Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.868
Filtrar
1.
PLoS One ; 15(2): e0228880, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32040535

RESUMO

Despite its high ecological importance, the commensal interactions at community level are poorly studied. In tropical dry forests (TDF) there is a great diversity of species adapted to the high seasonality that characterizes them; however, little is known regarding how the spatial and temporal availability of resources generates changes in the pattern of commensal interactions. We experimentally studied changes in the diversity, composition, and pattern of interactions in spatio-temporal associations between the saproxylophagous beetles and their host trees in a TDF in Morelos, Mexico. A total of 65 host tree species were selected, from which 16 wood sections were obtained per species. These sections were exposed in the field to allow oviposition by the cerambycids under four different (spatio-temporal) treatments. We analyzed the network structure and generated indices at species level (i.e., specialization, species strength, and effective partners) and those related to physical characteristics of the wood (hardness and degradation rate) and the cerambycids (body size). In total, 1,323 individuals of 57 species of cerambycids emerged. Our results showed that, independently of the space and time, the network presented a nested and modular structure, with a high specialization degree and a high turnover of cerambycid species and their interactions. In general, we found that the cerambycids are mostly associated with softwood species with a lower decomposition rate of wood, as well as with the most abundant host species. The commensalistic interactions between the cerambycids and their host trees are highly specialized but are not spatio-temporally static. The high turnover in the interactions is caused by the emergence patterns of cerambycids, which seem to restrict their use to certain species. The knowledge of the spatio-temporal variation in Cerambycidae-host tree interactions allows us to predict how environmental and structural changes in the habitat can modify the species ensemble, and therefore its interactions.


Assuntos
Besouros/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Árvores/parasitologia , Animais , Biodiversidade , Besouros/patogenicidade , Ecossistema , Feminino , Florestas , Especificidade de Hospedeiro , México , Oviposição , Análise Espaço-Temporal , Simbiose/fisiologia , Clima Tropical , Madeira
2.
BMC Evol Biol ; 20(1): 18, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013878

RESUMO

BACKGROUND: The disposable soma theory of ageing assumes that organisms optimally trade-off limited resources between reproduction and longevity to maximize fitness. Early reproduction should especially trade-off against late reproduction and longevity because of reduced investment into somatic protection, including immunity. Moreover, as optimal reproductive strategies of males and females differ, sexually dimorphic patterns of senescence may evolve. In particular, as males gain fitness through mating success, sexual competition should be a major factor accelerating male senescence. In a single experiment, we examined these possibilities by establishing artificial populations of the mealworm beetle, Tenebrio molitor, in which we manipulated the sex-ratio to generate variable levels of investment into reproductive effort and sexual competition in males and females. RESULTS: As predicted, variation in sex-ratio affected male and female reproductive efforts, with contrasted sex-specific trade-offs between lifetime reproduction, survival and immunity. High effort of reproduction accelerated mortality in females, without affecting immunity, but high early reproductive success was observed only in balanced sex-ratio condition. Male reproduction was costly on longevity and immunity, mainly because of their investment into copulations rather than in sexual competition. CONCLUSIONS: Our results suggest that T. molitor males, like females, maximize fitness through enhanced longevity, partly explaining their comparable longevity.


Assuntos
Envelhecimento/fisiologia , Besouros/fisiologia , Razão de Masculinidade , Comportamento Sexual Animal/fisiologia , Animais , Besouros/imunologia , Feminino , Fertilidade , Imunidade , Modelos Lineares , Masculino , Reprodução/fisiologia
3.
Proc Biol Sci ; 287(1921): 20192930, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32097589

RESUMO

A plant's offspring may escape unfavourable local conditions through seed dispersal. Whether plants use this strategy to escape insect herbivores is not well understood. Here, we explore how different dandelion (Taraxacum officinale agg.) populations, including diploid outcrossers and triploid apomicts, modify seed dispersal in response to root herbivore attack by their main root-feeding natural enemy, the larvae of the common cockchafer Melolontha melolontha. In a manipulative field experiment, root herbivore attack increased seed dispersal potential through a reduction in seed weight in populations that evolved under high root herbivore pressure, but not in populations that evolved under low pressure. This increase in dispersal potential was independent of plant cytotype, but associated with a reduction in germination rate, suggesting that adapted dandelions trade dispersal for establishment upon attack by root herbivores. Analysis of vegetative growth parameters suggested that the increased dispersal capacity was not the result of stress flowering. In summary, these results suggest that root herbivory selects for an induced increase in dispersal ability in response to herbivore attack. Induced seed dispersal may be a strategy that allows adapted plants to escape from herbivores.


Assuntos
Besouros/fisiologia , Germinação , Herbivoria , Taraxacum/fisiologia , Animais
4.
Proc Natl Acad Sci U S A ; 117(5): 2544-2550, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964847

RESUMO

Sibling rivalry is commonplace within animal families, yet offspring can also work together to promote each other's fitness. Here we show that the extent of parental care can determine whether siblings evolve to compete or to cooperate. Our experiments focus on the burying beetle Nicrophorus vespilloides, which naturally provides variable levels of care to its larvae. We evolved replicate populations of burying beetles under two different regimes of parental care: Some populations were allowed to supply posthatching care to their young (Full Care), while others were not (No Care). After 22 generations of experimental evolution, we found that No Care larvae had evolved to be more cooperative, whereas Full Care larvae were more competitive. Greater levels of cooperation among larvae compensated for the fitness costs caused by parental absence, whereas parental care fully compensated for the fitness costs of sibling rivalry. We dissected the evolutionary mechanisms underlying these responses by measuring indirect genetic effects (IGEs) that occur when different sibling social environments induce the expression of more cooperative (or more competitive) behavior in focal larvae. We found that indirect genetic effects create a tipping point in the evolution of larval social behavior. Once the majority of offspring in a brood start to express cooperative (or competitive) behavior, they induce greater levels of cooperation (or competition) in their siblings. The resulting positive feedback loops rapidly lock larvae into evolving greater levels of cooperation in the absence of parental care and greater levels of rivalry when parents provide care.


Assuntos
Besouros/fisiologia , Animais , Comportamento Animal , Evolução Biológica , Besouros/genética , Besouros/crescimento & desenvolvimento , Comportamento Competitivo , Comportamento Cooperativo , Feminino , Larva/genética , Larva/crescimento & desenvolvimento , Masculino
6.
PLoS One ; 15(1): e0219335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940348

RESUMO

Species introduced outside their natural range threaten global biodiversity and despite greater awareness of invasive species risks at ports and airports, control measures in place only concern anthropogenic routes of dispersal. Here, we use the Harlequin ladybird, Harmonia axyridis, an invasive species which first established in the UK from continental Europe in 2004, to test whether records from 2004 and 2005 were associated with atmospheric events. We used the atmospheric- chemistry transport model SILAM to model the movement of this species from known distributions in continental Europe and tested whether the predicted atmospheric events were associated with the frequency of ladybird records in the UK. We show that the distribution of this species in the early years of its arrival does not provide substantial evidence for a purely anthropogenic introduction and show instead that atmospheric events can better explain this arrival event. Our results suggest that air flows which may assist dispersal over the English Channel are relatively frequent; ranging from once a week from Belgium and the Netherlands to 1-2 times a week from France over our study period. Given the frequency of these events, we demonstrate that atmospheric-assisted dispersal is a viable route for flying species to cross natural barriers.


Assuntos
Besouros/fisiologia , Espécies Introduzidas/estatística & dados numéricos , Modelos Estatísticos , Vento , Migração Animal/fisiologia , Animais , Bélgica , França , Humanos , Método de Monte Carlo , Países Baixos , Reino Unido
7.
PLoS Comput Biol ; 16(1): e1007542, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31940344

RESUMO

Environmental factors interact with internal rules of population regulation, sometimes perturbing systems to alternate dynamics though changes in parameter values. Yet, pinpointing when such changes occur in naturally fluctuating populations is difficult. An algorithmic approach that can identify the timing and magnitude of parameter shifts would facilitate understanding of abrupt ecological transitions with potential to inform conservation and management of species. The "Dynamic Shift Detector" is an algorithm to identify changes in parameter values governing temporal fluctuations in populations with nonlinear dynamics. The algorithm examines population time series data for the presence, location, and magnitude of parameter shifts. It uses an iterative approach to fitting subsets of time series data, then ranks the fit of break point combinations using model selection, assigning a relative weight to each break. We examined the performance of the Dynamic Shift Detector with simulations and two case studies. Under low environmental/sampling noise, the break point sets selected by the Dynamic Shift Detector contained the true simulated breaks with 70-100% accuracy. The weighting tool generally assigned breaks intentionally placed in simulated data (i.e., true breaks) with weights averaging >0.8 and those due to sampling error (i.e., erroneous breaks) with weights averaging <0.2. In our case study examining an invasion process, the algorithm identified shifts in population cycling associated with variations in resource availability. The shifts identified for the conservation case study highlight a decline process that generally coincided with changing management practices affecting the availability of hostplant resources. When interpreted in the context of species biology, the Dynamic Shift Detector algorithm can aid management decisions and identify critical time periods related to species' dynamics. In an era of rapid global change, such tools can provide key insights into the conditions under which population parameters, and their corresponding dynamics, can shift.


Assuntos
Algoritmos , Biologia Computacional/métodos , Modelos Biológicos , Dinâmica Populacional , Animais , Borboletas/fisiologia , Besouros/fisiologia , Ecossistema , Teoria da Informação , Modelos Estatísticos
8.
PLoS One ; 15(1): e0227333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31952076

RESUMO

The valley elderberry longhorn beetle (VELB), Desmocerus californicus dimorphus (Coleoptera: Cerambycidae), is a federally threatened subspecies endemic to the Central Valley of California. The VELB range partially overlaps with that of its morphologically similar sister taxon, the California elderberry longhorn beetle (CELB), Desmocerus californicus californicus (Coleoptera: Cerambycidae). Current surveying methods are limited to visual identification of larval exit holes in the VELB/CELB host plant, elderberry (Sambucus spp.), into which larvae bore and excavate feeding galleries. Unbiased genetic approaches could provide a much-needed complementary approach that has more precision than relying on visual inspection of exit holes. In this study we developed a DNA sequencing-based method for indirect detection of VELB/CELB from frass (insect fecal matter), which can be easily and non-invasively collected from exit holes. Frass samples were collected from 37 locations and the 12S and 16S mitochondrial genes were partially sequenced using nested PCR amplification. Three frass-derived sequences showed 100% sequence identity to VELB/CELB barcode references from museum specimens sequenced for this study. Database queries of frass-derived sequences also revealed high similarity to common occupants of old VELB feeding galleries, including earwigs, flies, and other beetles. Overall, this non-invasive approach is a first step towards a genetic assay that could augment existing VELB monitoring and accurately discriminate between VELB, CELB, and other insects. Furthermore, a phylogenetic analysis of 12S and 16S data from museum specimens revealed evidence for the existence of a previously unrecognized, genetically distinct CELB subpopulation in southern California.


Assuntos
Besouros/genética , Ecossistema , Monitoramento Ambiental , Larva/genética , Animais , California , Besouros/fisiologia , DNA Mitocondrial/genética , Espécies em Perigo de Extinção , Humanos , Larva/fisiologia , Filogenia , Análise de Sequência de DNA
9.
PLoS One ; 15(1): e0228047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31961905

RESUMO

The fitness and virulence of parasites is often determined by how many resources they can wrangle out of their hosts. Host defenses that help to keep resources from the parasites will then reduce virulence and parasite fitness. Here, we study whether host brood care and brood size regulation can protect host fitness and harm a parasite. We use the biparental brood-caring burying beetle Nicrophorus vespilloides and its phoretic Poecilochirus carabi mites as a model. Since paternal brood care does not seem to benefit the offspring in a clean laboratory setting, the male presence has been suggested to strengthen the defense against parasites. We manipulated male presence and found no effect on the fitness of the parasitic mites or the beetle offspring. We further manipulated beetle brood size and found larger broods to reduce parasite fitness. The specific pattern we observed suggests that beetle larvae are strong competitors and consume the carrion resource before all parasites develop. They thus starve the parasites. These results shed new light on the observation that the parasites appear to reduce host brood size early on-potentially to avert later competition their offspring might have to face.


Assuntos
Besouros , Interações Hospedeiro-Parasita , Larva , Ácaros/fisiologia , Parasitos/fisiologia , Animais , Comportamento Animal/fisiologia , Tamanho da Ninhada , Besouros/parasitologia , Besouros/fisiologia , Comportamento Competitivo , Larva/parasitologia , Larva/fisiologia , Masculino
10.
Bull Entomol Res ; 110(1): 115-122, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31138336

RESUMO

The Chinese white pine beetle Dendroctonus armandi (Coleoptera: Scolytinae) typically displays bivoltinism at altitudes below 1700 m in the Qinling Mountains, China. The periods of host colonization and larval overwintering are two important phases in the life cycle of bark beetles, as it is during these periods that they have to contend with host plant defences and periods of intense cold, respectively. Although during different seasons, the females and males of Chinese white pine beetles show varying tolerances to host plant terpenoids, the sex ratio and survival physiology condition of the two beetle generations are unknown. We investigated the sex ratio of individuals, and also examined the body mass, energy stores, and detoxication enzymes of males and females in each of the two generations in order to determine the overall population stability of each generation. We identified a female-biased sex ratio among adults in both generations. Furthermore, patterns of body mass, energy stores, and detoxication enzymes were found to differ between the two sexes and two seasons. Compared with the males, the females have a larger body mass and higher amounts of stored lipids, which are assumed to be adaptations designed to overcome host resistance and facilitate subsequent oviposition.


Assuntos
Besouros/fisiologia , Estações do Ano , Razão de Masculinidade , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Metabolismo Energético , Feminino , Masculino
11.
Genome ; 63(1): 1-12, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31533014

RESUMO

The larvae of Holotrichia parallela, a destructive belowground herbivore, causes tremendous damages to maize plants. However, little is known if there are any defense mechanisms in maize roots to defend themselves against this herbivore. In the current research, we carried out RNA-sequencing to investigate the changes in gene transcription level in maize roots after H. parallela larvae infestation. A total of 644 up-regulated genes and 474 down-regulated genes was found. In addition, Gene ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Weighted gene co-expression network analysis (WGCNA) indicated that peroxidase genes may be the hub genes that regulate maize defenses to H. parallela larvae attack. We also found 105 transcription factors, 44 hormone-related genes, and 62 secondary metabolism-related genes within differentially expressed genes (DEGs). Furthermore, the expression profiles of 12 DEGs from the transcriptome analysis were confirmed by quantitative real-time PCR experiments. This transcriptome analysis provides insights into the molecular mechanisms of the underground defense in maize roots to H. parallela larvae attack and will help to select target genes of maize for defense against belowground herbivory.


Assuntos
Besouros/fisiologia , Herbivoria/genética , Zea mays/genética , Animais , Besouros/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Larva/fisiologia , Reguladores de Crescimento de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Metabolismo Secundário/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Zea mays/metabolismo
12.
J Chem Ecol ; 46(1): 63-75, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31832894

RESUMO

Plants experience seasonal fluctuations in abiotic and biotic factors such as herbivore attack rates. If and how root defense expression co-varies with seasonal fluctuations in abiotic factors and root herbivore attack rates is not well understood. Here, we evaluated seasonal changes in defensive root latex chemistry of Taraxacum officinale plants in the field and correlated the changes with seasonal fluctuations in abiotic factors and damage potential by Melolontha melolontha, a major natural enemy of T. officinale. We then explored the causality and consequences of these relationships under controlled conditions. The concentration of the defensive sesquiterpene lactone taraxinic acid ß-D glucopyranosyl ester (TA-G) varied substantially over the year and was most strongly correlated to mean monthly temperature. Both temperature and TA-G levels were correlated with annual fluctuations in potential M. melolontha damage. Under controlled conditions, plants grown under high temperature produced more TA-G and were less attractive for M. melolontha. However, temperature-dependent M. melolontha feeding preferences were not significantly altered in TA-G deficient transgenic lines. Our results suggest that fluctuations in temperature leads to variation in the production of a root defensive metabolites that co-varies with expected attack of a major root herbivore. Temperature-dependent herbivore preference, however, is likely to be modulated by other phenotypic alterations.


Assuntos
Besouros/fisiologia , Glucosídeos/metabolismo , Lactonas/metabolismo , Sesquiterpenos/metabolismo , Taraxacum/química , Animais , Biomassa , Besouros/crescimento & desenvolvimento , Glucosídeos/química , Glucosídeos/farmacologia , Herbivoria/efeitos dos fármacos , Lactonas/química , Lactonas/farmacologia , Larva/efeitos dos fármacos , Larva/fisiologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Estações do Ano , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Taraxacum/metabolismo , Taraxacum/parasitologia , Temperatura
13.
Ecotoxicol Environ Saf ; 187: 109849, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31677571

RESUMO

Harmonia axyridis is an important predator of several pest species and is part of many Integrated Pest Management (IPM) programs. To assess the risks of pesticide application to H. axyridis, we studied the effects of sulfoxaflor on H. axyridis larvae. At 72 h after treatment, the acute toxicity LR50 was 311.9476 g a. i. ha-1 by the residual contact method. This result indicated low-contact toxicity against second-instar H. axyridis larvae. The LR50 of the F1 generation decreased from 69.96 to 36.41 g a. i. ha-1 in a long-term toxicity test. The daily hazard quotient (HQ) for H. axyridis larvae lowered the safety threshold value in the first 5 d. However, the HQ values were greater than 2 during days 6-18 after sulfoxaflor treatments. We determined the No Observed Effect Application Rates of sulfoxaflor on the survival (<11.25 g a. i. ha-1), duration of larval and pupal stages (45 g a. i. ha-1), adult stage (90 g a. i. ha-1), total pre-oviposition period, adult pre-oviposition period (45 g a. i. ha-1), and reproduction (11.25 g a. i. ha-1). Pupation, adult emergence, and eggs counts of H. axyridis were reduced after sulfoxaflor treatments. The predation ability and population demography parameters were significantly impaired by higher application rates. At 90 g a. i. ha-1 or less, sulfoxaflor was slightly harmful to H. axyridis but a rate of 180 g a. i. ha-1 was moderately harmful. These results demonstrated that sulfoxaflor is harmful to H. axyridis when applied at high application rates.


Assuntos
Besouros/efeitos dos fármacos , Larva/efeitos dos fármacos , Resíduos de Praguicidas/toxicidade , Pupa/efeitos dos fármacos , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Animais , Besouros/fisiologia , Relação Dose-Resposta a Droga , Feminino , Larva/fisiologia , Dose Letal Mediana , Controle de Pragas , Comportamento Predatório/efeitos dos fármacos , Pupa/fisiologia , Reprodução/efeitos dos fármacos , Testes de Toxicidade
14.
Insect Sci ; 27(1): 159-169, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29851277

RESUMO

Agasicles hygrophila has been introduced worldwide as a control agent for the invasive weed Alternanthera philoxeroides. However, global warming has potential impact on its controlling efficacy. The aim of this research was to explore the primary factors responsible for the greatly reduced A. hygrophila population in hot summers. To imitate the temperature conditions in summers, different developmental stages of A. hygrophila were treated with high temperatures from 32.5 °C to 45 °C for 1-5 h. Based on the survival rate, the heat tolerance of each developmental stage was ranked from lowest to highest as follows: egg, 1st, 2nd, 3rd instar larva, adult and pupa. Eggs showed the lowest heat tolerance with 37.5 °C as the critical temperature affecting larval hatching. Heat treatment of the A. hygrophila eggs at 37.5 °C for 1 h decreased the hatch rate to 24%. Our results indicated that when compared with the control at 25 °C, 1 h treatment at 37.5 °C prolonged the duration of the egg stage, shortened the duration of oviposition and total longevity, and changed the reproductive pattern of A. hygrophila. The net reproductive rate, intrinsic rate and finite rate were all significantly reduced. The results suggest that low heat tolerance of the eggs was the major factor responsible for the reduction of A. hygrophila populations, and the key temperature was 37.5 °C. Therefore, appropriate measures should be taken to protect eggs in order to maintain the efficacy of A. hygrophila in the biological control of A. philoxeroides in hot summers.


Assuntos
Besouros/fisiologia , Temperatura Alta/efeitos adversos , Termotolerância , Animais , Besouros/crescimento & desenvolvimento , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Óvulo/fisiologia , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Estações do Ano
15.
PLoS One ; 14(12): e0225502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31826006

RESUMO

Two new genera and species of Elateridae, Megalithomerus magohalmii gen. et sp. nov. and Koreagrypnus jinju gen. et sp. nov., are described based on two pairs of fossils from the late Early Cretaceous Jinju Formation in Jinju City, South Korea. Both Megalithomerus and Koreagrypnus represent the youngest occurrences of an extinct elaterid subfamily, Protagrypninae. Megalithomerus magohalmii is the largest known fossil elaterid. These newly described elaterids provide a better understanding of the morphological diversity and occurrence of Protagrypninae through geologic time.


Assuntos
Biodiversidade , Evolução Biológica , Besouros/fisiologia , Extinção Biológica , Fósseis , Animais , República da Coreia
16.
An Acad Bras Cienc ; 91(4): e20181001, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31800699

RESUMO

Laboratory trials were performed to determine the impact of three Neotropical predatory coccinellids (Cycloneda sanguinea, Eriopis connexa and Coleomegilla quadrifasciata) and a minute pirate bug (Orius insidiosus) on Chaetosiphon fragaefolii, an important strawberry aphid pest. The predation on C. fragaefolii nymphs and adults, as well as the time to the first attack of all predators were compared with predation on Aphis gossypii. Predator preferences for prey and aphid defensive behavior were also evaluated. Moreover, the effect of coccinellids on C. fragaefolii population growth was assessed in experimental greenhouse conditions. The predation rate varied among predators, being significantly lower for O. insidiosus than for the coccinellids. Consumption was higher on A. gossypii than on C. fragaefolii, regardless of the aphids developmental stage. The time to the first attack of all predators was longer in the presence of C. fragaefolii. Walking away and cornicle secretion were the most common antipredator behaviors of aphid against coccinellids and O. insidiosus, respectively. Coccinellids preferred A. gossypii over C. fragaefolii, while O. insidiosus showed indifference. Cycloneda sanguinea and E. connexa exhibited the highest suppression effect on the growth rate of C. fragaefolii. Thus, the four predators evaluated could contribute to reduce strawberry aphid populations, especially C. sanguinea and E. connexa.


Assuntos
Afídeos , Besouros/fisiologia , Controle Biológico de Vetores/métodos , Comportamento Predatório/fisiologia , Animais , Besouros/classificação , Fragaria/parasitologia , Fatores de Tempo
17.
PLoS One ; 14(12): e0226078, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805107

RESUMO

Because animal feces contain organic matter and plant seeds, dung beetles (Scarabaeinae) are important for the circulation of materials and secondary seed dispersal through burying feces. Dung beetles are usually generalists and use the feces of various mammals. Additionally, the larval stages have access to feces from only one mammal species leaving them susceptible to changes in animal fauna and variations in animal populations. Here, we explain the effects of resource availability changes associated with sika deer (Cervus nippon) overabundance on dung beetle larvae feeding habits in Japan. δ15N values were notably higher in raccoon dog and badger dung than in that of other mammals. A dung beetle breeding experiment revealed that the δ15N values of dung beetle exoskeletons that had fed on deer feces during their larval stage were significantly lower than those of beetles that had fed on raccoon dog feces. The δ15N values of the adult exoskeleton were significantly lower in a deer high-density area than in a low-density area in large dung beetles only. It is possible that the high-quality feces, such as those of omnivores, preferred by the large beetles decrease in availability with an increase in deer dung; large beetles may therefore be unable to obtain sufficient high-quality feces and resort to using large amounts of low-quality deer feces. Small dung beetles may use the easily obtained feces that is in high abundance and they may also use deer feces more frequently with increases in deer density. These findings suggest that a larval resource shift associated with deer overabundance may affect ecosystem functions such as soil nutrient cycling and seed dispersal.


Assuntos
Besouros/fisiologia , Cervos , Larva/fisiologia , Dispersão de Sementes , Animais , Cruzamento , Fezes/química , Isótopos de Nitrogênio/análise , Densidade Demográfica
19.
Proc Biol Sci ; 286(1917): 20192332, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847779

RESUMO

Social immunity-the collective behavioural defences against pathogens-is considered a crucial evolutionary force for the maintenance of insect societies. It has been described and investigated primarily in eusocial insects, but its role in the evolutionary trajectory from parental care to eusociality is little understood. Here, we report on the existence, plasticity, effectiveness and consequences of social pathogen defence in experimental nests of cooperatively breeding ambrosia beetles. After an Aspergillus spore buffer solution or a control buffer solution had been injected in laboratory nests, totipotent adult female workers increased their activity and hygienic behaviours like allogrooming and cannibalism. Such social immune responses had not been described for a non-eusocial, cooperatively breeding insect before. Removal of beetles from Aspergillus-treated nests in a paired experimental design revealed that the hygienic behaviours of beetles significantly reduced pathogen prevalence in the nest. Furthermore, in response to pathogen injections, female helpers delayed dispersal and thus prolonged their cooperative phase within their mother's nest. Our findings of appropriate social responses to an experimental immune challenge in a cooperatively breeding beetle corroborate the view that social immunity is not an exclusive attribute of eusocial insects, but rather a concomitant and presumably important feature in the evolutionary transitions towards complex social organization.


Assuntos
Evolução Biológica , Besouros/fisiologia , Animais , Comportamento Animal , Besouros/parasitologia , Feminino , Comportamento Social
20.
PLoS One ; 14(11): e0220830, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725728

RESUMO

The Colorado Potato Beetle, Leptinotarsa decemlineata, is a major agricultural pest of solanaceous crops in the United States. Historically, a multitude of insecticides have been used to control problematic populations. Due to increasing resistance to insecticides, novel compounds and methodologies are warranted for the control of beetle populations. Mixed-isomer conjugated linoleic acid has been studied in-depth for its beneficial properties to mammalian systems. At the same time, studies have demonstrated that conjugated linoleic acid can manipulate fatty acid composition in non-mammalian systems, resulting in embryo mortality. Consequently, experiments were conducted to assess the effects of foliar-applied conjugated linoleic acid on larval growth, embryogenesis, and feeding preference in Colorado potato beetle. Both maternal and deterrent effects of dietary conjugated linoleic acid were assessed. Conjugated linoleic acid demonstrated desirable insecticidal properties, including increased larval mortality, slowed larval development, antifeedant effects, and decreased egg viability after maternal ingestion.


Assuntos
Besouros , Inseticidas , Ácidos Linoleicos Conjugados , Animais , Besouros/efeitos dos fármacos , Besouros/crescimento & desenvolvimento , Besouros/fisiologia , Ácidos Graxos/análise , Feminino , Preferências Alimentares/efeitos dos fármacos , Controle de Insetos/métodos , Resistência a Inseticidas , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Solanum tuberosum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA