Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.328
Filtrar
1.
Nat Commun ; 11(1): 4954, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009396

RESUMO

Genetic variation is of crucial importance for crop improvement. Landraces are valuable sources of diversity, but for quantitative traits efficient strategies for their targeted utilization are lacking. Here, we map haplotype-trait associations at high resolution in ~1000 doubled-haploid lines derived from three maize landraces to make their native diversity for early development traits accessible for elite germplasm improvement. A comparative genomic analysis of the discovered haplotypes in the landrace-derived lines and a panel of 65 breeding lines, both genotyped with 600k SNPs, points to untapped beneficial variation for target traits in the landraces. The superior phenotypic performance of lines carrying favorable landrace haplotypes as compared to breeding lines with alternative haplotypes confirms these findings. Stability of haplotype effects across populations and environments as well as their limited effects on undesired traits indicate that our strategy has high potential for harnessing beneficial haplotype variation for quantitative traits from genetic resources.


Assuntos
Haplótipos/genética , Característica Quantitativa Herdável , Zea mays/genética , Biblioteca Gênica , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Haploidia , Melhoramento Vegetal , Análise de Componente Principal , Zea mays/crescimento & desenvolvimento
2.
PLoS Comput Biol ; 16(9): e1008173, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946435

RESUMO

Single-cell Hi-C (scHi-C) interrogates genome-wide chromatin interaction in individual cells, allowing us to gain insights into 3D genome organization. However, the extremely sparse nature of scHi-C data poses a significant barrier to analysis, limiting our ability to tease out hidden biological information. In this work, we approach this problem by applying topic modeling to scHi-C data. Topic modeling is well-suited for discovering latent topics in a collection of discrete data. For our analysis, we generate nine different single-cell combinatorial indexed Hi-C (sci-Hi-C) libraries from five human cell lines (GM12878, H1Esc, HFF, IMR90, and HAP1), consisting over 19,000 cells. We demonstrate that topic modeling is able to successfully capture cell type differences from sci-Hi-C data in the form of "chromatin topics." We further show enrichment of particular compartment structures associated with locus pairs in these topics.


Assuntos
Cromatina , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Linhagem Celular , Cromatina/química , Cromatina/genética , Análise por Conglomerados , Biblioteca Gênica , Humanos , Processamento de Linguagem Natural
3.
PLoS One ; 15(8): e0236477, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756607

RESUMO

Antibodies function by binding to antigens. Antibodies must be cloned and expressed to determine their binding characteristics, but current methods for high-throughput antibody sequencing yield antibody DNA pooled from many cells and do not readily permit cloning of antibodies from single B cells. We present a strategy for retrieving and cloning antibody DNA from single cells within a pooled library of cells. Our strategy, called selective PCR for antibody retrieval (SPAR), takes advantage of the unique sequence barcodes attached to individual cDNA molecules during sample preparation to enable specific amplification by PCR of antibody heavy- and light-chain cDNA originating from a single cell. We show through computational analysis that most human antibodies sequenced using typical high-throughput methods can be retrieved using SPAR, and experimentally demonstrate retrieval of full-length antibody variable region cDNA from three cells within pools of ~5,000 cells. SPAR enables rapid low-cost cloning and expression of native human antibodies from pooled single-cell sequence libraries for functional characterization.


Assuntos
Anticorpos/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Reação em Cadeia da Polimerase/métodos , Sequência de Aminoácidos/genética , Técnicas de Visualização da Superfície Celular , Clonagem Molecular , DNA Complementar/genética , Biblioteca Gênica , Vetores Genéticos/genética , Humanos , Análise de Célula Única
4.
Med Sci (Paris) ; 36(8-9): 717-724, 2020.
Artigo em Francês | MEDLINE | ID: mdl-32821048

RESUMO

Ribosome display is a powerful method for selection and molecular evolution of proteins and peptides from large libraries. Displayed proteins are recovered from target molecules in multiple rounds of selection in order to enrich specific binders with the desired properties. Nowadays, ribosome display has become one of the most widely-used display technologies thanks to its advantages over cell-display as phage display. Ribosome display is an in vitro method, in which a stable ternary complex is formed between the mRNA, the ribosome and the nascent protein. A selection cycle can be performed in a few days and bacterial transformation is not necessary. Ribosome display has been used to screen and select peptides, proteins or molecular scaffolds in order to increase their affinity, specificity, catalytic activity or stability. In this review, ribosome display systems and their applications in selection and evolution of proteins are described.


Assuntos
Sistema Livre de Células/metabolismo , Evolução Molecular Direcionada/métodos , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Animais , Sítios de Ligação/genética , Sistema Livre de Células/química , Perfilação da Expressão Gênica/tendências , Humanos , Ligação Proteica/genética , Proteínas Ribossômicas/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(31): 18424-18430, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690674

RESUMO

Most classic genetic approaches utilize binary modifications that preclude the identification of key knockdowns for essential genes or other targets that only require moderate modulation. As a complementary approach to these classic genetic methods, we describe a plasmid-based library methodology that affords bidirectional, graded modulation of gene expression enabled by tiling the promoter regions of all 969 genes that comprise the ito977 model of Saccharomyces cerevisiae's metabolic network. When coupled with a CRISPR-dCas9-based modulation and next-generation sequencing, this method affords a library-based, bidirection titration of gene expression across all major metabolic genes. We utilized this approach in two case studies: growth enrichment on alternative sugars, glycerol and galactose, and chemical overproduction of betaxanthins, leading to the identification of unique gene targets. In particular, we identify essential genes and other targets that were missed by classic genetic approaches.


Assuntos
RNA Fúngico/genética , RNA Guia/genética , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA Fúngico/metabolismo , RNA Guia/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
PLoS One ; 15(7): e0235853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701967

RESUMO

PCR-based amplification of annotated genes has allowed construction of expression clones at genome-scale using classical and recombination-based cloning technologies. However, genome-scale expression and purification of proteins for down-stream applications is often limited by challenges such as poor expression, low solubility, large size of multi-domain proteins, etc. Alternatively, DNA fragment libraries in expression vectors can serve as the source of protein fragments with each fragment encompassing a function of its whole protein counterpart. However, the random DNA fragmentation and cloning result in only 1 out of 18 clones being in the correct open-reading frame (ORF), thus, reducing the overall efficiency of the system. This necessitates the selection of correct ORF before expressing the protein fragments. This paper describes a highly efficient ORF selection system for DNA fragment libraries, which is based on split beta-lactamase protein fragment complementation. The system has been designed to allow seamless transfer of selected DNA fragment libraries into any downstream vector systems using a restriction enzyme-free cloning strategy. The strategy has been applied for the selection of ORF using model constructs to show near 100% selection of the clone encoding correct ORF. The system has been further validated by construction of an ORF-selected DNA fragment library of 30 genes of M. tuberculosis. Further, we have successfully demonstrated the cytosolic expression of ORF-selected protein fragments in E. coli.


Assuntos
Proteínas de Bactérias/genética , Clonagem Molecular/métodos , Teste de Complementação Genética/métodos , Fases de Leitura Aberta , beta-Lactamases/genética , Proteínas de Bactérias/metabolismo , Escherichia coli , Biblioteca Gênica , Mycobacterium tuberculosis , beta-Lactamases/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 45(11): 2523-2532, 2020 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-32627484

RESUMO

Polyphenol oxidase(PPO) is an important antioxidant enzyme in plants. It has the functions of scavenging active oxygen and synthesizing phenols, lignin, and plant protection factors, and can enhance the plant's resistance to stress and resistance to pests and diseases. Our previous research found that Salvia miltiorrhiza PPO gene can positively regulate salvianolic acid B synthesis. In order to further explore the mechanism, a pGBKT7-PPO bait vector was constructed using the cloned S. miltiorrhiza polyphenol oxidase gene(SmPPO, GenBank accession number: KF712274.1), and verified that it had no self-activation and no toxicity. The titer of S. miltiorrhiza cDNA library constructed by our laboratory was 4.75 × 107 cfu·mL~(-1), which met the requirements for library construction. Through yeast two-hybrid test, 22 proteins that could interact with SmPPO were screened. Only yeast PAL1 and TAT interacted with SmPPO through yeast co-transformation verification. Further verification was performed by bimolecular fluorescence complementary detection(BiFC). Only TAT and SmPPO interacted, so it meant that TAT and SmPPO interacted. TAT and SmPPO were truncated according to the domain, respectively. The first 126 amino acids of SmPPO and tyrosine amino transferase(TAT) were obtained to interact on the cell membrane and chloroplast. SmPPO was obtained by subcellular localization test, which was mainly loca-lized on the nucleus and cell membrane; TAT was localized on the cell membrane. Real-time quantitative PCR results showed that the SmPPO gene was mainly expressed in roots and stems; the TAT gene was expressed in roots, and the expression level in stems and flowers was low. This article lays a solid foundation for the in-depth study of the molecular mechanism of the interaction of S. miltiorrhiza SmPPO and TAT to regulate the synthesis of phenolic substances.


Assuntos
Salvia miltiorrhiza/genética , Catecol Oxidase , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Proteínas de Plantas/genética , Raízes de Plantas
8.
PLoS Comput Biol ; 16(7): e1007980, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32678849

RESUMO

Bacteria need to survive in a wide range of environments. Currently, there is an incomplete understanding of the genetic basis for mechanisms underpinning survival in stressful conditions, such as the presence of anti-microbials. Transposon directed insertion-site sequencing (TraDIS) is a powerful tool to identify genes and networks which are involved in survival and fitness under a given condition by simultaneously assaying the fitness of millions of mutants, thereby relating genotype to phenotype and contributing to an understanding of bacterial cell biology. A recent refinement of this approach allows the roles of essential genes in conditional stress survival to be inferred by altering their expression. These advancements combined with the rapidly falling costs of sequencing now allows comparisons between multiple experiments to identify commonalities in stress responses to different conditions. This capacity however poses a new challenge for analysis of multiple data sets in conjunction. To address this analysis need, we have developed 'AlbaTraDIS'; a software application for rapid large-scale comparative analysis of TraDIS experiments that predicts the impact of transposon insertions on nearby genes. AlbaTraDIS can identify genes which are up or down regulated, or inactivated, between multiple conditions, producing a filtered list of genes for further experimental validation as well as several accompanying data visualisations. We demonstrate the utility of our new approach by applying it to identify genes used by Escherichia coli to survive in a wide range of different concentrations of the biocide Triclosan. AlbaTraDIS identified all well characterised Triclosan resistance genes, including the primary target, fabI. A number of new loci were also implicated in Triclosan resistance and the predicted phenotypes for a selection of these were validated experimentally with results being consistent with predictions. AlbaTraDIS provides a simple and rapid method to analyse multiple transposon mutagenesis data sets allowing this technology to be used at large scale. To our knowledge this is the only tool currently available that can perform these tasks. AlbaTraDIS is written in Python 3 and is available under the open source licence GNU GPL 3 from https://github.com/quadram-institute-bioscience/albatradis.


Assuntos
Biologia Computacional , Elementos de DNA Transponíveis , Escherichia coli/genética , Mutagênese Insercional , Software , Algoritmos , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana , Biblioteca Gênica , Genes Essenciais , Genoma Bacteriano , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Fenótipo , Biossíntese de Proteínas , Triclosan/farmacologia
9.
PLoS One ; 15(7): e0222747, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32639982

RESUMO

Physiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.


Assuntos
Café/genética , Resistência à Doença/genética , Genoma de Planta , Sequência de Aminoácidos , Basidiomycota/fisiologia , Sítios de Ligação , Café/classificação , Biblioteca Gênica , Lycopersicon esculentum/classificação , Lycopersicon esculentum/genética , Fases de Leitura Aberta/genética , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Alinhamento de Sequência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Vitis/classificação , Vitis/genética
10.
Nat Commun ; 11(1): 3455, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661245

RESUMO

CRISPR-based genetic screening has revolutionized cancer drug target discovery, yet reliable, multiplex gene editing to reveal synergies between gene targets remains a major challenge. Here, we present a simple and robust CRISPR-Cas12a-based approach for combinatorial genetic screening in cancer cells. By engineering the CRISPR-AsCas12a system with key modifications to the Cas protein and its CRISPR RNA (crRNA), we can achieve high efficiency combinatorial genetic screening. We demonstrate the performance of our optimized AsCas12a (opAsCas12a) through double knockout screening against epigenetic regulators. This screen reveals synthetic sick interactions between Brd9&Jmjd6, Kat6a&Jmjd6, and Brpf1&Jmjd6 in leukemia cells.


Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Endodesoxirribonucleases/genética , Edição de Genes , Regulação Leucêmica da Expressão Gênica , Leucemia/genética , Animais , Proliferação de Células , Epigênese Genética , Biblioteca Gênica , Engenharia Genética , Genoma Humano , Células HEK293 , Humanos , Células K562 , Camundongos , Células NIH 3T3 , Domínios Proteicos , RNA Guia/genética
11.
PLoS Biol ; 18(7): e3000747, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32644995

RESUMO

CRISPR-Staphylococcus aureus Cas9 (CRISPR-SaCas9) has been harnessed as an effective in vivo genome-editing tool to manipulate genomes. However, off-target effects remain a major bottleneck that precludes safe and reliable applications in genome editing. Here, we characterize the off-target effects of wild-type (WT) SaCas9 at single-nucleotide (single-nt) resolution and describe a directional screening system to identify novel SaCas9 variants with desired properties in human cells. Using this system, we identified enhanced-fidelity SaCas9 (efSaCas9) (variant Mut268 harboring the single mutation of N260D), which could effectively distinguish and reject single base-pair mismatches. We demonstrate dramatically reduced off-target effects (approximately 2- to 93-fold improvements) of Mut268 compared to WT using targeted deep-sequencing analyses. To understand the structural origin of the fidelity enhancement, we find that N260, located in the REC3 domain, orchestrates an extensive network of contacts between REC3 and the guide RNA-DNA heteroduplex. efSaCas9 can be broadly used in genome-editing applications that require high fidelity. Furthermore, this study provides a general strategy to rapidly evolve other desired CRISPR-Cas9 traits besides enhanced fidelity, to expand the utility of the CRISPR toolkit.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Staphylococcus aureus/metabolismo , Biblioteca Gênica , Engenharia Genética , Loci Gênicos , Genoma Humano , Células HEK293 , Humanos , Nucleotídeos/genética , Fenótipo , Reprodutibilidade dos Testes , Ativação Transcricional/genética
12.
J Vis Exp ; (161)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716393

RESUMO

Transposon sequencing (Tn-seq) is a powerful method that combines transposon mutagenesis and massive parallel sequencing to identify genes and pathways that contribute to bacterial fitness under a wide range of environmental conditions. Tn-seq applications are extensive and have not only enabled examination of genotype-phenotype relationships at an organism level but also at the population, community and systems levels. Gram-negative bacteria are highly associated with antimicrobial resistance phenotypes, which has increased incidents of antibiotic treatment failure. Antimicrobial resistance is defined as bacterial growth in the presence of otherwise lethal antibiotics. The "last-line" antimicrobial colistin is used to treat Gram-negative bacterial infections. However, several Gram-negative pathogens, including Acinetobacter baumannii can develop colistin resistance through a range of molecular mechanisms, some of which were characterized using Tn-seq. Furthermore, signal transduction pathways that regulate colistin resistance vary within Gram-negative bacteria. Here we propose an efficient method of transposon mutagenesis in A. baumannii that streamlines generation of a saturating transposon insertion library and amplicon library construction by eliminating the need for restriction enzymes, adapter ligation, and gel purification. The methods described herein will enable in-depth analysis of molecular determinants that contribute to A. baumannii fitness when challenged with colistin. The protocol is also applicable to other Gram-negative ESKAPE pathogens, which are primarily associated with drug resistant hospital-acquired infections.


Assuntos
Acinetobacter baumannii/genética , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutagênese
13.
Nat Protoc ; 15(8): 2279-2300, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32612278

RESUMO

It has been shown that highly fragmented DNA is most efficiently converted into DNA libraries for sequencing if both strands of the DNA fragments are processed independently. We present an updated protocol for library preparation from single-stranded DNA, which is based on the splinted ligation of an adapter oligonucleotide to the 3' ends of single DNA strands, the synthesis of a complementary strand using a DNA polymerase and the addition of a 5' adapter via blunt-end ligation. The efficiency of library preparation is determined individually for each sample using a spike-in oligonucleotide. The whole workflow, including library preparation, quantification and amplification, requires two work days for up to 16 libraries. Alternatively, we provide documentation and electronic protocols enabling automated library preparation of 96 samples in parallel on a Bravo NGS Workstation (Agilent Technologies). After library preparation, molecules with uninformative short inserts (shorter than ~30-35 base pairs) can be removed by polyacrylamide gel electrophoresis if desired.


Assuntos
DNA Antigo , DNA de Cadeia Simples/genética , Biblioteca Gênica , Análise de Sequência de DNA/métodos , Automação , Sequência de Bases
14.
Proc Natl Acad Sci U S A ; 117(31): 18670-18679, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675236

RESUMO

As the most abundant microbes on Earth, novel bacteriophages (phages; bacteria-specific viruses) are readily isolated from environmental samples. However, it remains challenging to characterize phage-bacteria interactions, such as the host receptor(s) phages bind to initiate infection. Here, we tested whether transposon insertion sequencing (INSeq) could be used to identify bacterial genes involved in phage binding. As proof of concept, results showed that INSeq screens successfully identified genes encoding known receptors for previously characterized viruses of Escherichia coli (phages T6, T2, T4, and T7). INSeq screens were then used to identify genes involved during infection of six newly isolated coliphages. Results showed that candidate receptors could be successfully identified for the majority (five of six) of the phages; furthermore, genes encoding the phage receptor(s) were the top hit(s) in the analyses of the successful screens. INSeq screens provide a generally useful method for high-throughput discovery of phage receptors. We discuss limitations of our approach when examining uncharacterized phages, as well as usefulness of the method for exploring the evolution of broad versus narrow use of cellular receptors among phages in the biosphere.


Assuntos
Proteínas de Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Receptores Virais/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca Gênica , Receptores Virais/metabolismo
15.
Nat Commun ; 11(1): 3609, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681090

RESUMO

Standard units of measurement are required for the quantitative description of nature; however, few standard units have been established for genomics to date. Here, we have developed a synthetic DNA ladder that defines a quantitative standard unit that can measure DNA sequence abundance within a next-generation sequencing library. The ladder can be spiked into a DNA sample, and act as an internal scale that measures quantitative genetics features. Unlike previous spike-ins, the ladder is encoded within a single molecule, and can be equivalently and independently synthesized by different laboratories. We show how the ladder can measure diverse quantitative features, including human genetic variation and microbial abundance, and also estimate uncertainty due to technical variation and improve normalization between libraries. This ladder provides an independent quantitative unit that can be used with any organism, application or technology, thereby providing a common metric by which genomes can be measured.


Assuntos
DNA/análise , DNA/síntese química , Sequência de Bases , DNA/genética , Dosagem de Genes , Biblioteca Gênica , Genômica , Humanos
16.
Proc Natl Acad Sci U S A ; 117(29): 16782-16789, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32641511

RESUMO

DNA-encoded chemical libraries are collections of compounds individually coupled to unique DNA tags serving as amplifiable identification barcodes. By bridging split-and-pool combinatorial synthesis with the ligation of unique encoding DNA oligomers, million- to billion-member libraries can be synthesized for use in hundreds of healthcare target screens. Although structural diversity and desirable molecular property ranges generally guide DNA-encoded chemical library design, recent reports have highlighted the utility of focused DNA-encoded chemical libraries that are structurally biased for a class of protein targets. Herein, a protease-focused DNA-encoded chemical library was designed that utilizes chemotypes known to engage conserved catalytic protease residues. The three-cycle library features functional moieties such as guanidine, which interacts strongly with aspartate of the protease catalytic triad, as well as mild electrophiles such as sulfonamide, urea, and carbamate. We developed a DNA-compatible method for guanidinylation of amines and reduction of nitriles. Employing these optimized reactions, we constructed a 9.8-million-membered DNA-encoded chemical library. Affinity selection of the library with thrombin, a common protease, revealed a number of enriched features which ultimately led to the discovery of a 1 nM inhibitor of thrombin. Thus, structurally focused DNA-encoded chemical libraries have tremendous potential to find clinically useful high-affinity hits for the rapid discovery of drugs for targets (e.g., proteases) with essential functions in infectious diseases (e.g., severe acute respiratory syndrome coronavirus 2) and relevant healthcare conditions (e.g., male contraception).


Assuntos
DNA/química , DNA/metabolismo , Descoberta de Drogas , Biblioteca Gênica , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Trombina/antagonistas & inibidores , Técnicas de Química Combinatória , Humanos , Inibidores de Proteases/química , Bibliotecas de Moléculas Pequenas/química
17.
Viruses ; 12(6)2020 06 03.
Artigo em Inglês | MEDLINE | ID: covidwho-532726

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness in humans; the second-largest and most deadly outbreak to date occurred in Saudi Arabia. The dromedary camel is considered a possible host of the virus and also to act as a reservoir, transmitting the virus to humans. Here, we studied evolutionary relationships for 31 complete genomes of betacoronaviruses, including eight newly sequenced MERS-CoV genomes isolated from dromedary camels in Saudi Arabia. Through bioinformatics tools, we also used available sequences and 3D structure of MERS-CoV spike glycoprotein to predict MERS-CoV epitopes and assess antibody binding affinity. Phylogenetic analysis showed the eight new sequences have close relationships with existing strains detected in camels and humans in Arabian Gulf countries. The 2019-nCov strain appears to have higher homology to both bat coronavirus and SARS-CoV than to MERS-CoV strains. The spike protein tree exhibited clustering of MERS-CoV sequences similar to the complete genome tree, except for one sequence from Qatar (KF961222). B cell epitope analysis determined that the MERS-CoV spike protein has 24 total discontinuous regions from which just six epitopes were selected with score values of >80%. Our results suggest that the virus circulates by way of camels crossing the borders of Arabian Gulf countries. This study contributes to finding more effective vaccines in order to provide long-term protection against MERS-CoV and identifying neutralizing antibodies.


Assuntos
Camelus/virologia , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Evolução Biológica , DNA Complementar/química , DNA Viral/química , Epitopos/análise , Epitopos/química , Epitopos/genética , Biblioteca Gênica , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Filogenia , RNA Viral/análise , RNA Viral/química , RNA Viral/isolamento & purificação , Arábia Saudita
18.
J Vis Exp ; (159)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32478741

RESUMO

In this article, we give hands-on instructions to obtain translatome data from different Arabidopsis thaliana root cell types via the translating ribosome affinity purification (TRAP) method and consecutive optimized low-input library preparation. As starting material, we employ plant lines that express GFP-tagged ribosomal protein RPL18 in a cell type-specific manner by use of adequate promoters. Prior to immunopurification and RNA extraction, the tissue is snap frozen, which preserves tissue integrity and simultaneously allows execution of time series studies with high temporal resolution. Notably, cell wall structures remain intact, which is a major drawback in alternative procedures such as fluorescence-activated cell sorting-based approaches that rely on tissue protoplasting to isolate distinct cell populations. Additionally, no tissue fixation is necessary as in laser capture microdissection-based techniques, which allows high-quality RNA to be obtained. However, sampling from subpopulations of cells and only isolating polysome-associated RNA severely limits RNA yields. It is, therefore, necessary to apply sufficiently sensitive library preparation methods for successful data acquisition by RNA-seq. TRAP offers an ideal tool for plant research as many developmental processes involve cell wall-related and mechanical signaling pathways. The use of promoters to target specific cell populations is bridging the gap between organ and single-cell level that in turn suffer from little resolution or very high costs. Here, we apply TRAP to study cell-cell communication in lateral root formation.


Assuntos
Arabidopsis/metabolismo , Cromatografia de Afinidade/métodos , Raízes de Plantas/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Proteínas de Fluorescência Verde/metabolismo , Plantas Geneticamente Modificadas , Polirribossomos/genética , RNA Mensageiro/genética , RNA de Plantas/metabolismo , Ribossomos/genética , Esterilização , Transgenes
19.
J Vis Exp ; (160)2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32568231

RESUMO

Gene expression analysis by RNA sequencing (RNA-seq) enables unique insights into clinical samples that can potentially lead to mechanistic understanding of the basis of various diseases as well as resistance and/or susceptibility mechanisms. However, FFPE tissues, which represent the most common method for preserving tissue morphology in clinical specimens, are not the best sources for gene expression profiling analysis. The RNA obtained from such samples is often degraded, fragmented, and chemically modified, which leads to suboptimal sequencing libraries. In turn, these generate poor quality sequence data that may not be reliable for gene expression analysis and mutation discovery. In order to make the most of FFPE samples and obtain the best possible data from low quality samples, it is important to take certain precautions while planning experimental design, preparing sequencing libraries, and during data analysis. This includes the use of appropriate metrics for precise sample quality control (QC), identifying the best methods for various steps during the sequencing library generation, and careful library QC. In addition, applying correct software tools and parameters for sequence data analysis is critical in order to identify artifacts in RNA-seq data, filter out contamination and low quality reads, assess uniformity of gene coverage, and measure the reproducibility of gene expression profiles among biological replicates. These steps can ensure high accuracy and reproducibility for profiling of very heterogeneous RNA samples. Here we describe the various steps for sample QC, library preparation and QC, sequencing, and data analysis that can help to increase the amount of useful data obtained from low quality RNA, such as that obtained from FFPE-RNA tissues.


Assuntos
Inclusão em Parafina , Estabilidade de RNA , RNA/análise , Análise de Sequência de RNA/métodos , Fixação de Tecidos , Análise de Dados , Perfilação da Expressão Gênica , Biblioteca Gênica , Genoma , Humanos , Controle de Qualidade , RNA/genética , Reprodutibilidade dos Testes , Transcriptoma
20.
Nucleic Acids Res ; 48(14): e84, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32544226

RESUMO

R-loops are dynamic, co-transcriptional nucleic acid structures that facilitate physiological processes but can also cause DNA damage in certain contexts. Perturbations of transcription or R-loop resolution are expected to change their genomic distribution. Next-generation sequencing approaches to map RNA-DNA hybrids, a component of R-loops, have so far not allowed quantitative comparisons between such conditions. Here, we describe quantitative differential DNA-RNA immunoprecipitation (qDRIP), a method combining synthetic RNA-DNA-hybrid internal standards with high-resolution, strand-specific sequencing. We show that qDRIP avoids biases inherent to read-count normalization by accurately profiling signal in regions unaffected by transcription inhibition in human cells, and by facilitating accurate differential peak calling between conditions. We also use these quantitative comparisons to make the first estimates of the absolute count of RNA-DNA hybrids per cell and their half-lives genome-wide. Finally, we identify a subset of RNA-DNA hybrids with high GC skew which are partially resistant to RNase H. Overall, qDRIP allows for accurate normalization in conditions where R-loops are perturbed and for quantitative measurements that provide previously unattainable biological insights.


Assuntos
DNA/metabolismo , Imunoprecipitação/métodos , Hibridização de Ácido Nucleico , Estruturas R-Loop , RNA/metabolismo , Animais , Linhagem Celular , Drosophila/citologia , Biblioteca Gênica , Genoma , Meia-Vida , Células HeLa , Humanos , Reação em Cadeia da Polimerase , Ribonuclease H , Sonicação , Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA