Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.318
Filtrar
1.
Life Sci ; 258: 118179, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758626

RESUMO

OBJECTIVE: To evaluate whether approved gastroprokinetic agent, acotiamide exerts a direct excitatory effect on bladder to help explain the reported meaningful reduction of post-void residual urine volume (PVR) in detrusor underactivity (DU) patients after thrice daily oral intake of acotiamide 100 mg for 2 weeks. METHODS: Effect of acotiamide [1-16 µM] was assessed on nerve-mediated contractions evoked by electrical field stimulation (EFS) for 5 s with 5 ms pulse trains of 10 V in longitudinal, mucosa intact rat and human bladder strips to construct frequency response curve (1-32 Hz) and repeat 10 Hz stimulation at 60s interval. Effect of acotiamide 2 µM on spontaneous and carbachol evoked contractions was also assessed. RESULTS: Acotiamide 2 µM significantly enhanced the Atropine and Tetrodotoxin (TTX)-sensitive EFS evoked contractions of rat and human bladder at 8-32 Hz (Two-way ANOVA followed Sidak's multiple comparison; *p < 0.01) and on repeat 10 Hz stimulation (Paired Student's t-test; *p < 0.05), while producing a modest effect on the spontaneous contractions and a negligible effect on the carbachol evoked contractions. CONCLUSIONS: Enhancement of TTX-sensitive evoked contractions of rat and human bladder by acotiamide is consistent with the enhancement of excitatory neuro-effector transmission mainly through prejunctional mechanisms. Findings highlight immense therapeutic potential of antimuscarinics with low M3 receptor affinity like acotiamide in Underactive bladder (UAB)/DU treatment.


Assuntos
Benzamidas/uso terapêutico , Tiazóis/uso terapêutico , Bexiga Inativa/tratamento farmacológico , Bexiga Urinária/patologia , Animais , Benzamidas/química , Benzamidas/farmacologia , Carbacol/farmacologia , Estimulação Elétrica , Humanos , Masculino , Contração Muscular/efeitos dos fármacos , Ratos Sprague-Dawley , Tiazóis/química , Tiazóis/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação
2.
Nat Commun ; 11(1): 3344, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620751

RESUMO

Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome associated with ribosomal gene mutations that lead to ribosomal insufficiency. DBA is characterized by anemia, congenital anomalies, and cancer predisposition. Treatment for DBA is associated with significant morbidity. Here, we report the identification of Nemo-like kinase (NLK) as a potential target for DBA therapy. To identify new DBA targets, we screen for small molecules that increase erythroid expansion in mouse models of DBA. This screen identified a compound that inhibits NLK. Chemical and genetic inhibition of NLK increases erythroid expansion in mouse and human progenitors, including bone marrow cells from DBA patients. In DBA models and patient samples, aberrant NLK activation is initiated at the Megakaryocyte/Erythroid Progenitor (MEP) stage of differentiation and is not observed in non-erythroid hematopoietic lineages or healthy erythroblasts. We propose that NLK mediates aberrant erythropoiesis in DBA and is a potential target for therapy.


Assuntos
Anemia de Diamond-Blackfan/patologia , Células-Tronco Hematopoéticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Anemia de Diamond-Blackfan/dietoterapia , Anemia de Diamond-Blackfan/genética , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Dioxóis/farmacologia , Dioxóis/uso terapêutico , Modelos Animais de Doenças , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , RNA Interferente Pequeno/metabolismo , Proteínas Ribossômicas/genética
3.
Nat Commun ; 11(1): 3288, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620753

RESUMO

The prognostic and therapeutic relevance of molecular subtypes for the most aggressive isocitrate dehydrogenase 1/2 (IDH) wild-type glioblastoma (GBM) is currently limited due to high molecular heterogeneity of the tumors that impedes patient stratification. Here, we describe a distinct binary classification of IDH wild-type GBM tumors derived from a quantitative proteomic analysis of 39 IDH wild-type GBMs as well as IDH mutant and low-grade glioma controls. Specifically, GBM proteomic cluster 1 (GPC1) tumors exhibit Warburg-like features, neural stem-cell markers, immune checkpoint ligands, and a poor prognostic biomarker, FKBP prolyl isomerase 9 (FKBP9). Meanwhile, GPC2 tumors show elevated oxidative phosphorylation-related proteins, differentiated oligodendrocyte and astrocyte markers, and a favorable prognostic biomarker, phosphoglycerate dehydrogenase (PHGDH). Integrating these proteomic features with the pharmacological profiles of matched patient-derived cells (PDCs) reveals that the mTORC1/2 dual inhibitor AZD2014 is cytotoxic to the poor prognostic PDCs. Our analyses will guide GBM prognosis and precision treatment strategies.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Isocitrato Desidrogenase/genética , Proteogenômica/métodos , Proteômica/métodos , Benzamidas/farmacologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Isocitrato Desidrogenase/classificação , Isocitrato Desidrogenase/metabolismo , Estimativa de Kaplan-Meier , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Morfolinas/farmacologia , Mutação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia
4.
Proc Natl Acad Sci U S A ; 117(30): 17808-17819, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661168

RESUMO

p53 is the most frequently mutated, well-studied tumor-suppressor gene, yet the molecular basis of the switch from p53-induced cell-cycle arrest to apoptosis remains poorly understood. Using a combination of transcriptomics and functional genomics, we unexpectedly identified a nodal role for the caspase-8 paralog and only human pseudo-caspase, FLIP(L), in regulating this switch. Moreover, we identify FLIP(L) as a direct p53 transcriptional target gene that is rapidly up-regulated in response to Nutlin-3A, an MDM2 inhibitor that potently activates p53. Genetically or pharmacologically inhibiting expression of FLIP(L) using siRNA or entinostat (a clinically relevant class-I HDAC inhibitor) efficiently promoted apoptosis in colorectal cancer cells in response to Nutlin-3A, which otherwise predominantly induced cell-cycle arrest. Enhanced apoptosis was also observed when entinostat was combined with clinically relevant, p53-activating chemotherapy in vitro, and this translated into enhanced in vivo efficacy. Mechanistically, FLIP(L) inhibited p53-induced apoptosis by blocking activation of caspase-8 by the TRAIL-R2/DR5 death receptor; notably, this activation was not dependent on receptor engagement by its ligand, TRAIL. In the absence of caspase-8, another of its paralogs, caspase-10 (also transcriptionally up-regulated by p53), induced apoptosis in Nutlin-3A-treated, FLIP(L)-depleted cells, albeit to a lesser extent than in caspase-8-proficient cells. FLIP(L) depletion also modulated transcription of canonical p53 target genes, suppressing p53-induced expression of the cell-cycle regulator p21 and enhancing p53-induced up-regulation of proapoptotic PUMA. Thus, even in the absence of caspase-8/10, FLIP(L) silencing promoted p53-induced apoptosis by enhancing PUMA expression. Thus, we report unexpected, therapeutically relevant roles for FLIP(L) in determining cell fate following p53 activation.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzamidas/farmacologia , Caspase 8/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sinergismo Farmacológico , Regulação da Expressão Gênica , Humanos , Imidazóis/metabolismo , Modelos Biológicos , Piperazinas/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Piridinas/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Supressora de Tumor p53/genética
5.
Life Sci ; 257: 118073, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663574

RESUMO

AIMS: The preservation of pancreatic beta-cell function is crucial for the treatment of type 2 diabetes. Inhibition of class I histone deacetylase (HDAC) has been proved to protect beta-cells from palmitate- or cytokine-induced apoptosis and increase insulin secretion. However, the underlying molecular mechanism is unclear. MAIN METHODS: Rat islets were isolated for insulin secretion, real-time PCR, RNA- sequencing, ChIP-PCR, and oxygen consumption rate analysis after treated with the HDAC1 and HDAC3 inhibitor MS-275. KEY FINDINGS: MS-275 pretreatment significantly potentiated insulin secretion from rat islets. RNA-sequencing revealed that multiple signaling pathways were involved in MS-275-regulated islet function. Cacna1g and Adcy1 in calcium and cAMP signaling pathways were up-regulated in MS-275-treated islets, which was validated by real-time PCR. The expressions of the two genes displayed a similar increase in islets isolated from mice treated with MS-275. Knockdown of HDAC1 elevated Cacna1g and Adcy1 expressions in islets. ChIP-sequencing analysis showed that the pan-HDAC inhibitor sodium butyrate increased H3K27 acetylation level in the upstream region of Adcy1 and the promoter region of Cacna1g. ChIP-PCR revealed a similar result in MS-275-treated rat islets. However, MS-275 had minor effect on glucose-induced oxygen consumption rate in rat islets. Unlike glucose, MS-275 did not alter the expressions of glucose-sensitive genes such as Glut2 and Gck, but elevated intracellular Ca2+ concentration in beta-cells. SIGNIFICANCE: Our findings support the notion that MS-275-potentiated insulin secretion is involved in calcium and cAMP signaling-mediated gene expressions independent of glucose oxidation. Therefore, HDAC inhibition may serve as a therapeutic strategy for type 2 diabetes.


Assuntos
Benzamidas/farmacologia , Glucose/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Secreção de Insulina/efeitos dos fármacos , Piridinas/farmacologia , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Técnicas de Silenciamento de Genes , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilases/efeitos dos fármacos , Células Secretoras de Insulina , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
6.
Sci Immunol ; 5(48)2020 06 05.
Artigo em Inglês | MEDLINE | ID: covidwho-545978

RESUMO

Patients with severe COVID-19 have a hyperinflammatory immune response suggestive of macrophage activation. Bruton tyrosine kinase (BTK) regulates macrophage signaling and activation. Acalabrutinib, a selective BTK inhibitor, was administered off-label to 19 patients hospitalized with severe COVID-19 (11 on supplemental oxygen; 8 on mechanical ventilation), 18 of whom had increasing oxygen requirements at baseline. Over a 10-14 day treatment course, acalabrutinib improved oxygenation in a majority of patients, often within 1-3 days, and had no discernable toxicity. Measures of inflammation - C-reactive protein and IL-6 - normalized quickly in most patients, as did lymphopenia, in correlation with improved oxygenation. At the end of acalabrutinib treatment, 8/11 (72.7%) patients in the supplemental oxygen cohort had been discharged on room air, and 4/8 (50%) patients in the mechanical ventilation cohort had been successfully extubated, with 2/8 (25%) discharged on room air. Ex vivo analysis revealed significantly elevated BTK activity, as evidenced by autophosphorylation, and increased IL-6 production in blood monocytes from patients with severe COVID-19 compared with blood monocytes from healthy volunteers. These results suggest that targeting excessive host inflammation with a BTK inhibitor is a therapeutic strategy in severe COVID-19 and has led to a confirmatory international prospective randomized controlled clinical trial.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Infecções por Coronavirus/virologia , Estado Terminal , Feminino , Seguimentos , Humanos , Inflamação/tratamento farmacológico , Inflamação/virologia , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Pandemias , Pneumonia Viral/virologia , Estudos Prospectivos , Respiração Artificial , Resultado do Tratamento
7.
Adv Exp Med Biol ; 1257: 75-83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483732

RESUMO

The prognosis for metastatic osteosarcoma (OS) is poor and has not changed in several decades. Therapeutic paradigms that target and exploit novel molecular pathways are desperately needed. Recent preclinical data suggests that modulation of the Fas/FasL pathway may offer benefit in the treatment of refractory osteosarcoma. Fas and FasL are complimentary receptor-ligand proteins. Fas is expressed in multiple tissues, whereas FasL is restricted to privilege organs, such as the lung. Fas expression has been shown to inversely correlate with the metastatic potential of OS cells; tumor cells which express high levels of Fas have decreased metastatic potential and the ones that reach the lung undergo cell death upon interaction with constitutive FasL in the lung. Agents such as gemcitabine and the HDAC inhibitor, entinostat/Syndax 275, have been shown to upregulate Fas expression on OS cells, potentially leading to decreased OS pulmonary metastasis and improved outcome. Clinical trials are in development to evaluate this combination as a potential treatment option for patients with refractory OS.


Assuntos
Benzamidas , Neoplasias Ósseas , Osteossarcoma , Piridinas , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/enzimologia , Proteína Ligante Fas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/enzimologia , Piridinas/farmacologia , Piridinas/uso terapêutico
8.
PLoS One ; 15(6): e0234617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555665

RESUMO

Semicarbazide-sensitive amine oxidase (SSAO) is an enzyme with a unique dual function in controlling inflammation as well as reactive oxygen species (ROS) generation. We have demonstrated benefit of SSAO inhibition in acute kidney fibrosis. However the function of SSAO in chronic kidney disease (CKD) and diabetic kidney disease (DKD) is yet to be determined. We aimed to assess the effectiveness of a SSAO inhibitor (SSAOi; PXS-4728A) as an antifibrotic agent using a diabetic model of CKD. Diabetic mice were treated with SSAOi for 24 weeks and outcomes compared with untreated diabetic mice and telmisartan treated animals as a standard of care comparator. Extracellular matrix markers, fibronectin and oxidative stress, were downregulated in diabetic mice treated with SSAOi compared with untreated diabetic mice. Expression of the pan-leukocyte marker CD45 was also supressed by SSAOi. SSAO inhibition in diabetic mice resulted in a significant reduction in glomerulosclerosis and associated albuminuria compared to untreated diabetic mice. However, the effect of SSAO inhibition was less obvious in the tubulointerstitial compartment than in the glomeruli. Therefore, SSAO may be a potential target for diabetic glomerulosclerosis.


Assuntos
Albuminúria/tratamento farmacológico , Alilamina/análogos & derivados , Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Benzamidas/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Glomérulos Renais/patologia , Túbulos Renais/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Alilamina/farmacologia , Alilamina/uso terapêutico , Animais , Benzamidas/farmacologia , Diabetes Mellitus Experimental , Nefropatias Diabéticas/patologia , Inibidores Enzimáticos/farmacologia , Fibronectinas/metabolismo , Fibrose , Glomérulos Renais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Antígenos Comuns de Leucócito/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Insuficiência Renal Crônica/patologia , Telmisartan/farmacologia , Telmisartan/uso terapêutico
9.
Sci Immunol ; 5(48)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503877

RESUMO

Patients with severe COVID-19 have a hyperinflammatory immune response suggestive of macrophage activation. Bruton tyrosine kinase (BTK) regulates macrophage signaling and activation. Acalabrutinib, a selective BTK inhibitor, was administered off-label to 19 patients hospitalized with severe COVID-19 (11 on supplemental oxygen; 8 on mechanical ventilation), 18 of whom had increasing oxygen requirements at baseline. Over a 10-14 day treatment course, acalabrutinib improved oxygenation in a majority of patients, often within 1-3 days, and had no discernable toxicity. Measures of inflammation - C-reactive protein and IL-6 - normalized quickly in most patients, as did lymphopenia, in correlation with improved oxygenation. At the end of acalabrutinib treatment, 8/11 (72.7%) patients in the supplemental oxygen cohort had been discharged on room air, and 4/8 (50%) patients in the mechanical ventilation cohort had been successfully extubated, with 2/8 (25%) discharged on room air. Ex vivo analysis revealed significantly elevated BTK activity, as evidenced by autophosphorylation, and increased IL-6 production in blood monocytes from patients with severe COVID-19 compared with blood monocytes from healthy volunteers. These results suggest that targeting excessive host inflammation with a BTK inhibitor is a therapeutic strategy in severe COVID-19 and has led to a confirmatory international prospective randomized controlled clinical trial.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Infecções por Coronavirus/virologia , Estado Terminal , Feminino , Seguimentos , Humanos , Inflamação/tratamento farmacológico , Inflamação/virologia , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Pandemias , Pneumonia Viral/virologia , Estudos Prospectivos , Respiração Artificial , Resultado do Tratamento
11.
Microbiol Immunol ; 64(9): 635-639, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32579258

RESUMO

In this study, the anti-severe acute respiratory syndrome coronavirus-2 (anti-SARS-CoV-2) activity of mycophenolic acid (MPA) and IMD-0354 was analyzed. These compounds were chosen based on their antiviral activities against other coronaviruses. Because they also inhibit dengue virus (DENV) infection, other anti-DENV compounds/drugs were also assessed. On SARS-CoV-2-infected VeroE6/TMPRSS2 monolayers, both MPA and IMD-0354, but not other anti-DENV compounds/drugs, showed significant anti-SARS-CoV-2 activity. Although MPA reduced the viral RNA level by only approximately 100-fold, its half maximal effective concentration was as low as 0.87 µ m, which is easily achievable at therapeutic doses of mycophenolate mofetil. MPA targets the coronaviral papain-like protease and an in-depth study on its mechanism of action would be useful in the development of novel anti-SARS-CoV-2 drugs.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Ácido Micofenólico/farmacologia , Pneumonia Viral/tratamento farmacológico , Animais , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Vírus da Dengue/efeitos dos fármacos , Humanos , Pandemias , Pneumonia Viral/virologia , Células Vero , Replicação Viral/efeitos dos fármacos
12.
J Headache Pain ; 21(1): 71, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522164

RESUMO

Migraine is a leading cause of disability worldwide, but it is still underdiagnosed and undertreated. Research on the pathophysiology of this neurological disease led to the discovery that calcitonin gene-related peptide (CGRP) is a key neuropeptide involved in pain signaling during a migraine attack. CGRP-mediated neuronal sensitization and glutamate-based second- and third-order neuronal signaling may be an important component involved in migraine pain. The activation of several serotonergic receptor subtypes can block the release of CGRP, other neuropeptides, and neurotransmitters, and can relieve the symptoms of migraine. Triptans were the first therapeutics developed for the treatment of migraine, working through serotonin 5-HT1B/1D receptors. The discovery that the serotonin 1F (5-HT1F) receptor was expressed in the human trigeminal ganglion suggested that this receptor subtype may have a role in the treatment of migraine. The 5-HT1F receptor is found on terminals and cell bodies of trigeminal ganglion neurons and can modulate the release of CGRP from these nerves. Unlike 5-HT1B receptors, the activation of 5-HT1F receptors does not cause vasoconstriction.The potency of different serotonergic agonists towards 5-HT1F was correlated in an animal model of migraine (dural plasma protein extravasation model) leading to the development of lasmiditan. Lasmiditan is a newly approved acute treatment for migraine in the United States and is a lipophilic, highly selective 5-HT1F agonist that can cross the blood-brain barrier and act at peripheral nervous system (PNS) and central nervous system (CNS) sites.Lasmiditan activation of CNS-located 5-HT1F receptors (e.g., in the trigeminal nucleus caudalis) could potentially block the release of CGRP and the neurotransmitter glutamate, thus preventing and possibly reversing the development of central sensitization. Activation of 5-HT1F receptors in the thalamus can block secondary central sensitization of this region, which is associated with progression of migraine and extracephalic cutaneous allodynia. The 5-HT1F receptors are also elements of descending pain modulation, presenting another site where lasmiditan may alleviate migraine. There is emerging evidence that mitochondrial dysfunction might be implicated in the pathophysiology of migraine, and that 5-HT1F receptors can promote mitochondrial biogenesis. While the exact mechanism is unknown, evidence suggests that lasmiditan can alleviate migraine through 5-HT1F agonist activity that leads to inhibition of neuropeptide and neurotransmitter release and inhibition of PNS trigeminovascular and CNS pain signaling pathways.


Assuntos
Benzamidas/farmacologia , Transtornos de Enxaqueca/fisiopatologia , Piperidinas/farmacologia , Piridinas/farmacologia , Receptores de Serotonina , Agonistas do Receptor de Serotonina/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Humanos , Neurônios/metabolismo , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/fisiopatologia , Triptaminas , Vasoconstrição/efeitos dos fármacos
13.
Cancer Immunol Immunother ; 69(9): 1929-1936, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32435850

RESUMO

Myeloid-derived suppressor cells (MDSCs) are widely implicated in negative regulation of immune responses in cancer. Inhibition of class I histone deacetylases (HDAC) with entinostat has anti-MDSC activity. However, as single agent, it did not delay tumor growth in EL4 and LLC tumor models. Here, we found that entinostat reduced immune suppressive activity of only one type of MDSC-polymorphonuclear, PMN-MDSC, whereas it had no effect on monocytic M-MDSC or macrophages. M-MDSC had high amount of class II HDAC-HDAC6, which was further increased after the treatment of mice with entinostat. Inhibition of HDAC6 with ricolinostat reduced suppressive activity of M-MDSC, but did not affect PMN-MDSC or delayed tumor growth. However, combination of entinostat and ricolinostat abrogated suppressive activity of both populations of MDSC and substantially delayed tumor progression. Thus, inactivation of MDSC required targeting of both major subsets of these cells via inhibitors of class I and class II HDAC.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Células Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/efeitos dos fármacos , Animais , Benzamidas/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Piridinas/farmacologia , Pirimidinas/farmacologia
14.
Int J Pharm Compd ; 24(3): 242-245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32401744

RESUMO

Revefenacin inhalation solution, a long-acting muscarinic antagonist (LAMA), and formoterol fumarate inhalation solution, a long-acting ß-agonist (LABA), are indicated for the maintenance treatment of patients with chronic obstructive pulmonary disease. LAMA or LABA monotherapy, or a combination of LAMA/LABA for more severe symptoms, is recommended as first-line treatment in this patient population. We conducted a study to test the physicochemical properties of revefenacin and formoterol fumarate inhalation solution admixture in support of a clinical trial evaluating the safety of these nebulized bronchodilators, administered in sequence, and as a combination, in patients with chronic obstructive pulmonary disease (NCT03573817). The admixture of these two products was evaluated for changes in appearance, pH, osmolality, active drug content, purity, and impurity/degradant levels at 25°C for up to 25 hours. No substantial changes were observed in the physicochemical properties of revefenacin inhalation solution and formoterol fumarate inhalation solution admixture, demonstrating the physicochemical compatibility and stability of the two drugs in solution for up to 25 hours at room temperature.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Benzamidas/farmacologia , Carbamatos/farmacologia , Fumarato de Formoterol/farmacologia , Doença Pulmonar Obstrutiva Crônica , Administração por Inalação , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Benzamidas/química , Carbamatos/química , Quimioterapia Combinada , Humanos
15.
PLoS One ; 15(4): e0228350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32320391

RESUMO

Dosimetry is an important tool for triage and treatment planning following any radiation exposure accident, and biological dosimetry, which estimates exposure dose using a biological parameter, is a practical means of determining the specific dose an individual receives. The cytokinesis-blocked micronucleus assay (CBMN) is an established biodosimetric tool to measure chromosomal damage in mitogen-stimulated human lymphocytes. The CBMN method is especially valuable for biodosimetry in triage situations thanks to simplicity in scoring and adaptability to high-throughput automated sample processing systems. While this technique produces dose-response data which fit very well to a linear-quadratic model for exposures to low linear energy transfer (LET) radiation and for doses up for 5 Gy, limitations to the accuracy of this method arise at larger doses. Accuracy at higher doses is limited by the number of cells reaching mitosis. Whereas it would be expected that the yield of micronuclei increases with the dose, in many experiments it has been shown to actually decrease when normalized over the total number of cells. This variation from a monotonically increasing dose response poses a limitation for retrospective dose reconstruction. In this study we modified the standard CBMN assay to increase its accuracy following exposures to higher doses of photons or a mixed neutron-photon beam. The assay is modified either through inhibitions of the G2/M and spindle checkpoints with the addition of caffeine and/or ZM447439 (an Aurora kinase inhibitor), respectively to the blood cultures at select times during the assay. Our results showed that caffeine addition improved assay performance for photon up to 10 Gy. This was achieved by extending the assay time from the typical 70 h to just 74 h. Compared to micronuclei yields without inhibitors, addition of caffeine and ZM447439 resulted in improved accuracy in the detection of micronuclei yields up to 10 Gy from photons and 4 Gy of mixed neutrons-photons. When the dose-effect curves were fitted to take into account the turnover phenomenon observed at higher doses, best fitting was achieved when the combination of both inhibitors was used. These techniques permit reliable dose reconstruction after high doses of radiation with a method that can be adapted to high-throughput automated sample processing systems.


Assuntos
Citogenética , Doses de Radiação , Radiometria , Adulto , Benzamidas/farmacologia , Cafeína/farmacologia , Células Cultivadas , Relação Dose-Resposta à Radiação , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/efeitos da radiação , Masculino , Testes para Micronúcleos , Pessoa de Meia-Idade , Nêutrons , Prótons , Quinazolinas/farmacologia
16.
Toxicol Appl Pharmacol ; 396: 114982, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32240663

RESUMO

Oxidative stress contributes to acetaminophen (APAP) hepatotoxicity. Since lipid peroxidation produces reactive aldehydes, we investigated whether activation of mitochondrial aldehyde dehydrogenase-2 (ALDH2) with Alda-1 decreases liver injury after APAP. Male C57BL/6 mice fasted overnight received Alda-1 (20 mg/kg, i.p.) or vehicle 30 min before APAP (300 mg/kg, i.p.). Blood and livers were collected 2 or 24 h after APAP. Intravital multiphoton microscopy of rhodamine 123 (Rh123) and propidium iodide (PI) fluorescence was conducted 6 h after APAP administration to detect mitochondrial polarization status and cell death. 4-Hydroxynonenal protein adducts were present in 0.1% of tissue area without APAP treatment but increased to 7% 2 h after APAP treatment, which Alda-1 blunted to 1%. Serum alanine and aspartate aminotransferases increased to 7594 and 9768 U/L at 24 h respectively, which decreased ≥72% by Alda-1. Alda-1 also decreased centrilobular necrosis at 24 h after APAP from 47% of lobular areas to 21%. N-acetyl-p-benzoquinone imine protein adduct formation and c-Jun-N-terminal kinase phosphorylation increased after APAP as expected, but Alda-1 did not alter these changes. Without APAP, no mitochondrial depolarization was detected by intravital microscopy. At 6 h after APAP, 62% of tissue area showed depolarization, which decreased to 33.5% with Alda-1. Cell death as detected by PI labeling increased from 0 to 6.8 cells per 30× field 6 h after APAP, which decreased to 0.6 cells by Alda-1. In conclusion, aldehydes are important mediators of APAP hepatotoxicity. Accelerated aldehyde degradation by ALDH2 activation with Alda-1 decreases APAP hepatotoxicity by protection against mitochondrial dysfunction.


Assuntos
Acetaminofen/toxicidade , Aldeído-Desidrogenase Mitocondrial/metabolismo , Analgésicos não Entorpecentes/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ativação Enzimática , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Mitocôndrias Hepáticas/metabolismo
17.
Expert Opin Pharmacother ; 21(9): 997-1004, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32237914

RESUMO

INTRODUCTION: In chronic obstructive pulmonary disease (COPD), inhaled long-acting antimuscarinic agents (LAMA) are effective maintenance therapies used across all severity stages of the disease. Most of them are administered via dry powder inhalers, but these devices require a potent inspiratory flow which cannot be effectively achieved by patients with advanced disease. In such patients, inhaled therapy via nebulization might be an option. AREAS COVERED: Revefenacin is a LAMA that was specifically formulated for once daily nebulization and which was authorized by the FDA as a maintenance therapy for COPD. In phase II and III clinical studies discussed in this review, revefenacin demonstrated its rapid onset of action and sustained effect on lung function on both a short- and long-term basis. EXPERT OPINION: Nebulized revefenacin with once daily use does not require any particular effort of administration and hence can be used by patients with severe airways obstruction or by those having milder cognitive deficits. Further studies are needed, however, to better document the long-term cardiovascular safety and its ability to reduce the exacerbation rate.


Assuntos
Benzamidas/uso terapêutico , Carbamatos/uso terapêutico , Antagonistas Muscarínicos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Benzamidas/farmacocinética , Benzamidas/farmacologia , Carbamatos/farmacocinética , Carbamatos/farmacologia , Humanos , Antagonistas Muscarínicos/farmacocinética , Antagonistas Muscarínicos/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-32186196

RESUMO

Cisplatin is a well-known chemotherapy medication used to treat numerous cancers. However, treatment with cisplatin in cancer therapy has major side effects, such as nephrotoxic acute kidney injury. Adult vertebrate kidneys are commonly used as models of cisplatin-induced nephrotoxic acute kidney injury. Embryonic zebrafish kidney is more simplified and is composed simply of two nephrons and thus is an excellent model for the investigation of cisplatin nephrotoxicity. Here, we developed a novel model to induce cisplatin nephrotoxicity in adult zebrafish and demonstrated that intraperitoneal injection of cisplatin caused a decline in kidney proximal tubular function based on fluorescein-labeled dextran uptake and alkaline phosphatase staining. We also showed that cisplatin induced histological injury of the kidney tubules, quantified by tubular injury scores on the periodic acid-Schiff-stained kidney sections. As shown in a mouse model of cisplatin-induced nephrotoxicity, the activation of poly(ADP-ribose) polymerase (PARP), an enzyme implicated in cisplatin-induced cell death, was markedly increased after cisplatin injection in adult zebrafish. Furthermore, pharmacological inhibition of PARP using a specific PARP inhibitor PJ 34 hydrochloride (PJ34) or 3-aminobenzamide ameliorated kidney proximal tubular functional and histological damages in cisplatin-injected adult zebrafish kidneys. Administration of a combination of PARP inhibitors PJ34 and 3-aminobenzamide additively protected renal function and histology in zebrafish and mouse models of cisplatin nephrotoxicity. In conclusion, these data suggest that adult zebrafish are not only suitable for drug screening and genetic manipulation but also useful as a simplified but powerful model to study the pathophysiology of cisplatin nephrotoxicity and establish new therapies for treating human kidney diseases.


Assuntos
Cisplatino , Nefropatias/enzimologia , Túbulos Renais/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Benzamidas/farmacologia , Dano ao DNA , Modelos Animais de Doenças , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/prevenção & controle , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , Fenantrenos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transdução de Sinais , Peixe-Zebra
19.
Biochem Pharmacol ; 175: 113919, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32194057

RESUMO

Achilles tendinopathy has a high re-injury rate and poor prognosis. Development of effective therapy for Achilles tendinopathy is important. Excessive accumulation of ROS and resulting oxidative stress are believed to cause tendinopathy. Overproduction of hydrogen peroxide (H2O2), the most common ROS, could lead to the tendinopathy by causing oxidative damage, activation of endoplasmic reticulum (ER) stress and apoptotic death of tenocytes. Activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) is expected to alleviate oxidative stress and ER stress. Alda-1 is a selective and potent activator of ALDH2. In this study, we examined the cytoprotective benefit of Alda-1, an activator of ALDH2, on H2O2-induced Achilles tendinopathy in cellular and mouse models. We prepared cellular and mouse models of Achilles tendinopathy by treating cultured Achilles tenocytes and Achilles tendons with oxidative stressor H2O2. Subsequently, we studied the protective benefit of Alda-1 on H2O2-induced Achilles tendinopathy. Alda-1 pretreatment attenuated H2O2-induced cell death of cultured Achilles tenocytes. Treatment of Alda-1 prevented H2O2-induced oxidative stress and depolarization of mitochondrial membrane potential in tenocytes. Application of Alda-1 attenuated H2O2-triggered mitochondria- and ER stress-mediated apoptotic cascades in cultured tenocytes. Alda-1 treatment ameliorated the severity of H2O2-induced Achilles tendinopathy in vivo by preventing H2O2-induced pathological histological features of Achilles tendons, apoptotic death of Achilles tenocytes and upregulated expression of inflammatory cytokines IL-1ß and TNF-α. Our results provide the evidence that ALDH2 activator Alda-1 ameliorates H2O2-induced Achilles tendinopathy. Alda-1 could be used for preventing and treating Achilles tendinopathy.


Assuntos
Tendão do Calcâneo/metabolismo , Aldeído-Desidrogenase Mitocondrial/metabolismo , Benzamidas/uso terapêutico , Benzodioxóis/uso terapêutico , Modelos Animais de Doenças , Tendinopatia/tratamento farmacológico , Tendinopatia/metabolismo , Tendão do Calcâneo/efeitos dos fármacos , Tendão do Calcâneo/patologia , Animais , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Tendinopatia/patologia , Tenócitos/efeitos dos fármacos , Tenócitos/metabolismo , Tenócitos/patologia
20.
Biochim Biophys Acta Mol Cell Res ; 1867(6): 118689, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092308

RESUMO

The non-activating allosteric modulator AZ1729, specific for free fatty acid receptor 2 (FFAR2), transfers the orthosteric FFAR2 agonists propionate and the P2Y2R specific agonist ATP into activating ligands that trigger an assembly of the neutrophil superoxide generating NADPH-oxidase. The homologous priming effect on the propionate response and the heterologous receptor cross-talk sensitized ATP response mediated by AZ1729 are functional characteristics shared with Cmp58, another non-activating allosteric FFAR2 modulator. In addition, AZ1729 also turned Cmp58 into a potent activator of the superoxide generating neutrophil NADPH-oxidase, and in agreement with the allosteric modulation concept, the effect was reciprocal in that Cmp58 turned AZ1729 into a potent activating allosteric agonist. The activation signals down-stream of FFAR2 when stimulated by the two interdependent allosteric modulators were biased in that, unlike for orthosteric agonists, the two complementary modulators together triggered an activation of the NADPH-oxidase, but not any transient rise in the cytosolic concentration of free calcium ions (Ca2+). Furthermore, following AZ1729/Cmp58 activation, the signaling by the desensitized FFAR2s was functionally selective in that the orthosteric agonist propionate could still induce a transient rise in intracellular Ca2+. The novel neutrophil activation and receptor down-stream signaling pattern mediated by the two cross-sensitizing allosteric FFAR2 modulators represent a new regulatory mechanism that controls receptor signaling.


Assuntos
Benzamidas/farmacologia , Neutrófilos/metabolismo , Fenilbutiratos/farmacologia , Receptores de Superfície Celular/agonistas , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Benzamidas/química , Cálcio/metabolismo , Sinergismo Farmacológico , Humanos , Estrutura Molecular , NADPH Oxidases/metabolismo , Ativação de Neutrófilo , Neutrófilos/efeitos dos fármacos , Fenilbutiratos/química , Propionatos/metabolismo , Receptores de Superfície Celular/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA