigate the biological activities of Phellinus tuberculosus and Fuscoporia ferruginosa collected in Iran. The antimicrobial, antioxidant, and cytotoxic activities of the two species were examined, and their phenolic and polysaccharide contents were quantified. Compounds were characterized by HPLC-DAD chromatography and LC-ESI-MS/MS spectroscopy. According to our results, the antibacterial and antioxidant effects of P. tuberculosus extracts were stronger than F. ferruginosa. Also, the effect of hydroalcoholic extracts was higher than the aqueous extract. Gram-positive bacteria were more sensitive to all extracts, especially Streptococcus mutans with a MIC of 0.7 mg/mL and MBC of 6.25 mg/mL. HPLC-DAD analyses detected gallic acid, caffeic acid, and syringic acid in both fungi. The LC-ESI-MS/MS confirmed the detected compounds in HPLC-DAD and showed the presence of several phenolic compounds such as phellifuropyranone, phelligridin, and hispidin, besides others. This study showed that F. ferruginosa and P. tuberculosus are potent medicinal fungi with antibacterial and antioxidant properties, with no toxic effect on normal HDF cells, and possess various bioactive compounds including styrylpyrone-type phenols with well-known bioactivities.


Assuntos
Antibacterianos , Antioxidantes , Basidiomycota , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Basidiomycota/química , Basidiomycota/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Bactérias Gram-Positivas/efeitos dos fármacos , Irã (Geográfico) , Phellinus/química , Espectrometria de Massas em Tandem
13.
Sci Rep ; 11(1): 13094, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158557

RESUMO

Indole-3-acetic acid (IAA) is the most common plant hormone of the auxin class and regulates various plant growth processes. The present study investigated IAA production by the basidiomycetous yeast Rhodosporidiobolus fluvialis DMKU-CP293 using the one-factor-at-a-time (OFAT) method and response surface methodology (RSM). IAA production was optimized in shake-flask culture using a cost-effective medium containing 4.5% crude glycerol, 2% CSL and 0.55% feed-grade L-tryptophan. The optimized medium resulted in a 3.3-fold improvement in IAA production and a 3.6-fold reduction in cost compared with those obtained with a non-optimized medium. Production was then scaled up to a 15-L bioreactor and to a pilot-scale (100-L) bioreactor based on the constant impeller tip speed (Vtip) strategy. By doing so, IAA was successfully produced at a concentration of 3569.32 mg/L at the pilot scale. To the best of our knowledge, this is the first report of pilot-scale IAA production by microorganisms. In addition, we evaluated the effect of crude IAA on weed growth. The results showed that weed (Cyperus rotundus L.) growth could be inhibited by 50 mg/L of crude IAA. IAA therefore has the potential to be developed as a herbicidal bioproduct to replace the chemical herbicides that have been banned in various countries, including Thailand.


Assuntos
Biotecnologia/métodos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Basidiomycota/metabolismo , Reatores Biológicos/microbiologia , Meios de Cultura/química , Ácidos Indolacéticos/química , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/biossíntese , Triptofano/farmacologia , Leveduras/efeitos dos fármacos
14.
Biosci Biotechnol Biochem ; 85(7): 1782-1788, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-33942872

RESUMO

Brown rot fungi show a two-step wood degradation mechanism comprising oxidative radical-based and enzymatic saccharification systems. Recent studies have demonstrated that the brown rot fungus Rhodonia placenta expresses oxidoreductase genes ahead of glycoside hydrolase genes and spatially protects the saccharification enzymes from oxidative damage of the oxidoreductase reactions. This study aimed to assess the generality of the spatial gene regulation of these genes in other brown rot fungi and examine the effects of carbon source on the gene regulation. Gene expression analysis was performed on 14 oxidoreductase and glycoside hydrolase genes in the brown rot fungus Gloeophyllum trabeum, directionally grown on wood, sawdust-agar, and glucose-agar wafers. In G. trabeum, both oxidoreductase and glycoside hydrolase genes were expressed at higher levels in sections behind the wafers. The upregulation of glycoside hydrolase genes was significantly higher in woody substrates than in glucose, whereas the oxidoreductase gene expression was not affected by substrates.


Assuntos
Basidiomycota/genética , Carbono/metabolismo , Expressão Gênica , Madeira , Basidiomycota/metabolismo
15.
Nat Microbiol ; 6(6): 722-730, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33941900

RESUMO

Plant pathogenic fungi colonizing living plant tissue secrete a cocktail of effector proteins to suppress plant immunity and reprogramme host cells. Although many of these effectors function inside host cells, delivery systems used by pathogenic bacteria to translocate effectors into host cells have not been detected in fungi. Here, we show that five unrelated effectors and two membrane proteins from Ustilago maydis, a biotrophic fungus causing smut disease in corn, form a stable protein complex. All seven genes appear co-regulated and are only expressed during colonization. Single mutants arrest in the epidermal layer, fail to suppress host defence responses and fail to induce non-host resistance, two reactions that likely depend on translocated effectors. The complex is anchored in the fungal membrane, protrudes into host cells and likely contacts channel-forming plant plasma membrane proteins. Constitutive expression of all seven complex members resulted in a surface-exposed form in cultured U. maydis cells. As orthologues of the complex-forming proteins are conserved in smut fungi, the complex may become an interesting fungicide target.


Assuntos
Basidiomycota/metabolismo , Basidiomycota/patogenicidade , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Virulência , Zea mays/microbiologia
16.
Plant Cell ; 33(4): 1268-1285, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33793849

RESUMO

A deficiency of the essential macronutrient sulfur leads to stunted plant growth and yield loss; however, an association with a symbiotic fungus can greatly improve nutrient uptake by the host plant. Here, we identified and functionally characterized a high-affinity sulfate transporter from the endophytic fungus Serendipita indica. SiSulT fulfills all the criteria expected of a functional sulfate transporter responding to sulfur limitation: SiSulT expression was induced when S. indica was grown under low-sulfate conditions, and heterologous expression of SiSulT complemented a yeast mutant lacking sulfate transport. We generated a knockdown strain of SiSulT by RNA interference to investigate the consequences of the partial loss of this transporter for the fungus and the host plant (maize, Zea mays) during colonization. Wild-type (WT) S. indica, but not the knockdown strain (kd-SiSulT), largely compensated for low-sulfate availability and supported plant growth. Colonization by WT S. indica also allowed maize roots to allocate precious resources away from sulfate assimilation under low-sulfur conditions, as evidenced by the reduction in expression of most sulfate assimilation genes. Our study illustrates the utility of the endophyte S. indica in sulfur nutrition research and offers potential avenues for agronomically sound amelioration of plant growth in low-sulfate environments.


Assuntos
Basidiomycota/fisiologia , Transportadores de Sulfato/metabolismo , Enxofre/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Cultura Axênica , Basidiomycota/metabolismo , Transporte Biológico , Cromatos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Micologia/métodos , Filogenia , Interferência de RNA , Transportadores de Sulfato/genética , Sulfatos/metabolismo , Leveduras/genética , Zea mays/metabolismo
17.
Sci Rep ; 11(1): 8736, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888795

RESUMO

The permeability of intact fungal fruit body skins (pileipelles) with respect to water and oxygen was determined for the first time. Methods that have been successfully applied to plant surfaces were used to study isolated pileipelles. Mechanically isolated skins from five genera of Basidiomycota (species of Amanita, Russula, Stropharia, Tapinella, and Tricholomopsis) were mounted between two compartments simulating the inner (fruit body) and the outer (aerial) space. Fluxes of water and oxygen across the skins were measured. Water loss via intact skins differed markedly from evaporation of water from a water surface. The skins reduced water loss by factors of 10 to 30, with permeability ranging from 2.8 to 9.8 × 10-4 ms-1. Oxygen permeability was much lower and ranged from 0.8 to 6.0 × 10-6 ms-1. Chloroform-extractable substances play a minor, but significant role as transport barrier during water permeance. Water and oxygen permeability were dependent on the humidity in the aerial compartment. Higher humidity in the air increased permeability and the hydration/water content of the skins. The ecological implications include impacts to fungal growth, sporulation and spore release.


Assuntos
Basidiomycota/fisiologia , Carpóforos/fisiologia , Água/metabolismo , Basidiomycota/metabolismo , Carpóforos/metabolismo , Permeabilidade , Especificidade da Espécie
18.
Sci Rep ; 11(1): 8576, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883599

RESUMO

Mycorrhizas are known to have a positive impact on plant growth and ability to resist major biotic and abiotic stresses. However, the metabolic alterations underlying mycorrhizal symbiosis are still understudied. By using metabolomics and transcriptomics approaches, cork oak roots colonized by the ectomycorrhizal fungus Pisolithus tinctorius were compared with non-colonized roots. Results show that compounds putatively corresponding to carbohydrates, organic acids, tannins, long-chain fatty acids and monoacylglycerols, were depleted in ectomycorrhizal cork oak colonized roots. Conversely, non-proteogenic amino acids, such as gamma-aminobutyric acid (GABA), and several putative defense-related compounds, including oxylipin-family compounds, terpenoids and B6 vitamers were induced in mycorrhizal roots. Transcriptomic analysis suggests the involvement of GABA in ectomycorrhizal symbiosis through increased synthesis and inhibition of degradation in mycorrhizal roots. Results from this global metabolomics analysis suggest decreases in root metabolites which are common components of exudates, and in compounds related to root external protective layers which could facilitate plant-fungal contact and enhance symbiosis. Root metabolic pathways involved in defense against stress were induced in ectomycorrhizal roots that could be involved in a plant mechanism to avoid uncontrolled growth of the fungal symbiont in the root apoplast. Several of the identified symbiosis-specific metabolites, such as GABA, may help to understand how ectomycorrhizal fungi such as P. tinctorius benefit their host plants.


Assuntos
Basidiomycota/metabolismo , Raízes de Plantas/microbiologia , Quercus/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Metabolômica , Raízes de Plantas/metabolismo , Quercus/metabolismo , Simbiose , Ácido gama-Aminobutírico/biossíntese
19.
Biochim Biophys Acta Bioenerg ; 1862(7): 148429, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33862003

RESUMO

Transduction of electrochemical proton gradient into ATP synthesis is performed by F1FO-ATP synthase. The reverse reaction is prevented by the regulatory subunit Inh1. Knockout of the inh1 gene in the basidiomycete Ustilago maydis was generated in order to study the function of this protein in the mitochondrial metabolism and cristae architecture. Deletion of inh1 gen did not affect cell growth, glucose consumption, and biomass production. Ultrastructure and fluorescence analyzes showed that size, cristae shape, network, and distribution of mitochondria was similar to wild strain. Membrane potential, ATP synthesis, and oxygen consumption in wild type and mutant strains had similar values. Kinetic analysis of ATPase activity of complex V in permeabilized mitochondria showed similar values of Vmax and KM for both strains, and no effect of pH was observed. Interestingly, the dimeric state of complex V occurs in the mutant strain, indicating that this subunit is not essential for dimerization. ATPase activity of the isolated monomeric and dimeric forms of complex V indicated Vmax values 4-times higher for the mutant strain than for the WT strain, suggesting that the absence of Inh1 subunit increased ATPase activity, and supporting a regulatory role for this protein; however, no effect of pH was observed. ATPase activity of WT oligomers was stimulated several times by dodecyl-maltoside (DDM), probably by removal of ADP from F1 sector, while DDM induced an inactive form of the mutant oligomers.


Assuntos
Trifosfato de Adenosina/metabolismo , Basidiomycota/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Multimerização Proteica , Metabolismo Energético , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Fosforilação Oxidativa
20.
PLoS One ; 16(3): e0247462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730094

RESUMO

The yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) secretes a xylose-induced biodegradable plastic-degrading enzyme (PaE). To suppress degradation of PaE during production and storage, we targeted the inhibition of proteolytic enzyme activity in P. antarctica. Proteases A and B act as upper regulators in the proteolytic network of the model yeast, Saccharomyces cerevisiae. We searched for orthologous genes encoding proteases A and B in the genome of P. antarctica GB-4(0) based on the predicted amino acid sequences. We found two gene candidates, PaPRO1 and PaPRO2, with conserved catalytically important domains and signal peptides indicative of vacuolar protease function. We then prepared gene-deletion mutants of strain GB-4(0), ΔPaPRO1 and ΔPaPRO2, and evaluated PaE stability in culture by immunoblotting analysis. Both mutants exhibited sufficient production of PaE without degradation fragments, while the parent strain exhibited the degradation fragments. Therefore, we concluded that the protease A and B orthologous genes are related to the degradation of PaE. To produce a large quantity of PaE, we made a PaPRO2 deletion mutant of a PaE-overexpression strain named XG8 by introducing a PaE high-production cassette into the strain GB-4(0). The ΔPaPRO2 mutant of XG8 was able to produce PaE without the degradation fragments during large-scale cultivation in a 3-L jar fermenter for 3 days at 30°C. After terminating the agitation, the PaE activity in the XG8 ΔPaPRO2 mutant culture was maintained for the subsequent 48 h incubation at 25°C regardless of remaining cells, while activity in the XG8 control was reduced to 55.1%. The gene-deleted mutants will be useful for the development of industrial processes of PaE production and storage.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/metabolismo , Sequência de Aminoácidos/genética , Basidiomycota/genética , Plásticos Biodegradáveis/metabolismo , DNA Fúngico/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas Fúngicas/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...