RESUMO
Ten undescribed benzophenones, schomburginones A-J, together with 14 known analogs were isolated from the leaves of Garcinia schomburgkiana, an edible plant native to the Indochina region. The structures of the undescribed compounds were elucidated by NMR combined with HRMS spectroscopy, while their absolute configurations were determined using ECD and single-crystal X-ray diffraction analysis. The isolated metabolites represent benzophenone derivatives containing a modified monoterpene unit, including tri- and tetracyclic skeletons, which are rarely found in genus Garcinia. The cytotoxic evaluation on three cancerous cell lines demonstrated that schomburginone G, schomburginone H, and 3-geranyl-2,4,6-trihydroxybenzophenone were active against HeLa cells with IC50 values in the range of 12.2-15.7 µM, respectively, and selective compared to the non-cancerous L929 cells (SI > 3.5). In addition, the three cytotoxic compounds together with clusiacyclol A showed significant NO inhibitory activity in RAW 264.7 macrophage cells over 85% inhibition without obvious cytotoxicity at a final concentration of 100 µM. The promising activities of these compounds in cytotoxic and anti-inflammatory assays make them attractive for further study in the development of anticancer drugs.
Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Garcinia , Xantonas , Humanos , Células HeLa , Estrutura Molecular , Garcinia/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Benzofenonas/farmacologia , Benzofenonas/química , Xantonas/químicaRESUMO
Seven new polyketides, including four indenone derivatives, cytoindenones A-C (1, 3-4), 3'-methoxycytoindenone A (2), a benzophenone derivative, cytorhizophin J (6), and a pair of tetralone enantiomers, (±)-4,6-dihydroxy-5-methoxy-α-tetralone (7), together with a known compound (5) were obtained from the endophytic fungus Cytospora heveae NSHSJ-2 isolated from the fresh stem of the mangrove plant Sonneratia caseolaris. Compound 3 represented the first natural indenone monomer substituted by two benzene moieties at C-2 and C-3. Their structures were determined by the analysis of 1D and 2D NMR, as well as mass spectroscopic data, and the absolute configurations of (±)-7 were determined on the basis of the observed specific rotation value compared with those of the tetralone derivatives previously reported. In bioactivity assays, compounds 1, 4-6 showed potent DPPH· scavenging activities, with EC50 values ranging from 9.5 to 16.6 µM, better than the positive control ascorbic acid (21.9 µM); compounds 2-3 also exhibited DPPH· scavenging activities comparable to ascorbic acid.
Assuntos
Ascomicetos , Tetralonas , Antioxidantes/farmacologia , Ascomicetos/química , Benzofenonas/farmacologia , Ácido Ascórbico , Estrutura MolecularRESUMO
Despite the recent advancement of treatment strategies, cancer ranks 2nd among the causes of death globally. Phytochemicals have gained popularity as an alternate therapeutic strategy due to their nontoxic nature. Here, we have investigated the anticancer properties of guttiferone BL (GBL) along with four known compounds previously isolated from Allanblackia gabonensis. The cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The study was extended for the assessment of the effect of GBL in PA-1 cells apoptosis induction, cell cycle distribution, and change in mitochondrial membrane potential using flow cytometry, Western blot analysis, and real-time PCR. Among the five tested compounds, GBL displayed significant antiproliferative effects against all tested human cancer cells (IC50 < 10µM). Moreover, GBL exhibited no significant cytotoxicity towards normal ovarian epithelial cell line (IOSE 364) up to 50 µM. GBL induced sub-G0 cell cycle arrest and significant upregulation of cell cycle regulatory proteins of ovarian cancer cell PA-1. Furthermore, GBL induced its apoptosis as depicted by the accumulation of cells both at the early and late apoptotic phase in Annexin V/PI assay. In addition, it decreased the PA-1 mitochondrial membrane potential and promoted upregulation of caspase-3, caspase-9, and Bax and downregulation of Bcl-2. GBL also showed a dose-dependent inhibition of PA-1 migration. Altogether, this study reveals that guttiferone BL, studied herein for the first time, exhibits efficient antiproliferative activity by the induction of apoptosis through the mitochondrial-dependent pathway. Its investigation as a therapeutic agent against human cancers especially ovarian cancer should be envisaged.
Assuntos
Apoptose , Benzofenonas , Frutas , Neoplasias Ovarianas , Feminino , Humanos , Frutas/química , Neoplasias Ovarianas/tratamento farmacológico , Benzofenonas/farmacologia , Linhagem Celular TumoralRESUMO
Ferroptosis is an iron-dependent cell death-driven by excessive peroxidation of polyunsaturated fatty acids (PUFAs) of membranes. A growing body of evidence suggests the induction of ferroptosis as a cutting-edge strategy in cancer treatment research. Despite the essential role of mitochondria in cellular metabolism, bioenergetics, and cell death, their function in ferroptosis is still poorly understood. Recently, mitochondria were elucidated as an important component in cysteine-deprivation-induced (CDI) ferroptosis, which provides novel targets in the search for new ferroptosis-inducing compounds (FINs). Here, we identified the natural mitochondrial uncoupler nemorosone as a ferroptosis inducer in cancer cells. Interestingly, nemorosone triggers ferroptosis by a double-edged mechanism. In addition to decreasing the glutathione (GSH) levels by blocking the System xc cystine/glutamate antiporter (SLC7A11), nemorosone increases the intracellular labile Fe2+ pool via heme oxygenase-1 (HMOX1) induction. Interestingly, a structural variant of nemorosone (O-methylated nemorosone), having lost the capacity to uncouple mitochondrial respiration, does not trigger cell death anymore, suggesting that the mitochondrial bioenergetic disruption via mitochondrial uncoupling is necessary for nemorosone-induced ferroptosis. Our results open novel opportunities for cancer cell killing by mitochondrial uncoupling-induced ferroptosis.
Assuntos
Ferroptose , Neoplasias , Humanos , Morte Celular , Benzofenonas/farmacologia , Neoplasias/metabolismo , Glutationa/metabolismoRESUMO
Polyetheretherketone (PEEK) has been widely applied in biomedical engineering. However, the unsatisfactory bioactivity essentially limits the clinical application of PEEK. In this study, a simply immersing method was proposed to fabricate a dual-functional PEEK with antibacterial properties and enhanced bone integration. Firstly, the surface of PEEK was modified with a polydopamine (PDA) coating by incubating at dopamine solution. Afterward, the PEEK-PDA was modified with manganese (Mn) and silver (Ag) ions by the soaking method to fabricate the PEEK-PDA-Mn/Ag. The physicochemical capabilities of PEEK-PDA-Mn/Ag were further explored in the ions release, wettability, morphology, and element distributions. PEEK-PDA-Mn/Ag obviously accelerated the adhesion and distribution of MC3T3-E1 cells, indicating favorable biosafety in vitro. Meanwhile, the osteogenic properties of PEEK-PDA-Mn and PEEK-PDA-Mn/Ag were proved by the increased expression of osteogenic genes, alkaline phosphatase (ALP), and mineralization in vitro. Additionally, the wide antibacterial capabilities of PEEK-PDA-Mn/Ag were proved in both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. Furthermore, the PEEK-PDA-Mn/Ag was antibacterial with capability in enhancing osseointegration in vivo. Overall, the simply immersing method can modify the surface of PEEK, giving the bioactivity, biocompatibility, and antibacterial ability to the composited PEEK, which could be applied as an orthopedic implant in clinical.
Assuntos
Osseointegração , Staphylococcus aureus , Escherichia coli , Polietilenoglicóis/química , Benzofenonas/farmacologia , Cetonas/farmacologia , Cetonas/química , Antibacterianos/farmacologia , Antibacterianos/química , Osteogênese , Bactérias , ÍonsRESUMO
In order to find potential agents for treating cancer disease in naturally occurring compounds, we conducted a systematic phytochemical investigation on the endemic species of Garcinia nujiangensis. Three new biphenyl derivatives (1-3) and one new polycyclic polyprenylated benzophenone (4), together with four known benzophenone analogues (5-8), have been isolated from the CH2Cl2 extract of the twigs and leaves of G. nujiangensis. Their structures were determined by detailed spectroscopic analyses and comparison with structurally related known analogues. Experimental and calculated ECD method was used to determine the absolute configuration of 1 and 4. Moreover, compounds 5-7 were isolated for the first time from this species. The cytotoxicities of the new compounds were evaluated using HL-60, HepG2, and A549 human cancer cell lines. Compound 4 showed more significant antiproliferative effects against HepG2 cells with an IC50 value of 11.38 ± 0.79 µM than that of three biphenyl derivatives. The morphological features of apoptosis were evaluated in 4-treated HepG2 cells. Compound 4 effectively prevented the cell cycle progression of HepG2 cells in G2 phase. Additionally, western blot analysis indicated that treatment of 4 on HepG2 cells led to decreased expression of anti-apoptotic Bcl-2 and pro-Caspase-3, and increased protein expression of both pro-apoptotic Bax and cleaved PARP with reference to ß-actin. Overall, our results suggested that the active polycyclic polyprenylated benzophenone derivatives in the twigs and leaves of G. nujiangensis can be used as a valuable source of bioactive compounds for the pharmaceutical industry.
Assuntos
Antineoplásicos Fitogênicos , Garcinia , Humanos , Fenóis/farmacologia , Linhagem Celular Tumoral , Estrutura Molecular , Garcinia/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Apoptose , Benzofenonas/farmacologiaRESUMO
Garcinol is a polyisoprenylated benzophenone isolated from Garcinia. It has been reported to have a variety of intriguing biological effects, including anticancer, anti-inflammatory, and antioxidant capabilities. The purpose of this research is to thoroughly evaluate garcinol and a series of its analogues in terms of synthesis, structural diversity, biosynthesis, and potential for preventing carcinoma cell proliferation. Garcinopicrobenzophenone and eugeniaphenone, which contain a unique cyclobutyl unit at C-5, were initially synthesized using the procedures utilized in the synthesis of garcinol. All the natural analogs of garcinol were produced at completion of the synthesis, and their structures and absolute configurations were clarified. Based on the synthesis, a possible biogenetic synthesis pathway towards cambogin, 13,14-didehydroxyisogarcinol via O-cyclization, and garcinopicrobenzophenone or eugeniaphenone via C-cyclization was proposed. The cytotoxicity of polyisoprenylated benzophenones produced in our group was tested, and the structure-activity relationship was summarized. The mechanism by which garcinol, cambogin, and 21' induce apoptosis was studied. Cambogin and 21' were shown to have a greater capacity to cause apoptosis in pancreatic cancer BXPC3 cells, and the suppression of BXPC3 cells by 21' might be attributed to the target of STAT3 signaling. Garcinol could cause pyroptosis and apoptosis in pancreatic cancer cells at the same time, which was the first time that garcinol was identified as a possible chemotherapeutic agent that could significantly promote pyroptosis in cancer cells.
Assuntos
Antineoplásicos , Benzofenonas , Neoplasias Pancreáticas , Humanos , Antineoplásicos/farmacologia , Apoptose , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Terpenos/farmacologia , Benzofenonas/química , Benzofenonas/farmacologiaRESUMO
Benzophenones (BPs) are endocrine disruptors frequently used in sunscreens and food packaging as UV blockers. Our goal was to assess the effect of benzophenone 2 (BP2) and 3 (BP3) on gene expression related to autophagy process and ER stress response in pancreatic beta cells. To that end, the mouse pancreatic beta cell line MIN6B1 was treated with 10 µM BP2 or BP3 in the presence or absence of the autophagy-inhibitor chloroquine (CQ, 10 µM) or the autophagy-inducer rapamycin (RAPA, 50 nM) during 24 h. BP3 inhibited the expression of the autophagic gene Ulk1, and additional effects were uncovered when autophagy was modified by CQ and RAPA. BP3 counteracted CQ-induced Lamp2 expression but did not compensate CQ-induced Sqstm1/p62 gene transcription, neither BP2. Nevertheless, the BPs did not alter the autophagic flux. In relation to ER stress, BP3 inhibited unspliced and spliced Xbp1 mRNA levels in the presence or absence of CQ, totally counteracted CQ-induced Chop gene expression, and partially reverted CQ-induced Grp78/Bip mRNA levels, while BP2 also partially inhibited Grp78/Bip mRNA induction by CQ. In conclusion, BPs, principally BP3, affect cellular adaptive responses related to autophagy, lysosomal biogenesis, and ER stress in pancreatic beta cells, indicating that BP exposure could lead to beta cell dysfunction.
Assuntos
Benzofenonas , Chaperona BiP do Retículo Endoplasmático , Células Secretoras de Insulina , Animais , Camundongos , Autofagia/efeitos dos fármacos , Autofagia/genética , Benzofenonas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Expressão GênicaRESUMO
Patients suffering diabetic bone defects still need some new and effective strategies to achieve enhanced prognostic effects. Although medical implants are the common treatment of bone defects, the excessive oxidative stress and high risk of bacterial infection in diabetes mellitus lead to a higher risk of implant failure. To improve the healing ability of diabetic bone defects, herein, polyetheretherketone (PEEK) was modified through a developed layer-by-layer (LBL) construction strategy to obtain multifunctional PEEK (SP@(TA-GS/PF)*3) by the assembly of tannic acid (TA), gentamicin sulfate (GS) and Pluronic F127 (PF127) on the basis of prepared porous PEEK through sulfonation (SPEEK). The prepared SP@(TA-GS/PF)*3 exhibited sustained antimicrobial activity and enhanced the differentiation of osteoblast (MC3T3-E1) for needed osteogenesis. Moreover, SP@(TA-GS/PF)*3 scavenged excessive oxidative stress to promote the growth of H2O2 damaged HUVEC with enhanced secretion of VEGF for neovascularization. In addition, the remarkable in vivo outcomes of angiogenesis and osseointegration were revealed by the subcutaneous implant model and bone tissue implant model in diabetic rats, respectively. The in vitro and in vivo results demonstrated that modified PEEK with multifunction can be an attractive tool for enhancing bone integration under diabetic conditions, underpinning the clinical application potential of modified implants for diabetic osseointegration.
Assuntos
Antioxidantes , Diabetes Mellitus Experimental , Ratos , Animais , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Benzofenonas/farmacologia , Cetonas/farmacologia , Polietilenoglicóis/farmacologia , Osseointegração , Osteogênese , Osso e Ossos , Antibacterianos/farmacologia , Propriedades de SuperfícieRESUMO
Data from globocan statistic in 2020 indicate that breast cancer has become highest incidence rate of cancer. Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) are known immunohistochemistry (IHC) markers that mediate cell growth and survival signaling. Furthermore, regulator proteins, receptors, and their downstream signaling pathways have emerged as critical components in breast cancer formation and proliferation, and have become well-established therapeutic targets and the core focus of breast cancer therapy research. Garcinia is a big genus in the Clusiaceae family that contains a wide spectrum of biologically active metabolites for the chemical composition of their isolated fruits, stem barks, seeds, leaves, and roots, have resulted including polyisoprenylated benzophenones, polyphenols, bioflavonoids, xanthones, lactones, and triterpenes. This review article aimed to analyze the potential of Garcinia phytochemicals as a molecular therapy of breast cancer. The results showed that phytochemicals of Garcinia (i.e., α-mangostin, Cambogin, Gambogic Acid [GA], Garcinol, Griffipavixanthone, Friedolanostane triterpenoid, Hexane, Neobractatin, 7-Epiclusianone, xanthochymol - guttiferone E, and isoxanthochymol - cycloxanthochymol) have anticancer properties, including apoptosis, inhibition of proliferation, and metastasis. This review is important to provide information regarding phytochemicals of Garcinia as an alternative treatment for breast cancer patients. This article selected 28 article researches based on inclusion criteria with the keyword "Garcinia" and "Breast cancer", in English, and available in full text and abstract searching on PubMed.
Assuntos
Garcinia , Neoplasias , Plantas Medicinais , Triterpenos , Xantonas , Benzofenonas/química , Benzofenonas/farmacologia , Garcinia/química , Medicina Herbária , Hexanos , Humanos , Lactonas , Compostos Fitoquímicos/farmacologia , Polifenóis , Receptores de Estrogênio , Receptores de Progesterona , Triterpenos/química , Xantonas/químicaRESUMO
Background: Guttiferone E is a naturally occurring polyisoprenylated benzophenone exhibiting a wide range of remarkable biological activities. But its therapeutic application is still limited due to its poor water solubility. This study is aimed at preparing guttiferone E-loaded liposomes and assessing their in vitro cytotoxicity and anti-inflammatory effect. Methods: Liposomes containing guttiferone E were prepared by the thin film hydration method, and the physicochemical characteristics were determined using dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The cytotoxicity was assessed by the MTT assay. The fluorometric cyclooxygenase (COX) activity assay kit was used to assess the COX activity while the nitric oxide production was evaluated by the Griess reagent method. Results: The liposomes with a mean size of 183.33 ± 17.28 nm were obtained with an entrapment efficiency of 63.86%. Guttiferone E-loaded liposomes successfully decreased the viability of cancer cells. The overall IC50 values varied between 5.46 µg/mL and 22.25 µg/mL. Compared to the untreated control, guttiferone E-loaded liposomes significantly reduced the nitric oxide production and the activity of COX in a concentration-dependent manner. Conclusion: This study indicates that liposomes can be an alternative to overcome the water insolubility issue of the bioactive guttiferone E.
Assuntos
Lipossomos , Neoplasias , Anti-Inflamatórios/farmacologia , Benzofenonas/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos , Óxido Nítrico , Tamanho da Partícula , ÁguaRESUMO
Blocking the de novo biosynthesis of pyrimidine by inhibiting human dihydroorotate dehydrogenase (hDHODH) is an effective way to suppress the proliferation of cancer cells and activated lymphocytes. Herein, eighteen teriflunomide derivatives and four ASLAN003 derivatives were designed and synthesized as novel hDHODH inhibitors based on a benzophenone scaffold. The optimal compound 7d showed a potent hDHODH inhibitory activity with an IC50 value of 10.9 nM, and displayed promising antiproliferative activities against multiple human cancer cells with IC50 values of 0.1-0.8 µM. Supplementation of exogenous uridine rescued the cell viability of 7d-treated Raji and HCT116 cells. Meanwhile, 7d significantly induced cell cycle S-phase arrest in Raji and HCT116 cells. Furthermore, 7d exhibited favorable safety profiles in mice and displayed effective antitumor activities with tumor growth inhibition (TGI) rates of 58.3% and 42.1% at an oral dosage of 30 mg/kg in Raji and HCT116 cells xenograft models, respectively. Taken together, these findings provide a promising hDHODH inhibitor 7d with potential activities against some tumors.
Assuntos
Antineoplásicos , Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Camundongos , Animais , Di-Hidro-Orotato Desidrogenase , Relação Estrutura-Atividade , Inibidores Enzimáticos , Benzofenonas/farmacologia , Proliferação de Células , Antineoplásicos/farmacologia , Linhagem Celular TumoralRESUMO
The fruits of Garcinia oblongifolia Champ. ex Benth. were famous as an edible fruit in tropical regions of China. Because of its unique taste and great nutritional value, the ripe fresh fruits of G. oblongifolia could be eaten directly or used as raw materials for natural beverages and food supplements. In this work, six new polyprenylated benzophenones (1-6) and one new dimeric tocotrienol derivative (7), together with 18 known ones (8-25), were isolated from the fruits of G. oblongifolia. Compounds 1-4 were peculiar polycyclic polyprenylated acylphloroglucinols (PPAPs) featuring the rare carbon skeleton of a bicyclo[3.4.1]decane-1,3-diketone. Moreover, all isolates (1-25) were evaluated for their cytotoxicity activities against nasopharyngeal carcinoma (NPC) cell lines (CNE1 and CNE2). Among these isolates, compound 6 exhibited the strongest cytotoxicity activity on CNE1 and CNE2 cells with the IC50 values of 7.8 ± 0.2 and 9.1 ± 0.3 µM, respectively. Further mechanistic investigation demonstrated that 6 could induce mitophagy to promote Caspase-9/GSDME-mediated pyroptosis through triggering ROS in NPC cells.
Assuntos
Garcinia , Tocotrienóis , Benzofenonas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Frutas/química , Estrutura Molecular , Floroglucinol/farmacologia , Tocotrienóis/farmacologiaRESUMO
Due to its favorable chemical stability, biocompatibility, and mechanical properties, Poly(etheretherketone) (PEEK) is a promising material for repairing bone and dental hard tissue defects. However, there are critical disadvantages: PEEK is biologically and chemically inert, which influences osseointegration of implants and bonding strength of prostheses, and its mechanical properties still cannot meet the requirements for some medical applications. Furthermore, bacterial infections and inflammatory reactions often accompany bone defects caused by trauma or inflammation or teeth loss caused by periodontitis. Previous studies mainly focused on enhancing PEEK's bioactivity and mechanical performance, but PEEK also lacks effective anti-infection ability. Thus, it is necessary to improve its anti-infection ability, and this is considered in this paper from two aspects. The first is to inhibit the attachment and growth of bacteria on the material, and the second is to endow the material with immunoregulatory ability, which means mobilizing the host immune system to protect tissue from inflammation. In this review, we analyze and discuss the existing treatment methods to improve the antibacterial and immunomodulatory abilities of PEEK addressing their limitations, relevant future challenges, and required research efforts.
Assuntos
Cetonas , Polietilenoglicóis , Antibacterianos/farmacologia , Benzofenonas/farmacologia , Humanos , Inflamação , Cetonas/química , Cetonas/farmacologia , Osseointegração , Polietilenoglicóis/química , Polímeros , Próteses e Implantes , Propriedades de SuperfícieRESUMO
Ideal bone implant materials need to provide multiple functions such as biocompatibility, non-cytotoxicity, and bone tissue regeneration guidance. To tackle this challenge, according to our previous work, carbon fiber (40 mm)-reinforced polyetheretherketone (CFPEEK) composites were developed by using 3D needle-punched CFPEEK preform molding technology. Because of the excellent mechanical properties, the CFPEEK needled felt matrix composites have a broad application prospect in orthopedic internal fixation and implant materials. In order to expand the application range of composite materials, it is very necessary to improve the surface bioactivity of composite materials. The surface modification of CFPEEK with 2D titanium carbide (MXene) nanosheets (sulfonated CFPEEK (SCFPEEK)-polydopamine (PDA)-Ti3C2Tx) for enhanced photothermal antibacterial activity and osteogenicity was explored in this study. Here, the new composites we constructed are composed of Ti3C2Tx nanosheets, PDA, and biologically inert SCFPEEK, which gave the bio-inert composites bimodal therapeutic features: photothermal antibacterial activity and in vivo osseointegration. To our knowledge, this is the first time that a CFPEEK implant with a bioactive surface modified by Ti3C2Tx nanosheets was demonstrated. Due to the synergistic photothermal therapy (PTT) treatment of Ti3C2Tx/PDA, SCFPEEK-PDA-Ti3C2Tx (SCP-PDA-Ti) absorbed heat and the temperature increased to 40.8-59.6 °Câthe high temperature led to bacterial apoptosis. The SCP-PDA-Ti materials could effectively kill bacteria after 10 min of near-infrared (NIR) irradiation at 808 nm. SCP-PDA-Ti (2.5) and SCP-PDA-Ti (3.0) achieved a 100% bacteriostasis rate. More importantly, the multifunctional implant SCP-PDA-Ti shows good cytocompatibility and an excellent ability to promote bone formation in terms of cytotoxicity, diffusion, alkaline phosphatase activity, alizarin red activity, real-time polymerase chain reaction analysis, and in vivo bone defect osteogenesis experiments. This provides a more extendable development idea for the application of carbon fiber-reinforced composites as orthopedic implants.
Assuntos
Benzofenonas , Osteogênese , Antibacterianos/farmacologia , Benzofenonas/farmacologia , Fibra de Carbono , Cetonas/farmacologia , Polietilenoglicóis/farmacologia , PolímerosRESUMO
Poly-ether-ether-ketone (PEEK) has become the spinal implant material of choice due to its radiolucency, low elastic modulus, manufacturability, and mechanical durability. However, studies have highlighted less that optimal cytocompatibility properties of conventional PEEK leading to decreased bone growth and/or extensive bacteria infection. In order to improve the surface properties of PEEK for orthopedic applications, here, Accelerated Neutral Atom Beam (ANAB) technology was used to modify PEEK and such samples were tested In Vitro for osteoblast (bone-forming cell) functions and bacterial colonization. Results showed significantly improved osteoblast responses (such as deposition of calcium containing mineral as well as alkaline phosphatase, osteocalcin, osteopontin, and osteonectin synthesis) on ANAB modified PEEK compared to controls due to optimized surface energy from nanostructured features and greater exposure of PEEK chemistry. ANAB treatment enhanced protein absorption (specifically, mucin, casein, and lubricin) to the PEEK surface and consequently significantly reduced bacterial (including methicillin resistant Staph. aureus (or MRSA), E. coli, and Staph. epidermidis) colonization. Collectively, this study introduces ANAB treated PEEK as a novel material that should be further studied for a wide range of improved orthopedic applications.
Assuntos
Éter , Cetonas , Antibacterianos/farmacologia , Benzofenonas/farmacologia , Proliferação de Células , Escherichia coli , Éter/farmacologia , Éteres/farmacologia , Cetonas/química , Cetonas/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/química , Polímeros/farmacologiaRESUMO
A series of salicylanilide compounds was previously identified as antibacterial agents that inhibit the peptidoglycan formation. To find the exact binding mode, we synthesized a benzophenone-containing salicylanilide compound (1) and used it as a photoaffinity probe to label Acinetobacter baumannii penicillin-binding protein (PBP1b). After incubation and photo-irradiation, the labeled protein was subjected to trypsin digestion, dialysis enrichment, LC-ESI-MS/MS analysis, and Mascot search to reveal an octadecapeptide sequence 364RQLRTEYQESDLTNQGLR381 that was labeled at E372. Our molecular docking experiments suggest a hydrophobic pocket surrounded by R367 and E372 is the binding site of salicylanilide 1. The pocket lies in between the transglycosylase and transpeptidase domains, thus binding of salicylanilide 1 can block the propagation pathway to disrupt the growth of peptidoglycan chain.
Assuntos
Peptidoglicano Glicosiltransferase , Benzofenonas/farmacologia , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Peptidoglicano , Peptidoglicano Glicosiltransferase/química , Peptidoglicano Glicosiltransferase/metabolismo , Marcadores de Fotoafinidade , Salicilanilidas , Espectrometria de Massas em TandemRESUMO
As orthopedic and dental implants, polyetheretherketone (PEEK) is expected to be a common substitute material of titanium (Ti) and its alloys due to its good biocompatibility, chemical stability, and elastic modulus close to that of bone tissue. It could avoid metal allergy and bone resorption caused by the stress shielding effect of Ti implants, widely studied in the medical field. However, the lack of biological activity is not conducive to the clinical application of PEEK implants. Therefore, the surface modification of PEEK has increasingly become one of the research hotspots. Researchers have explored various biomolecules modification methods to effectively enhance the osteogenic and antibacterial activities of PEEK and its composites. Therefore, this review mainly summarizes the recent research of PEEK modified by biomolecules and discusses the further research directions to promote the clinical transformation of PEEK implants.
Assuntos
Osseointegração , Osteogênese , Antibacterianos/farmacologia , Benzofenonas/farmacologia , Cetonas/química , Cetonas/farmacologia , Polietilenoglicóis/química , Polímeros , Propriedades de Superfície , Titânio/farmacologiaRESUMO
Four new pestalone-type benzophenones, pestalotinones A-D (1-4), along with six known congeners, pestalone, pestalone E-F, SB87-Cl, SB87-H, and pestalachloride B, were isolated from the endophytic fungus Pestalotiopsis trachicarpicola SC-J551 cultivated on rice grains. Their structures were established by extensive spectroscopic analysis. Compounds 1-3 exhibited potent activity against Staphylococcus aureus and MRSA (MIC: 1.25-2.5 µg ml-1) while no cytotoxicity against Vero cells (IC50 > 50 µM). The activity profile of this group of compounds suggested that replacement of the C-14 aldehyde with an oxymethyl greatly increases their activity and selectivity towards the bacteria and chlorine substitutions result in the increase of antibacterial activity and slight decrease of cytotoxicity against the mammalian cells.
Assuntos
Antibacterianos , Benzofenonas , Animais , Antibacterianos/química , Benzofenonas/química , Benzofenonas/farmacologia , Chlorocebus aethiops , Fungos , Estrutura Molecular , Pestalotiopsis , Células VeroRESUMO
PURPOSE: Most hormone-dependent human breast cancers develop resistance to anti-hormone therapy over time. Our goal was to identify novel treatment strategies to avoid this drug resistance and thereby control hormone-dependent breast cancer. METHODS: Sulforhodamine B assays were used to measure viability of cultured human breast-cancer cells. BT-474 cell tumor xenografts in nude mice were used to evaluate tumor growth. Immunohistochemistry was used to assess estrogen-receptor and angiogenesis-marker expression, as well as apoptosis, in tumor-xenograft tissues. RESULTS: MCF-7 and BT-474 breast-cancer cells treated with either RO 48-8071 <[4'-[6-(Allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate] [RO]; a small-molecule inhibitor of oxidosqualene cyclase, a key enzyme in cholesterol biosynthesis> or liquiritigenin [LQ; an estrogen receptor (ER) ß agonist] exhibited significantly reduced viability in vitro. RO + LQ treatment further significantly reduced cell viability. Administration of RO, LQ, or RO + LQ significantly inhibited growth of BT-474 tumor xenografts in vivo. RO, LQ, or RO + LQ reduced ERα but induced ER ß expression in tumor xenografts. Both compounds significantly reduced angiogenesis-marker expression and increased apoptosis in tumor xenografts; use of RO + LQ significantly enhanced the effects observed with a single agent. CONCLUSION: The ERß ligand LQ significantly enhanced the inhibition of breast-cancer cell viability and tumor-xenograft growth by RO. The anti-tumor properties of RO may in part be due to an off-target effect that reduces ERα and increases ERß, the latter of which can then interact with LQ to promote anti-proliferative effects. The RO + LQ combination may have value when considering novel treatment strategies for hormone-dependent breast cancer.