Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.782
Filtrar
1.
Arch Virol ; 164(11): 2789-2792, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31414286

RESUMO

Replication of the dengue virus (DENV) genome occurs in a vesicle in the endoplasmic reticulum by a complex of host and viral proteins. Two host proteins, STT3A and STT3B, as members of the oligosaccharyl transferase complex, have been implicated in playing structural roles in the vesicle in mammalian cells, and the absence of these proteins has been shown to decrease DENV replication. Aedes aegypti is the main vector of the virus and has been used previously as a model organism to study mosquito-virus interactions. In this study, we found that genes of the oligosaccharyl transferase complex have no effect on replication of DENV in mosquito cells.


Assuntos
Aedes/virologia , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/genética , Hexosiltransferases/genética , Proteínas de Membrana/genética , Replicação Viral/genética , Animais , Benzamidas/farmacologia , Linhagem Celular , Cercopithecus aethiops , Dengue/virologia , Retículo Endoplasmático/virologia , Genoma Viral/genética , Glicosilação , Hexosiltransferases/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Proteínas de Membrana/antagonistas & inibidores , RNA Viral/genética , Sulfonamidas/farmacologia , Células Vero
2.
Eur J Med Chem ; 179: 470-482, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271959

RESUMO

A series of 3-(imidazo[1,2-a]pyrazin-3-ylethynyl)-2-methylbenzamides was designed and synthesized as new tropomyosin receptor kinases (Trks) inhibitors by utilizing a structure-guided optimization strategy. One of the most potent compounds 9o suppressed TrkA/B/C with IC50 values of 2.65, 10.47 and 2.95 nM, respectively. The compound dose-dependently inhibited brain-derived neurotrophic factor (BDNF)-mediated TrkB activation and suppressed migration and invasion of SH-SY5Y-TrkB neuroblastoma cells expressing high level of TrkB. Inhibitor 9o also inhibited the proliferation of SH-SY5Y-TrkB cells with an IC50 value of 58 nM, which was comparable to that of an US FDA recently approved drug LOXO-101. Compound 9o may serve as a new lead compound for further anti-cancer drug discovery.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Desenho de Drogas , Imidazóis/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Receptor trkB/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Glicoproteínas de Membrana/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazinas/síntese química , Pirazinas/química , Receptor trkB/metabolismo , Relação Estrutura-Atividade , Cicatrização/efeitos dos fármacos
3.
Eur J Med Chem ; 178: 818-837, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31252286

RESUMO

Mercaptobenzamide thioesters and thioethers are chemically simple HIV-1 maturation inhibitors with a unique mechanism of action, low toxicity, and a high barrier to viral resistance. A structure-activity relationship (SAR) profile based on 39 mercaptobenzamide prodrug analogs exposed divergent activity/toxicity roles for the internal and terminal amides. To probe the relationship between antiviral activity and toxicity, we generated an improved computational model for the binding of mercaptobenzamide thioesters (SAMTs) to the HIV-1 NCp7 C-terminal zinc finger, revealing the presence of a second low-energy binding orientation, hitherto undisclosed. Finally, using NMR-derived thiol-thioester exchange equilibrium constants, we propose that thermodynamics plays a role in determining the antiviral activity observed in the SAR profile.


Assuntos
Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Benzamidas/metabolismo , Benzamidas/farmacologia , HIV-1/efeitos dos fármacos , Termodinâmica , Fármacos Anti-HIV/química , Benzamidas/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 177: 457-466, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31181405

RESUMO

Histone deacetylases (HDACs) play an important role in cancer, degenerative diseases and inflammation. The currently applied HDAC inhibitors in the clinic lack selectivity among HDAC isoforms, which limits their application for novel indications such as inflammatory diseases. Recent, literature indicates that HDAC 3 plays an important role among class I HDACs in gene expression in inflammation. In this perspective, the development and understanding of inhibitory selectivity among HDACs 1, 2 and 3 and their respective influence on gene expression need to be characterized to facilitate drug discovery. Towards this aim, we synthesized nine structural analogues of the class I HDAC inhibitor Entinostat and investigated their selectivity profile among HDACs 1, 2 and 3. We found that we can explain the observed structure activity relationships by small structural and conformational differences between HDAC 1 and HDAC 3 in the 'lid' interacting region. Cell-based studies indicated, however, that application of inhibitors with improved HDAC 3 selectivity did not provide an anti-inflammatory response in contrast to expectations from biochemical evidence in literature. Altogether, in this study, we identified structure activity relationships among class I HDACs and we connected isoform selectivity among class I HDACs with pro- and anti-inflammatory gene transcription in macrophages.


Assuntos
Anilidas/farmacologia , Benzamidas/farmacologia , Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Macrófagos/efeitos dos fármacos , Anilidas/síntese química , Anilidas/química , Anilidas/metabolismo , Animais , Benzamidas/síntese química , Benzamidas/química , Benzamidas/metabolismo , Domínio Catalítico , Histona Desacetilase 1/química , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Inflamação/genética , Interleucina-10/genética , Interleucina-6/genética , Camundongos , Simulação de Acoplamento Molecular , Subunidade p50 de NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Ligação Proteica , Células RAW 264.7 , Estereoisomerismo , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/genética
5.
Eur J Med Chem ; 178: 232-242, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31185413

RESUMO

As a continuation to our research, a series of novel Bcr-Abl inhibitors incorporated with 6-phenyl-1H-indazol-3-amine as hinge binding moiety (HBM) were developed based on confirmation analysis. Biological results indicated that these compounds exhibited an enhanced inhibition against Bcr-AblWT and Bcr-AblT315I in kinases assays, along with improved anti-proliferative activities in K562 cell assays. In particular, compound Y9 displayed comparable potency with that of imatinib. It potently inhibited Bcr-AblWT and Bcr-AblT315I kinases with IC50 of 0.043 µM and 0.17 µM, respectively. Furthermore, compound Y9 inhibited the proliferation of K562 and K562R cells with IC50 of 1.65 µM and 5.42 µM, respectively. Therefore, 6-phenyl-1H-indazol-3amine as HBM, combined with flexible linker, is a successful strategy contribute to research on T315I mutant resistance, and compound Y9 could be served as a starting point for further optimization.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Benzamidas/síntese química , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacologia , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Desenho de Drogas , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Indazóis/síntese química , Indazóis/química , Indazóis/metabolismo , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Simulação de Acoplamento Molecular , Mutação , Piperazinas/síntese química , Piperazinas/química , Piperazinas/metabolismo , Piperazinas/farmacologia , Maleabilidade , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo
6.
Cell Prolif ; 52(4): e12637, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31168899

RESUMO

OBJECTIVES: Chondrocyte proliferation and differentiation are crucial for endochondral ossification, but their regulatory mechanism remains unclear. The present study aimed to determine the physiological function of TGFß1 signalling in the proliferation and differentiation of antler chondrocytes and explore its relationship with Notch, Shh signalling and Foxa. MATERIALS AND METHODS: Immunofluorescence, Western blot, MTS assay, flow cytometry, RNA interference and real-time PCR were used to analyse the function and regulatory mechanisms of TGFß1 signalling in antler chondrocyte proliferation and differentiation. RESULTS: TGFß1, TGFBR1 and TGFBR2 were highly expressed in antler cartilage. TGFß1 promoted chondrocyte proliferation, increased the proportion of S-phase cells and induced the expression of hypertrophic chondrocyte markers Col X, Runx2 and Alpl. However, this induction was weakened by TGFß receptor inhibitor SB431542 and Smad3 inhibitor SIS3. Simultaneously, TGFß1 activated Notch and Shh signalling whose blockage attenuated the above effects of rTGFß1, whereas addition of rShh rescued the defects in chondrocyte proliferation and differentiation elicited by SB431542 and SIS3. Further analysis revealed that inhibition of Notch signalling impeded TGFß1 activation of the Shh pathway. Knockdown of Foxa1, Foxa2 and Foxa3 abrogated the effects of TGFß1 on chondrocyte differentiation. Notch and Shh signalling mediated the regulation of Foxa transcription factors by TGFß1. CONCLUSIONS: TGFß1 signalling could induce the proliferation and differentiation of antler chondrocytes through Notch-Shh-Foxa pathway.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Chifres de Veado , Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Dioxóis/farmacologia , Proteínas Hedgehog/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Isoquinolinas/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Receptores Notch/metabolismo , Fase S/efeitos dos fármacos , Fase S/fisiologia , Transdução de Sinais/efeitos dos fármacos
7.
Life Sci ; 232: 116583, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226417

RESUMO

TP53 mutation is an indicator of poor prognostic in chronic lymphocytic leukemia (CLL). Worse still, CLL patients with TP53 mutation are associated with poor efficacy to current chemotherapeutic, such as Fludarabine. Here, we confirmed that high expression of HDAC1 in CLL patients with TP53 mutation, which is closely related to poor prognosis and drug-resistance. Subsequently, we demonstrated Entinostat (HDAC1 inhibitor) combination with Fludarabine significantly induced apoptosis in TP53 mutations CLL cells. Its mechanism was associated with up-regulation of the pro-apoptotic protein Bax and the down-regulation of HDAC1, HO-1 and BCL-2 proteins. More importantly, we also confirmed that upregulation of HDAC1 could resistant Entinostat-induced apoptosis in TP53 mutations CLL cells by activating the HDAC1/P38/HO-1 pathway. In vivo, we found that Entinostat combination with Fludarabine significantly induced tumor cells apoptosis and prolong survival time in xenograft mouse model. Finally, combining vitro and vivo experiments, we presented the first demonstration that Entinostat combination with Fludarabine had a synergistic effect on the induction of apoptosis in TP53 mutations CLL cells. In conclusion, we provide valuable pre-clinical experimental evidence for the treatment of CLL patients with poor prognosis, especially for TP53 mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Heme Oxigenase-1/metabolismo , Histona Desacetilase 1/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Piridinas/farmacologia , Proteína Supressora de Tumor p53/genética , Vidarabina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/efeitos dos fármacos , Benzamidas/administração & dosagem , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Histona Desacetilase 1/biossíntese , Histona Desacetilase 1/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piridinas/administração & dosagem , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Vidarabina/administração & dosagem , Vidarabina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/biossíntese , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
8.
J Enzyme Inhib Med Chem ; 34(1): 1131-1139, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31169043

RESUMO

The antitumor agent 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (1) is a potent inhibitor of GSTP1-1, a glutathione S-transferase capable of inhibiting apoptosis by binding to JNK1 and TRAF2. We recently demonstrated that, unlike its parent compound, the benzoyl ester of 1 (compound 3) exhibits negligible reactivity towards GSH, and has a different mode of interaction with GSTP1-1. Unfortunately, 3 is susceptible to rapid metabolic hydrolysis. In an effort to improve the metabolic stability of 3, its ester group has been replaced by an amide, leading to N-(6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexyl)benzamide (4). Unlike 3, compound 4 was stable to human liver microsomal carboxylesterases, but retained the ability to disrupt the interaction between GSTP1-1 and TRAF2 regardless of GSH levels. Moreover, 4 exhibited both a higher stability in the presence of GSH and a greater cytotoxicity towards cultured A375 melanoma cells, in comparison with 1 and its analog 2. These findings suggest that 4 deserves further preclinical testing.


Assuntos
4-Cloro-7-nitrobenzofurazano/farmacologia , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , 4-Cloro-7-nitrobenzofurazano/síntese química , 4-Cloro-7-nitrobenzofurazano/química , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Glutationa S-Transferase pi/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
9.
Curr Top Med Chem ; 19(13): 1129-1144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31109278

RESUMO

BACKGROUND: Lung cancer is the most common among all the types of cancer worldwide with 1.8 million people diagnosed every year, leading to 1.6 million deaths every year according to the American cancer society. The involvement of mutated Anaplasic Lymphoma Kinase (ALK) positive fusion protein in the progression of NSCLC has made a propitious target to inhibit and treat NSCLC. In the present study, the main motif is to screen the most effective inhibitor against ALK protein with the potential pharmacological profile. The ligands selected were docked with Molegro Virtual Docker (MVD) and CEP-37440 (PubChem CID- 71721648) was the best docked pre-established compound with a permissible pharmacological profile. METHODS: The selected ligands were docked with Molegro Virtual Docker (MVD). With reference to the obtained compound with the lowest re-rank score, PubChem database was virtually screened to retrieve a large set of similar compounds which were docked to find the compound with higher affinity. Further comparative studies and in silico prediction included pharmacophore studies, proximity energy parameters, ADMET and BOILED-egg plot analysis. RESULTS: CEP-37440 (PubChem CID- 71721648) was the best docked pre-established compound with preferable pharmacological profile and PubChem compound CID-123449015 came out as the most efficient virtually screened inhibitor. Interestingly, the contours of the virtual screened compound PubChem CID- 123449015 fall within our desired high volume cavity of protein having admirable property to control the ALK regulation to prevent carcinogenesis in NSCLC. BOILED-Egg plot analysis depicts that both the compounds have analogous characteristics in the divergent aspects. Moreover, in the evaluations of Blood Brain Barrier, Human Intestinal Absorption, AMES toxicity, and LD50, the virtually screened compound (PubChem CID-123449015) was found within high optimization. CONCLUSION: These investigations denote that the virtually screened compound (PubChem CID- 123449015) is more efficient to be a better prospective candidate for NSCLC treatment having good pharmacological profile than the pre-established compound CEP-37440 (PubChem CID- 71721648) with low re-rank score. The identified virtually screened compound has high potential to act as an ALK inhibitor and can show promising results in the research of non-small cell lung cancer (NSCLC).


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Benzocicloeptenos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Projeto Auxiliado por Computador , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Benzocicloeptenos/síntese química , Benzocicloeptenos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Relação Dose-Resposta a Droga , Desenho de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
10.
Molecules ; 24(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052354

RESUMO

TW-37 is a small-molecule inhibitor of Bcl-2 family proteins, which can induce anti-cancer activities in various types of cancer. In the current study, we investigated the potential molecular mechanism underlying the differential response to TW-37-induced apoptosis in two human mucoepidermoid carcinoma (MEC) cell lines. The differential response and underlying molecular mechanism of human MEC cells to TW-37 was evaluated by trypan blue exclusion assay, western blotting, 4', 6-diamidino-2-phenylindole staining, annexin V/propidium iodide double staining, analysis of the sub-G1 population, human apoptosis array, and measurements of intracellular reactive oxygen species (ROS). TW-37 decreased cell viability and induced apoptosis in YD-15 cells, but not in MC3 cells. Proteome profiling using a human apoptosis array revealed four candidate proteins and of these, heme oxygenase-1 (HO-1) was mainly related to the differential response to TW-37 of YD-15 and MC3 cells. TW-37 also led to a significant increase in intracellular levels of ROS in YD-15 cells, which is associated with apoptosis induction. The ectopic expression of HO-1 recovered YD-15 cells from TW-37-induced apoptosis by reducing intracellular levels of ROS. The expression of HO-1 was reduced through both transcriptional and post-translational modification during TW-37-mediated apoptosis. We conclude that HO-1 is a potential indicator to estimate response to TW37-induced apoptosis in human MEC.


Assuntos
Benzamidas/farmacologia , Carcinoma Mucoepidermoide/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Sulfonas/farmacologia , Carcinoma Mucoepidermoide/tratamento farmacológico , Carcinoma Mucoepidermoide/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo
11.
Expert Opin Investig Drugs ; 28(6): 555-567, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31081399

RESUMO

INTRODUCTION: Migraine is the most common of all neurological disorders. A breakthrough in migraine treatment emerged in the early nineties with the introduction of 5-HT1B/D receptor agonists called triptans. Triptans are used as the standard of care for acute migraine; however, they have significant limitations such as incomplete and inconsistent pain relief, high rates of headache recurrence, class- specific side effects and cardiovascular contraindications. First- and second-generation calcitonin gene-related peptide (CGRP) receptor antagonists, namely gepants, is a class of drugs primarily developed for the acute treatment of migraine. CGRP is the most evaluated target for migraine treatments that are in development. AREAS COVERED: This article reviews the available data for first- and second-generation CGRP receptor antagonists, the role of CGRPs in human physiology and migraine pathophysiology and the possible mechanism of action and safety of CGRP-targeted drugs. EXPERT OPINION: Available data suggest that second generation of gepants has clinical efficacy similar to triptans and lasmiditan (5-HT1F receptor agonist) and has improved tolerability. Future studies will assess their safety, especially in specific populations such as patients with cardiovascular disease and pregnant women.


Assuntos
Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Desenvolvimento de Medicamentos/métodos , Transtornos de Enxaqueca/tratamento farmacológico , Doença Aguda , Animais , Benzamidas/efeitos adversos , Benzamidas/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/efeitos adversos , Humanos , Transtornos de Enxaqueca/fisiopatologia , Piperidinas/efeitos adversos , Piperidinas/farmacologia , Piridinas/efeitos adversos , Piridinas/farmacologia , Triptaminas/efeitos adversos , Triptaminas/farmacologia
12.
Tumour Biol ; 41(5): 1010428319848612, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31074363

RESUMO

Aurora kinases play critical roles in regulating several processes pivotal for mitosis. Radotinib, which is approved in South Korea as a second-line treatment for chronic myeloid leukemia, inhibits the tyrosine kinase BCR-ABL and platelet-derived growth factor receptor. However, the effects of radotinib on Aurora kinase expression in acute myeloid leukemia are not well studied. Interestingly, the cytotoxicity of acute myeloid leukemia cells was increased by radotinib treatment. Radotinib significantly decreased the expression of cyclin-dependent kinase 1 and cyclin B1, the key regulators of G2/M phase, and inhibited the expression of Aurora kinase A and Aurora kinase B in acute myeloid leukemia cells. In addition, radotinib decreased the expression and binding between p-Aurora kinase A and TPX2, which are required for spindle assembly. Furthermore, it reduced Aurora kinase A and polo-like kinase 1 phosphorylation and suppressed the expression of α-, ß-, and γ-tubulin in acute myeloid leukemia cells. Furthermore, radotinib significantly suppressed the key regulators of G2/M phase including cyclin B1 and Aurora kinase A in a xenograft animal model. Therefore, our results suggest that radotinib can abrogate acute myeloid leukemia cell growth both in vitro and in vivo and may serve as a candidate agent or a chemosensitizer for treating acute myeloid leukemia.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Benzamidas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/patologia , Mitose/efeitos dos fármacos , Pirazinas/farmacologia , Animais , Apoptose , Aurora Quinase A/metabolismo , Ciclo Celular , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Camundongos Nus , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Plant Cell Physiol ; 60(7): 1487-1503, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004494

RESUMO

Plant cells sheath themselves in a complex lattice of polysaccharides, proteins and enzymes forming an integral matrix known as the cell wall. Cellulose microfibrils, the primary component of cell walls, are synthesized at the plasma membrane by CELLULOSE SYNTHASE A (CESA) proteins throughout cellular growth and are responsible for turgor-driven anisotropic expansion. Associations between hormone signaling and cell wall biosynthesis have long been suggested, but recently direct links have been found revealing hormones play key regulatory roles in cellulose biosynthesis. The radially swollen 1 (rsw1) allele of Arabidopsis thaliana CESA1 harbors a single amino acid change that renders the protein unstable at high temperatures. We used the conditional nature of rsw1 to investigate how auxin contributes to isotropic growth. We found that exogenous auxin treatment reduces isotropic swelling in rsw1 roots at the restrictive temperature of 30�C. We also discovered decreases in auxin influx between rsw1 and wild-type roots via confocal imaging of AUX1-YFP, even at the permissive temperature of 19�C. Moreover, rsw1 displayed mis-expression of auxin-responsive and CESA genes. Additionally, we found altered auxin maxima in rsw1 mutant roots at the onset of swelling using DII-VENUS and DR5:vYFP auxin reporters. Overall, we conclude disrupted cell wall biosynthesis perturbs auxin transport leading to altered auxin homeostasis impacting both anisotropic and isotropic growth that affects overall root morphology.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Glucosiltransferases/metabolismo , Ácidos Indolacéticos/metabolismo , Alelos , Arabidopsis/enzimologia , Arabidopsis/genética , Benzamidas/farmacologia , Celulose/biossíntese , Genes de Plantas/genética , Glucosiltransferases/genética , Mutação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
14.
Invest Ophthalmol Vis Sci ; 60(5): 1353-1361, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30934054

RESUMO

Purpose: Motion detection is performed by a unique neural network in the mouse retina. Starburst amacrine cells (SACs), which release acetylcholine and gamma-aminobutyric acid (GABA) into the network, are key neurons in the motion detection pathway. Although GABA contributions to the network have been extensively studied, the role of acetylcholine is minimally understood. Acetylcholine receptors are present in a subset of bipolar, amacrine, and ganglion cells. We focused on α7-nicotinic acetylcholine receptor (α7-nAChR) expression in bipolar cells, and investigated which types of bipolar cells possess α7-nAChRs. Methods: Retinal slice sections were prepared from C57BL/6J and Gus8.4-GFP mice. Specific expression of α7-nAChRs in bipolar cells was examined using α-bungarotoxin (αBgTx)-conjugated Alexa dyes co-labeled with specific bipolar cell markers. Whole-cell recordings were conducted from bipolar cells in retinal slice sections. A selective α7-nAChR agonist, PNU282987, was applied by a puff and responses were recorded. Results: αBgTx fluorescence was observed primarily in bipolar cell somas. We found that α7-nAChRs were expressed by the majority of type 1, 2, 4, and 7 bipolar cells. Whole-cell recordings revealed that type 2 and 7 bipolar cells depolarized by PNU application. In contrast, α7-nAChRs were not detected in most of type 3, 5, 6, and rod bipolar cells. Conclusions: We found that α7-nAChRs are present in bipolar cells in a type-specific manner. Because these bipolar cells provide synaptic inputs to SACs and direction selective ganglion cells, α7-nAChRs may play a role in direction selectivity by modulating these bipolar cells' outputs.


Assuntos
Células Bipolares da Retina/metabolismo , Transmissão Sináptica/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Percepção de Movimento/fisiologia , Agonistas Nicotínicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
15.
Oncol Rep ; 41(6): 3545-3554, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30942451

RESUMO

Epithelial­mesenchymal transition (EMT) plays an important role in cancer progression, metastasis and drug resistance, and recent studies have revealed that neoplastic epithelial cells regain the stem cell state through EMT. Single­agent targeted cancer therapy frequently fails due to acquired drug resistance. Therefore, multi­agent targeted therapy exhibits advantages in fighting cancer cells. In the present study, small molecule inhibitors SB431542 (ALK inhibitor), CHIR99021 (GSK3 pathway inhibitor), PD0325901 (MEK/ERK inhibitor) and valproic acid (VPA; HDAC inhibitor) were applied individually or in combination to HeLa uterine cervix carcinoma cells, 5637 bladder cancer cells and SCC­15 squamous cell carcinoma cells to clarify their potential effects on cancer cells. Cell morphological alterations, pluripotency and EMT­related gene expression, cell growth rate, cell migration, signal transduction, cell cycle arrest, CD24­/CD44+ cell percentage, and in vivo tumor clump formation were evaluated. The results of the present study revealed that VPA treatment induced EMT morphology, upregulated the expression of pluripotency and EMT­related genes, promoted migration and increased CD24­/CD44+ cell percentage in all three cell lines. PD0325901, SB431542 and CHIR99021 in combination could significantly inhibit cell growth, suppress expression of pluripotency and EMT­related genes, curb cell migration, cause cell cycle arrest, decrease CD24­/CD44+ cell percentage in cell spheres, and delay in vivo cell clump formation of cancer cells. These data indicated that VPA may serve as an EMT and cancer stem cell­promoting agent that may be useful in establishing a screening system for potential anticancer stem cell drugs. The combined inhibition of MEK/ERK, ALK and GSK3 was revealed to be an effective measure for eliminating cancer stem cells.


Assuntos
Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Benzamidas/farmacologia , Dioxóis/farmacologia , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Células HeLa , Humanos , Neoplasias/patologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Ácido Valproico/farmacologia
16.
Yi Chuan ; 41(4): 327-336, 2019 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-30992254

RESUMO

There are two major pathways, homology-directed repair (HDR) and nonhomologous end joining (NHEJ), involved in double-strand break (DSB) repair. Single-stranded oligodeoxyribonucleotide (ssODN)-mediated homologous recombination repair is commonly used for animal site-directed genome editing, with great scientific and practical value. To improve ssODN-mediated HDR efficiency in the pig genome, we investigated the effect and molecular mechanism of mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor PD0325901 on the HDR efficiency in porcine fetal fibroblasts (PFFs). The results showed that PD0325901 obviously increased the percentage of G2 and S phase cell populations and reduced the cell population ratio in the G1 phase of PFFs, and promoted the expression of HDR repair factor. At the optimal concentration of 250 nmol/L, PD0325901 increased the repair efficiency of ssODN-mediated GFP reporter vector by 58.8% and the directed editing efficiency of PFF DMD and ROSA26 locus by 48.16% and 17.64%, respectively. The results show that MEK inhibitor PD0325901 significantly promotes the efficiency of ssODN-mediated homologous-directed repair in the porcine genome, thus offering a new idea to generate genetically modified pigs more effectively.


Assuntos
Benzamidas/farmacologia , Difenilamina/análogos & derivados , Edição de Genes , Reparo de DNA por Recombinação , Animais , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples , Difenilamina/farmacologia , Fibroblastos , MAP Quinase Quinase Quinase 1/antagonistas & inibidores , Oligodesoxirribonucleotídeos , Suínos
17.
Cell Biochem Funct ; 37(4): 273-280, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31012504

RESUMO

Telomerase is a good target for new anticancer drug development because it is present in over 85% of human tumours. However, despite chronic therapy is a condition for anti-telomerase approach, the effects of long-term treatment with telomerase inhibitors remain not well understood. In this work, it was evaluated the effects of long-term treatment of human MDA-MB-231 breast cancer cells with the telomerase inhibitor MST-312. Cells were treated for 72 hours or 140 days, and it was accessed their viability, proliferation rate, morphology, telomeric DNA content, and resistance mechanism. The drug had a clear short-term effect, including chemosensitizing cells for docetaxel and irinotecan, but the chronic exposition led to selection of long telomeres clones, changing characteristics of original cell line. This effect was confirmed in a clonal culture with homogenous karyotype. MRP-1 expression and alternative lengthening of telomeres (ALT) were discarded as additional mechanisms of resistance. This data suggest that, considering the intra-tumour heterogeneity (ITH), what is already a big challenge for treatment of cancer, chronic exposition to telomerase inhibitors can promote tumour adaptations with potential clinical repercussion, drawing attention to ongoing clinical trials and pointing important considerations most times neglected on studies about use of these inhibitors on cancer therapy. SIGNIFICANCE OF THE STUDY: Antitumour action of telomerase inhibitors is well known, but it depends on a long-term exposition because cells will undergo telomere erosion only after many duplication cycles. Recently, the frustrating results of clinical trials with these inhibitors aroused the interest of the scientific community to understand the mechanisms of resistance to anti-telomerase therapy. In this study, we conducted an 18-week experiment to show that telomerase inhibition can lead to cell adaptations and selection of long-telomeres clones, leading to acquisition of resistance. However, we also showed that this inhibitor can sensitize cells to the chemotherapeutic drugs docetaxel and irinotecan.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Telomerase/antagonistas & inibidores , Homeostase do Telômero/efeitos dos fármacos , Antineoplásicos/química , Benzamidas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Relação Estrutura-Atividade , Telomerase/metabolismo , Células Tumorais Cultivadas
18.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934667

RESUMO

Gastrointestinal motility is regulated by neural factors and humoral factors. Both motilin and ghrelin improve gastrointestinal motility, but many issues remain unclear. We prepared human motilin receptor transgenic (Tg) mice and performed experiments evaluating the effects of motilin, erythromycin (EM), and ghrelin. EM and ghrelin promoted gastric emptying (GE) when administered either peripherally or centrally to Tg mice. Atropine (a muscarinic receptor antagonist) counteracted GE induced by centrally administered EM, but not that induced by peripherally administered EM. The administration of EM in this model promoted the effect of mosapride (a selective serotonin 5-hydroxytryptamine 4 (5-HT4) receptor agonist), and improved loperamide (a µ-opioid receptor agonist)-induced gastroparesis. The level of acyl-ghrelin was significantly attenuated by EM administration. Thus, we have established an animal model appropriate for the evaluation of motilin receptor agonists. These data and the model are expected to facilitate the identification of novel compounds with clinical potential for relieving symptoms of dyspepsia and gastroparesis.


Assuntos
Grelina/farmacologia , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores de Neuropeptídeos/agonistas , Animais , Benzamidas/farmacologia , Eritromicina/administração & dosagem , Eritromicina/farmacologia , Esvaziamento Gástrico/efeitos dos fármacos , Gastroparesia/sangue , Gastroparesia/induzido quimicamente , Gastroparesia/tratamento farmacológico , Gastroparesia/fisiopatologia , Grelina/sangue , Humanos , Loperamida/efeitos adversos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfolinas/farmacologia , Período Pós-Prandial , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Estômago/efeitos dos fármacos , Estômago/patologia , Estômago/fisiopatologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia
19.
Life Sci ; 228: 66-71, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31029779

RESUMO

AIMS: The telomerase-based therapy of cancer has received a great deal of attention due to the fact that it is expressed in almost all of the cancer cells while it is inactivated in most of the normal somatic cells. Current investigation was aimed to examine the effects of namely telomerase inhibitor, the MST-312, as a chemically modified derivative of epigallocatechin gallate (EGCG), on human multiple myeloma cell line U-266. MAIN METHODS: U-266 cells were cultured and then treated by MST-312. The viability of cultured cells was measured by both trypan blue staining and MTT assay techniques. To examine the apoptosis, annexin-V/7-AAD staining using flow cytometry method was employed. To analysis the expression of Bax, Bcl-2, c-Myc, hTERT, IL-6 and TNF-α genes, the quantitative real-time PCR was employed. KEY FINDINGS: We observed the short-term dose-dependent cytotoxic and apoptotic effect of MST-312 against U-266 myeloma cells. Gene expression analysis indicated that the MST-312-based apoptosis was associated with up-regulation of pro-apoptotic gene (Bax) as well as down-regulation of anti-apoptotic (Bcl-2), proliferative (c-Myc, hTERT) and inflammatory (IL-6, TNF-α) genes. SIGNIFICANCE: These findings suggest that telomerase-based therapy using MST-312 may represent a novel promising strategy for treatment of multiple myeloma.


Assuntos
Benzamidas/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Telomerase/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Interleucina-6/genética , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Regulação para Cima/efeitos dos fármacos
20.
J Neuroinflammation ; 16(1): 69, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940161

RESUMO

BACKGROUND: Acute liver failure resulting from drug-induced liver injury can lead to the development of neurological complications called hepatic encephalopathy (HE). Hepatic transforming growth factor beta 1 (TGFß1) is upregulated due to liver failure in mice and inhibiting circulating TGFß reduced HE progression. However, the specific contributions of TGFß1 on brain cell populations and neuroinflammation during HE are not known. Therefore, the aim of this study was to characterize hepatic and brain TGFß1 signaling during acute liver failure and its contribution to HE progression using a combination of pharmacological and genetic approaches. METHODS: C57Bl/6 or neuron-specific transforming growth factor beta receptor 2 (TGFßR2) null mice (TGFßR2ΔNeu) were treated with azoxymethane (AOM) to induce acute liver failure and HE. The activity of circulating TGFß1 was inhibited in C57Bl/6 mice via injection of a neutralizing antibody against TGFß1 (anti-TGFß1) prior to AOM injection. In all mouse treatment groups, liver damage, neuroinflammation, and neurological deficits were assessed. Inflammatory signaling between neurons and microglia were investigated in in vitro studies through the use of pharmacological inhibitors of TGFß1 signaling in HT-22 and EOC-20 cells. RESULTS: TGFß1 was expressed and upregulated in the liver following AOM injection. Pharmacological inhibition of TGFß1 after AOM injection attenuated neurological decline, microglia activation, and neuroinflammation with no significant changes in liver damage. TGFßR2ΔNeu mice administered AOM showed no effect on liver pathology but significantly reduced neurological decline compared to control mice. Microglia activation and neuroinflammation were attenuated in mice with pharmacological inhibition of TGFß1 or in TGFßR2ΔNeu mice. TGFß1 increased chemokine ligand 2 (CCL2) and decreased C-X3-C motif ligand 1 (CX3CL1) expression in HT-22 cells and reduced interleukin-1 beta (IL-1ß) expression, tumor necrosis factor alpha (TNFα) expression, and phagocytosis activity in EOC-20 cells. CONCLUSION: Increased circulating TGFß1 following acute liver failure results in activation of neuronal TGFßR2 signaling, driving neuroinflammation and neurological decline during AOM-induced HE.


Assuntos
Córtex Cerebral/patologia , Encefalopatia Hepática/etiologia , Falência Hepática Aguda/complicações , Falência Hepática Aguda/patologia , Neurônios/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/deficiência , Fator de Crescimento Transformador beta1/sangue , Animais , Anticorpos/uso terapêutico , Azoximetano/toxicidade , Benzamidas/farmacologia , Carcinógenos/toxicidade , Linhagem Celular Transformada , Modelos Animais de Doenças , Encefalopatia Hepática/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Isoquinolinas/farmacologia , Fígado/metabolismo , Fígado/patologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Pirazóis/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA