Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 638
Filtrar
1.
Biosci Biotechnol Biochem ; 84(1): 63-75, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31462179

RESUMO

A natural isoquinoline alkaloid, berberine, has been known to exhibit anti-tumor activity in various cancer cells via inducing cell cycle arrest. However, it has not been investigated whether berberine and its analogs inhibit the growth of rhabdomyosarcoma (RMS), which is the most frequent soft tissue tumor in children. The present study examined the anti-tumor effects of berberine and palmatine on expansions of three human embryonal RMS cell lines; ERMS1, KYM1, and RD. Intracellular incorporation of berberine was relatively higher than that of palmatine in every RMS cell line. Berberine significantly inhibited the cell cycle of all RMS cells at G1 phase. On the other hand, palmatine only suppressed the growth of RD cells. Both of berberine and palmatine strongly inhibited the growth of tumorsphere of RD cells in three-dimensional culture. These results indicate that berberine derivatives have the potential of anti-tumor drugs for RMS therapy.Abbreviations: ARMS: alveolar rhabdomyosarcoma; ERMS: embryonal rhabdomyosarcoma; RMS: rhabdomyosarcoma.


Assuntos
Antineoplásicos/farmacologia , Alcaloides de Berberina/farmacologia , Berberina/farmacologia , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Rabdomiossarcoma Alveolar/patologia , Rabdomiossarcoma Embrionário/patologia , Antineoplásicos/química , Berberina/análogos & derivados , Berberina/química , Alcaloides de Berberina/química , Linhagem Celular Tumoral , Ciclina D1/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Medicamentos de Ervas Chinesas/química , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Antígeno Ki-67/genética , Conformação Molecular , Simulação de Acoplamento Molecular , Phellodendron/química , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Embrionário/metabolismo
2.
Eur J Med Chem ; 183: 111727, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563806

RESUMO

Two highly active anticancer Pt(II) complexes, [Pt(Jat1)Cl]Cl (Pt1) and [Pt(Jat2)Cl]Cl (Pt2), containing jatrorrhizine derivative ligands (Jat1 and Jat2) are described. Cell intake study showed high accumulation in cell nuclear fraction. Pt1 and Pt2 exhibited high selectivity for HeLa cancer cells (IC50 = 15.01 ±â€¯1.05 nM and 1.00 ±â€¯0.17 nM) comparing with HL-7702 normal cells (IC50 > 150 µM), by targeting p53 and telomerase. Pt2 containing Jat2 ligand was more potent and showed high selectivity for telomerase. It also caused mitochondria and DNA damage, sub-G1 phase arrest, and a high rate of cell apoptosis at the low dose of 1.00 nM. The HeLa tumor inhibition rate (TIR) of Pt2 was 48.8%, which was even higher than cisplatin (35.2%). In addition, Pt2 displayed green luminescent property and potent telomerase inhibition. Our findings demonstrated the promising development of platinum(II) complexes containing jatrorrhizine derivatives as novel Pt-based anti-cancer agents.


Assuntos
Antineoplásicos , Berberina/análogos & derivados , Compostos Organoplatínicos , Platina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Berberina/química , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Imagem Óptica , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Telomerase/antagonistas & inibidores
3.
Pestic Biochem Physiol ; 159: 51-58, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31400784

RESUMO

Isoquinoline alkaloids possess broad pharmacological activities. In this study, the antifungal activity of twelve isoquinoline alkaloids, including berberine (1), jatrorrhizine (2), coptisine (3), corydaline (4), tetrahydroberberine (5), chelidonine (6), dihydrosanguinarine (7), chelerythrine (8), sanguinarine (9), palmatine (10), tetrahydropalmatine (11) and columbamine (12) were evaluated against eight plant pathogenic fungi in vitro. All the tested compounds showed varying degrees of inhibition against the eight tested plant fungi. Among them, sanguinarine exhibited high antifungal activity (EC50 ranging from 6.96-59.36 µg/mL). It displayed the best inhibitory activity against Magnaporthe oryzae (EC50 = 6.96 µg/mL), compared with azoxystrobin (EC50 = 12.04 µg/mL), and significantly suppressed spore germination of M. oryzae with the inhibition rate reaching 100% (50 µg/mL). The optical microscopy and scanning electron microscopy observations revealed that after treating M. oryzae mycelia with sanguinarine at 10 µg/mL, the mycelia appeared curved, collapsed and the cell membrane integrity was eventually damaged. Furthermore, the reactive oxygen species production, mitochondrial membrane potential and nuclear morphometry of mycelia had been changed, and the membrane function and cell proliferation of mycelia were destroyed. These results will enrich our insights into action mechanisms of antifungal activity of sanguinarine against M. oryzae.


Assuntos
Alcaloides/farmacologia , Antifúngicos/farmacologia , Benzofenantridinas/farmacologia , Isoquinolinas/farmacologia , Berberina/análogos & derivados , Berberina/farmacologia , Alcaloides de Berberina/farmacologia , Magnaporthe/metabolismo , Magnaporthe/patogenicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Espécies Reativas de Oxigênio/metabolismo
4.
Planta Med ; 85(13): 1107-1113, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31382302

RESUMO

Pyrrolizidine alkaloids are secondary plant constituents that became a subject of public concern because of their hepatotoxic, pneumotoxic, genotoxic, and cytotoxic effects. Due to disregardful harvesting and/or contamination with pyrrolizidine alkaloid-containing plants, there is a high risk of ingesting these substances with plant extracts or natural products. The limit for the daily intake was set to 0.007 µg/kg body weight. If contained in an extract, cleanup methods may help to minimize the pyrrolizidine alkaloid concentration. For this purpose, a material for depleting pyrrolizidine alkaloids in herbal preparations was developed based on the approach of molecular imprinting using monocrotaline. Molecular imprinted polymers are substances with specific binding characteristics, depending on the template used for imprinting. By means of group imprinting, only one molecule is used for creating selective cavities for many molecular pyrrolizidine alkaloid variations. Design of Experiment was used for the development using a 25 screening plan resulting in 64 polymers (32 MIPs/32 NIPs). Rebinding trials revealed that the developed material can compete with common cation exchangers and is more suitable for depleting pyrrolizidine alkaloids than C18- material. Matrix trials using an extract from Chelidonium majus show that there is sufficient binding capacity for pyrrolizidine alkaloids (80%), but the material is lacking in selectivity towards pyrrolizidine alkaloids in the presence of other alkaloids with similar functional groups such as berberine, chelidonine, and coptisine. Beyond this interaction, the selectivity could be proven for other structurally different compounds on the example of chelidonic acid.


Assuntos
Impressão Molecular/métodos , Extratos Vegetais/isolamento & purificação , Alcaloides de Pirrolizidina/isolamento & purificação , Adsorção , Benzofenantridinas/isolamento & purificação , Berberina/análogos & derivados , Berberina/isolamento & purificação , Chelidonium/química , Echium/química
5.
Eur J Pharmacol ; 859: 172523, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31279667

RESUMO

Many drugs with anti-diabetic effects regulate glucose consumption in peripheral tissues. Via cellular glucose consumption assays, we identified that coptisine, a main effective constituent from the plant Coptis chinensis, enhanced hepatic and skeletal muscle glucose consumption. We further explored its effects on glucose metabolism in diabetic animals to elucidate its mechanism of action. Our results showed that coptisine did not show cytotoxicity. Intragastric administration of coptisine for ten days in normal ICR mice markedly decreased fasting blood-glucose levels without significant effects on body weight. In alloxan-induced type 1 diabetic mice, intragastric administration of coptisine for 28 days decreased fasting and non-fasting blood-glucose levels as well. In type 2 diabetic KKAy mice, intragastric administration of coptisine for nine weeks improved glucose tolerance. It decreased fasting/non-fasting blood-glucose and fructosamine levels. Coptisine decreased low-density lipoprotein and total cholesterol levels, however, had no significant effect on triglyceride levels. Coptisine increased AMPK phosphorylation while decreasing Akt phosphorylation in HepG2 hepatic cells and C2C12 myotubes. Coptisine also reduced mitochondrial respiration in isolated and cellular mitochondria, suggesting that coptisine lowered cellular energy levels. In particularly, coptisine administration (10-6 M) decreased the mitochondrial oxygen consumption rate (OCR) with a greater extracellular acidification rate (ECAR), resulting in an oxidative-to-glycolysis phosphorylation shifted for cellular energy generation. Our results demonstrate that coptisine acts as an enhancer of peripheral glucose consumption could improve glucose metabolism in diabetic animals. Coptisine may serve as a novel anti-diabetic agent and warrant further evaluation.


Assuntos
Berberina/análogos & derivados , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Ativação Enzimática/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células Hep G2 , Humanos , Hipoglicemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos
6.
Molecules ; 24(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261913

RESUMO

A novel strategy was developed to identify hepatotoxic compounds in traditional Chinese medicines (TCMs). It is based on the exposure of HL-7702 cells to a TCM extract, followed by the identification and further determination of potential hepatotoxic compounds accumulated in the cells by liquid chromatography-tandem mass spectrometry (LC-MS/MS). As a case study, potential hepatotoxic components in Chelidonium majus L. were screened out. Five alkaloids (sanguinarine, coptisine, chelerythrine, protopine, and chelidonine) were identified by LC-MS/MS within 10 min, and their intracellular concentrations were first simultaneously measured by LC-MS/MS with a run time of 4 min. A cell viability assay was performed to assess the cytotoxicity of each alkaloid. With their higher intracellular concentrations, sanguinarine, coptisine, and chelerythrine were identified as the main hepatotoxic constituents in Ch. majus. The study provides a powerful tool for the fast prediction of cytotoxic components in complex natural mixtures on a high-throughput basis.


Assuntos
Alcaloides/análise , Alcaloides/toxicidade , Chelidonium/química , Fígado/citologia , Benzofenantridinas/análise , Benzofenantridinas/toxicidade , Berberina/análogos & derivados , Berberina/análise , Berberina/toxicidade , Alcaloides de Berberina/análise , Alcaloides de Berberina/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Avaliação Pré-Clínica de Medicamentos , Humanos , Isoquinolinas/análise , Isoquinolinas/toxicidade , Fígado/química , Fígado/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Testes de Toxicidade
7.
Phytomedicine ; 63: 153015, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302315

RESUMO

BACKGROUND: Traf2 and Nck interacting serine protein kinase (TNIK) is a tumour target protein which its high expression is closely related to the occurrence and development of mammary carcinoma cells. Molecular docking revealed that jatrorrhizine, a protoberberine alkaloid, exhibits good binding affinity and interaction with TNIK. However, the underlying mechanisms of jatrorrhizine targeting TNIK inhibits the proliferation and metastasis of breast cancer cells remain unclear. METHODS: To figure out the mechanisms in vitro and in vivo, the CRISPR/Cas9 technology was used to knockout TNIK gene and detected qualitatively by immunofluorescence and immunoblotting assay. The MTT cell viability assay for cytotoxicity test, the apoptosis were detected by flow cytometry, the migration and invasion were evaluated by colony formation, wound healing assay and cell invasion assay, respectively. Anticancer effects were further corroborated by 4T1/Luc homograft tumour model. RESULTS: The results showed that targeted knockout of TNIK that attenuated Wnt/ß-catenin signalling and epithelial-mesenchymal transition (EMT) expression, the effects were potentiated by the addition of jatrorrhizine. Moreover, jatrorrhizine distinctly inhibited the proliferation of MDA-MB-231, MCF-7 and 4T1 cells with IC50 values of 11.08 ± 1.19 µM, 17.11 ± 4.54 µM and 22.14 ± 2.87 µM, induced mitochondrial dysfunction and early apoptosis involving mitochondrial apoptotic pathway. These results were further corroborated by the 4T1 tumour-bearing mice, which showed that jatrorrhizine significantly suppressed the proliferation and metastasis of mammary carcinoma cells without obvious toxicity. CONCLUSION: These findings provide an overall perspective that jatrorrhizine potentially restrains TNIK regulating Wnt/ß-catenin signalling and EMT expression for mammary cancer targeted therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Berberina/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Berberina/química , Berberina/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Técnicas de Inativação de Genes , Humanos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Proteínas Serina-Treonina Quinases/genética , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
8.
Eur J Pharmacol ; 859: 172499, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31242439

RESUMO

The leading causes of death in breast cancer patients are disease recurrence and metastasis. Growing evidence has suggested that metastasis possibly originates from cancer stem-like cells (CSCs). Previous studies indicated dopamine decreased CSC frequency through activating dopamine D1 receptor pathway. Hence, this study explored the efficacy of two dopamine D1 receptor agonists in lung metastasis of breast cancer and the preliminary mechanism. The two dopamine D1 receptor agonists, fenoldopam (FEN) and l-stepholidine (l-SPD), performed well in decreasing lung metastasis in 4T1 breast cancer model. And the cGMP in the primary tumor was significantly elevated while cAMP mildly elevated in FEN and l-SPD dosing groups. CSC markers (CD44+/CD24- and ALDH+) and MMP2 in 4T1 primary tumor were repressed after dopamine D1 receptor agonist administration while E-cadherin up-regulated. FEN and l-SPD also inhibited cancer stemness and cell motility in vitro, and the inhibitory effects could be reversed by dopamine D1 receptor antagonist SCH23390. Besides, FEN impacted the white blood cell increase caused by breast cancer disease showing decreased neutrophils but increased lymphocytes. Drug safety was verified in aspects of body weight, organ index and tissue section. In conclusion, dopamine D1 receptor agonists FEN and l-SPD showed efficacy in inhibiting metastasis along with good safety in breast cancer, thus providing an alternative for anti-metastasis therapy in the future. Furthermore, this study also indicates that dopamine D1 receptor may be a possible target for metastatic breast cancer treatment and even other cancers at a late stage.


Assuntos
Berberina/análogos & derivados , Neoplasias da Mama/patologia , Agonistas de Dopamina/farmacologia , Fenoldopam/farmacologia , Neoplasias Pulmonares/secundário , Células-Tronco Neoplásicas/patologia , Receptores de Dopamina D1/metabolismo , Animais , Berberina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Camundongos , Mucina-1/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos
9.
Neurotox Res ; 36(2): 376-386, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31201732

RESUMO

Repeated methamphetamine (METH) exposure can cause severe neurotoxicity to the central nervous system, and lead to memory deficits. L-Stepholidine (L-SPD) is a structurally identified alkaloid extract of the Chinese herb Stephania intermedia, which elicits dopamine (DA) D1-type receptors partial agonistic activity and D2-type receptors antagonistic activity. In this study, we investigated the effect of L-SPD on METH-induced memory deficits in mice and its underlying mechanisms. We found that repeated exposure to METH (10 mg/kg, i.p., once per day for 7 consecutive days) impaired memory functions in the novel object recognition experiment. Pretreatment of L-SPD (10 mg/kg, i.p.) significantly improved METH-induced memory deficits in mice. Meanwhile, the protein expression of dopaminergic D2 receptors in hippocampus area was significantly increased by repeated METH exposure, while the protein expression of dopamine transporter (DAT) was significantly reduced. Additionally, the protein expression of phospho-protein kinase A (p-PKA) was significantly increased by repeated METH exposure. The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation 1 (HCN1) channel, which was a key regulator of memory functions and could be regulated by p-PKA, was also significantly increased by repeated METH exposure. These changes caused by METH could be prevented by L-SPD pretreatment. Therefore, our data firstly showed that pretreatment of L-SPD exhibited the protective effect against METH-induced memory deficits, possibly through reducing METH-induced upregulation of dopaminergic pathway and HCN1 channels.


Assuntos
Berberina/análogos & derivados , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Metanfetamina/toxicidade , Fármacos Neuroprotetores/uso terapêutico , Animais , Berberina/uso terapêutico , Dopaminérgicos/toxicidade , Agonistas de Dopamina/uso terapêutico , Antagonistas de Dopamina/uso terapêutico , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
10.
Gen Physiol Biophys ; 38(4): 281-294, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31219431

RESUMO

In this study, the protective effect of coptisine on the oxidative damage-mediated apoptosis was evaluated in cultured human HaCaT keratinocytes. The results demonstrate that preincubation of cells with coptisine prior to H2O2 stimulation resulted in significant inhibition of cytotoxicity and DNA damage associated with the inhibition of reactive oxygen species (ROS) accumulation. Coptisine also restored H2O2-induced mitochondrial dysfunction and decrease of ATP production, and prevented apoptosis by inhibiting Bax/Bcl-2 ratio, caspase-3 activity, and poly(ADP-ribose) polymerase degradation. Interestingly, the expressions of nuclear factor-erythroid-2-related factor 2 (Nrf2) and its active form, phosphorylated Nrf2, were strikingly promoted by coptisine in the presence of H2O2, which was associated with a marked increase in the expression of heme oxygenase-1 (HO-1). However, coptisine-induced HO-1 expression was completely abrogated by Nrf2-specific small interfering RNA (Nrf2-siRNA), which suggests that the increased expression of HO-1 by coptisine is Nrf2-dependent. In addition, Nrf2-siRNA transfection significantly eliminated the protective effect of coptisine on H2O2-induced cytotoxicity, and this effect was similar to that by zinc protoporphyrin IX (ZnPP), an HO-1 specific inhibitor. Furthermore, the protective effects of coptisine against H2O2-induced cytotoxicity were abolished by ZnPP, indicating that coptisine protects keratinocytes against oxidative stress-induced injury through activation of the Nrf2/HO-1 signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Berberina/análogos & derivados , Dano ao DNA , Heme Oxigenase-1/metabolismo , Queratinócitos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Berberina/farmacologia , Linhagem Celular , Humanos , Peróxido de Hidrogênio/farmacologia , Queratinócitos/enzimologia , Queratinócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Mol Sci ; 20(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052469

RESUMO

Berberine is a bioactive isoquinoline alkaloid derived from many plants. Although berberine has been shown to inhibit growth and induce apoptosis of several tumor cell lines, its poor absorption and moderate activity hamper its full therapeutic potential. Here, we describe the synthesis of a series of 9-O-substituted berberine derivatives with improved antiproliferative and apoptosis-inducing activities. An analysis of novel berberine derivatives by EPR spectroscopy confirmed their similar photosensitivity and analogous behavior upon UVA irradiation as berberine, supporting their potential to generate ROS. Improved antitumor activity of novel berberine derivatives was revealed by MTT assay, by flow cytometry and by detection of apoptotic DNA fragmentation and caspase-3 activation, respectively. We showed that novel berberine derivatives are potent inhibitors of growth of HeLa and HL-60 tumor cell lines with IC50 values ranging from 0.7 to 16.7 µM for HL-60 cells and 36 to >200 µM for HeLa cells after 48 h treatment. Further cell cycle analysis showed that the observed inhibition of growth of HL-60 cells treated with berberine derivatives was due to arresting these cells in the G2/M and S phases. Most strikingly, we found that berberine derivative 3 (9-(3-bromopropoxy)-10-methoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquino[3,2-a] isoquinolin-7-ylium bromide) possesses 30-fold superior antiproliferative activity with an IC50 value of 0.7 µM and 6-fold higher apoptosis-inducing activity in HL-60 leukemia cells compared to berberine. Therefore, further studies are merited of the antitumor activity in leukemia cells of this berberine derivative.


Assuntos
Antineoplásicos/síntese química , Berberina/análogos & derivados , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células HeLa , Humanos
12.
Toxicol Lett ; 311: 91-97, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31054355

RESUMO

Phytomedicinal preparations containing extracts of the plant Chelidonium majus (Greater Celandine) have been used in the therapy of upper abdominal disorders. C. majus alkaloids (CAL) were suspected to be responsible for reported cases of liver symptoms including cases of acute liver failure in patients upon treatment with certain C. majus preparations. Based on these reports, a safe oral daily dose limit of not more than 2.5 mg CAL was established in the EU. However, C. majus extracts and individual CAL were not able to elicit similar adverse effects when given orally to pigs or rats. We found that CAL differ considerably in their cytotoxicity in rat hepatocytes in culture. The cationic congeners chelerythrine, coptisine and sanguinarine were the most toxic ones (EC20 values ≤2 µM) while the neutral congeners chelidonine, dihydrosanguinarine and protopine were less toxic, with a rank order of toxicity of coptisine > chelerythrine > sanguinarine > chelidonine > protopine > dihydrosanguinarine. Calculation of octanol-water partition coefficients revealed that the most cytotoxic CAL in hepatocytes were the cationic polar ones. At cytotoxic concentrations sanguinarine led to a marked decrease in reduced and oxidized intracellular glutathione while the much less cytotoxic dihydrosanguinarine did not. After glutathione depletion with menadione, CAL toxicity was only slightly enhanced. Comparison of the cytotoxic concentrations to reported liver levels in experimental animals suggests that the latter were too low to cause hepatotoxicity, probably due to an extremely low oral availability of certain CAL.


Assuntos
Alcaloides/toxicidade , Chelidonium/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Benzofenantridinas/toxicidade , Berberina/análogos & derivados , Berberina/toxicidade , Células Cultivadas , Chelidonium/química , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Isoquinolinas/toxicidade , Masculino , Estrutura Molecular , Cultura Primária de Células , Ratos Wistar , Relação Estrutura-Atividade
13.
Molecules ; 24(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959739

RESUMO

In recent studies, several alkaloids acting as cholinesterase inhibitors were isolated from Corydalis cava (Papaveraceae). Inhibitory activities of (+)-thalictricavine (1) and (+)-canadine (2) on human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) were evaluated with the Ellman's spectrophotometric method. Molecular modeling was used to inspect the binding mode of compounds into the active site pocket of hAChE. The possible permeability of 1 and 2 through the blood⁻brain barrier (BBB) was predicted by the parallel artificial permeation assay (PAMPA) and logBB calculation. In vitro, 1 and 2 were found to be selective hAChE inhibitors with IC50 values of 0.38 ± 0.05 µM and 0.70 ± 0.07 µM, respectively, but against hBChE were considered inactive (IC50 values > 100 µM). Furthermore, both alkaloids demonstrated a competitive-type pattern of hAChE inhibition and bind, most probably, in the same AChE sub-site as its substrate. In silico docking experiments allowed us to confirm their binding poses into the active center of hAChE. Based on the PAMPA and logBB calculation, 2 is potentially centrally active, but for 1 BBB crossing is limited. In conclusion, 1 and 2 appear as potential lead compounds for the treatment of Alzheimer's disease.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Alcaloides/química , Butirilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/química , Alcaloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Berberina/análogos & derivados , Berberina/química , Berberina/farmacologia , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Simulação por Computador , Corydalis/química , Dissacarídeos/química , Dissacarídeos/farmacologia , Humanos , Modelos Moleculares , Nitrocompostos/química , Nitrocompostos/farmacologia , Ligação Proteica/efeitos dos fármacos
14.
Zhongguo Zhong Yao Za Zhi ; 44(5): 968-974, 2019 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-30989857

RESUMO

In order to clarify the characteristic components of Berberidis Cortex,the preparative liquid chromatography and spectral analysis methods were used to separate and identify the unknown components in the water extract of Berberidis Cortex. Two compounds were isolated and identified as bufotenidine and ferulic acid 4-O-ß-D-glucopyranoside. They were both isolated for the first time from Berberidis Cortex and Berberis. In addition,an HPLC method was successfully established for simultaneously determination of six compounds in Berberidis Cortex,and chemometric methods were used to study the chemical differences among three main species of Berberidis Cortex. The results suggested that jatrorrhizine and bufotenidine are the main difference compounds among the three species.Compared with B. kansuensis and B. diaphana,B. vernae contains significantly more jatrorrhizine(P<0. 01),and the content of bufotenidine in B. vernae was significantly higher than that in B. kansuensis(P<0. 05). Considering these results,further research is necessary to reveal the pharmacological activities of bufotenidine and the pharmacodynamic differences between the three species. The results could provide a reference for quality control,the basic research on effective substances,and development of Berberidis Cortex.


Assuntos
Berberis/química , Compostos Fitoquímicos/análise , Extratos Vegetais/análise , Berberina/análogos & derivados , Berberina/análise , Berberis/classificação , Cromatografia Líquida de Alta Pressão
15.
J Photochem Photobiol B ; 194: 140-148, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30954873

RESUMO

Previously, we reported that coralyne and UVA combination sensitized a wide range of human carcinoma cells regardless of their p53 status. The coralyne induced photosensitization of cancer cells may be clinically attractive, as mutation in the p53 gene is prevalent in many types of tumors. Coralyne mediated photosensitization of cancer cells is attributable to its ability to cause extensive DNA single strand breaks (SSB). However, the precise mechanism of coralyne induced DNA photo-damage is not yet known. The present study was aimed to understand the hitherto unknown mechanism of the coralyne-induced DNA photo-cleavage process. To this end, we compared the DNA photo-nicking properties of berberine, jatrorrhizine and coralyne, and deciphered involvement of the photochemical processes in the photo-nuclease action of coralyne using absorption and electron spin resonance spectroscopy, high performance liquid chromatography and mass spectroscopy (MS) techniques in conjunction with relevant in vitro studies with plasmid DNA. In association with UVA, coralyne, but not berberine and jatrorrhizine induced significant nicking of plasmid DNA via an O2-independent photo-chemical process. The Job's plot of our spectrophotometric data suggested that one coralyne molecule remains intercalated with two DNA base pairs (i. e., 1:2) and starts forming aggregates beyond this molar ratio. The DNA photo-nicking by the combination of coralyne and UVA (designated as CUVA) was primarily caused by the coralyne aggregates without any significant contribution from the DNA-intercalated coralyne monomer.


Assuntos
Alcaloides de Berberina/farmacologia , Clivagem do DNA/efeitos dos fármacos , Clivagem do DNA/efeitos da radiação , Berberina/análogos & derivados , Berberina/farmacologia , Luz
16.
Eur J Med Chem ; 168: 283-292, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30825723

RESUMO

A series of new 7-substituted cycloberberine (CBBR) derivatives were synthesized and evaluated for their antibacterial activities against Gram-positive pathogens, taking CBBR as the lead. The SAR revealed that the introduction of a substituent at the C7 position resulted in a potency against both the reference Gram-positive bacteria and MDR clinical isolates, much higher than that of CBBR. Compound 1f with a 7-phenyl group exhibited higher activities against MRSA and VRE than that of vancomycin, with MIC values of 1-8 µg/mL. Its rapid bactericidal action against MRSA was further confirmed in time-kill study. The preliminary mechanism study indicated that 1f might target bacterial DNA Topo IV ParE subunit, indicating a mode of action distinct from the currently used antibacterial drugs such as quinolones. These results supplemented and enriched the SAR of its kind, and provided powerful information for developing these compounds into a novel class of antibacterial candidates against MRSA.


Assuntos
Antibacterianos/farmacologia , Berberina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Berberina/análogos & derivados , Berberina/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
17.
Molecules ; 24(5)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862066

RESUMO

Twenty-five new derivatives of 8-hydroxycycloberberine (1) were synthesized and evaluated for their activities against Gram-positive bacteria, taking 1 as the lead. Part of them displayed satisfactory antibacterial activities against methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), as well as vancomycin-intermediate Staphylococcus aureus (VISA). Especially, compound 15a displayed an excellent anti-MRSA activity with MICs (minimum inhibitory concentrations) of 0.25⁻0.5 µg/mL, better than that of 1. It also displayed high stability in liver microsomes and whole blood, and the LD50 value of over 65.6 mg·kg-1 in mice via intravenous route, suggesting a good druglike feature. The mode of action showed that 15a could effectively suppress topo IV-mediated decatenation activity at the concentration of 7.5 µg/mL, through binding a different active pocket of bacterial topo IV from quinolones. Taken together, the derivatives of 1 constituted a promising kind of anti-MRSA agents with a unique chemical scaffold and a specific biological mechanism, and compound 15a has been chosen for the next investigation.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Berberina/química , Berberina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Berberina/análogos & derivados , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade
18.
Phytomedicine ; 54: 231-239, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668373

RESUMO

BACKGROUND: Dehydrocorydaline (DHC) and canadine (THB) are two active alkaloid compounds in Corydalis yanhusuo (Y.H. Chou & Chun C. Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae) (Rhizoma Corydalis). DHC and THC were previously shown to exert anti-platelet aggregation effect dose-dependently, but their exact mechanisms had not yet been addressed. Therefore, it is essential to study the mechanisms of DHC and THB affecting on platelet's function. PURPOSE: To investigate the anti-platelet effects and corresponding signal cascades of DHC and THB on platelet aggregation. METHODS: Firstly, in vitro anti-platelet aggregation of DHC and THB induced by different agonists including thrombin (THR), adenosine diphosphate (ADP) and arachidonic acid (AA) were determined through turbidimetry method. Then the possible target-related platelet proteins after treated with DHC/THB were separated and identified by two dimensional gel electrophoresis (2-DE) and MALDI-TOF-MS/MS analysis, respectively. Finally, the signal cascades network induced by DHC/THB were predicted through functional analysis of these proteins along with the determination of platelet DAG concentration. RESULTS: The platelet aggregation stimulated by THR, ADP and AA were inhibited by DHC and THB dose-dependently to a certain degree. Meanwhile, DHC and THB had the strongest effect on ADP- and THR-induced platelet aggregation respectively. In addition, treatment of these two compounds caused regulations of about sixty proteins in platelet, including cytoskeleton proteins, cell signaling proteins, proteins related to material energy metabolism, etc. CONCLUSIONS: Using proteomic analysis combined with platelet aggregation test and ELISA, this study was successful in exploring the possible mechanisms of DHC/THB on platelet aggregation. DHC might inhibit platelet aggregation by a mechanism involving the ADP receptors P2Y1 and P2Y12, and the effect of THB on platelet function may be related to its binding to THR receptor PAR1 for mediated Gi signaling pathway. These results provide fundamental information for the anti-thrombotic effect of RC.


Assuntos
Alcaloides/farmacologia , Berberina/análogos & derivados , Plaquetas/efeitos dos fármacos , Proteínas Sanguíneas/efeitos dos fármacos , Corydalis/química , Difosfato de Adenosina/farmacologia , Animais , Berberina/farmacologia , Ensaio de Imunoadsorção Enzimática , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação de Plaquetas/farmacologia , Proteômica , Coelhos , Espectrometria de Massas em Tandem
19.
J Sep Sci ; 42(6): 1194-1201, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30638299

RESUMO

A new strategy by converging ultrafiltration high-performance liquid chromatography with ultraviolet and mass spectrometry and pH-zone-refining counter-current chromatography was developed for the rapid screening and separation of potential acetylcholinesterase inhibitors from the crude alkaloidals extract of Zanthoxylum nitidum. An optimized two-phase solvent system composed of chloroform/methanol/water (4:3:3, v/v) was used in this study. And, in the optimal solvent system, 45 mM hydrochloric acid was added to the aqueous stationary phase as the retainer, while 5 mM triethylamine was added to the organic mobile phase as the eluter. As a result, with the purity of over 95%, five alkaloids including jatrorrhizine (1, 340 mg), columbamine (2, 112 mg), skimmianine (3, 154 mg), palmatine (4, 226 mg), and epiberberine (5, 132 mg) were successfully purified in one step from 3.0 g crude alkaloidals extract. And their structures were identified by ultraviolet, mass spectrometry, 1 H and 13 C NMR spectroscopy. Notably, compounds 2, 4 and 5 were firstly reported in Z. nitidum. In addition, acetylcholinesterase inhibitory activities of compounds 1-5 were evaluated, and compounds 3, 4 and 5 exhibited stronger acetylcholinesterase inhibitory activity (IC50 values at 8.52 ± 0.64, 14.82 ± 1.21 and 3.12 ± 0.32 µg/mL, respectively) than berberine (IC50 value at 32.86 ± 2.14 µg/mL, positive control). The results indicated that the proposed method is an efficient technique to rapidly screen acetylcholinesterase inhibitors from complex samples, and could be served as a large-scale preparative technique for separating ionizable active compounds.


Assuntos
Alcaloides de Berberina/isolamento & purificação , Berberina/análogos & derivados , Inibidores da Colinesterase/isolamento & purificação , Quinolinas/isolamento & purificação , Berberina/química , Berberina/isolamento & purificação , Alcaloides de Berberina/química , Inibidores da Colinesterase/química , Cromatografia Líquida de Alta Pressão , Distribuição Contracorrente , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Quinolinas/química , Espectrofotometria Ultravioleta , Ultrafiltração , Zanthoxylum/química
20.
Phytomedicine ; 52: 272-283, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30599908

RESUMO

BACKGROUND: Berberine (BBR) is the most abundant and major active constituent of Rhizoma Coptidis (RC), which has been widely used to treat inflammatory diseases in traditional oriental medicine. Despite BBR has been found to exhibit pronounced anti-inflammatory effect, the anti-inflammatory activities of its natural derivatives were sparsely dissected out. PURPOSE: To comparatively investigate the anti-inflammatory potential of BBR, and its natural oxoderivative (oxyberberine, OBB) and reduced derivative (dihydroberberine, DHBB) in vitro and in vivo, and delineate the possible underlying mechanism. METHODS: LC-MS/MS was used to identify the natural derivatives of BBR in RC. The potential anti-inflammatory properties of BBR and its natural derivatives were comparatively evaluated in vitro by lipopolysaccharide (LPS)-induced RAW264.7 macrophages cells, and in vivo via three typical acute inflammation murine models. Some important inflammation-related molecules were analyzed by ELISA, qRT-PCR and Western blotting. RESULTS: LC-MS/MS led to the identification of BBR, OBB and DHBB in RC ethyl acetate extract. The in vitro assay indicated that BBR, OBB and DHBB (1.25, 2.5 and 5 µM) pretreatment significantly decreased the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), prostaglandinE2 (PGE2) and nitricoxide (NO), and inhibited the mRNA expressions of cyclooxygenase-2 (COX-2) and inducible nitricoxide synthase (iNOS) in a dose-dependent manner, with relative efficiency of OBB > BBR > DHBB. Furthermore, OBB, BBR and DHBB remarkably inhibited the phosphorylation of nuclear factor-κB (NF-κB) p65 and inhibitory kappa Bα (IκBα). In vivo, BBR (20 mg/kg) and OBB (5, 10, and 20 mg/kg) pretreatment significantly ameliorated the xylene-induced ear edema, carrageenan-stimulated paw edema, and acetic acid-elicited vascular permeability in mice in a dose-dependent manner, with OBB exhibiting superior anti-inflammatory effect at the same dose (20 mg/kg). Histopathological analysis indicated that OBB and BBR could markedly attenuate the inflammatory deterioration and decrease the cellular infiltration in paw tissues. Additionally, the carrageenan-induced increases in TNF-α, IL-6, IL-1ß, PGE2 and NO productions, and COX-2 and iNOS mRNA expressions were effectually and concentration-dependently suppressed by OBB and BBR pretreatment. CONCLUSION: The anti-inflammatory activity of BBR and its natural derivatives was in the order of OBB > BBR > DHBB. OBB was for the first time found to be endowed with pronounced anti-inflammatory property, which was probably associated with suppressing the activation of NF-κB signaling pathway, and the subsequent gene expressions and productions of pro-inflammatory mediators. The results might contribute to illuminating the pharmacodynamic underpinnings of RC and provide evidence for developing OBB as a safe and promising natural lead compound in inflammation treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Animais , Berberina/análogos & derivados , Carragenina/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Feminino , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA