Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Microbiome ; 9(1): 180, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470652

RESUMO

BACKGROUND: Probiotics have been used to regulate the gut microbiota and physiology in various contexts, but their precise mechanisms of action remain unclear. RESULTS: By population genomic analysis of 418 Bifidobacterium longum strains, including 143 newly sequenced in this study, three geographically distinct gene pools/populations, BLAsia1, BLAsia2, and BLothers, were identified. Genes involved in cell wall biosynthesis, particularly peptidoglycan biosynthesis, varied considerably among the core genomes of the different populations, but accessory genes that contributed to the carbohydrate metabolism were significantly distinct. Although active transmission was observed inter-host, inter-country, inter-city, intra-community, and intra-family, a single B. longum clone seemed to reside within each individual. A significant negative association was observed between host age and relative abundance of B. longum, while there was a strong positive association between host age and strain genotype [e.g., single nucleotide polymorphisms in the arginine biosynthesis pathway]. Further animal experiments performed with the B. longum isolates via using a D-galactose-induced aging mouse model supported these associations, in which B. longum strains with different genotypes in arginine biosynthesis pathway showed divergent abilities on protecting against host aging possibly via their different abilities to modify the metabolism of gut microbes. CONCLUSIONS: This is the first known example of research on the evolutionary history and transmission of this probiotic species. Our results propose a new mechanistic insight for promoting host longevity via the informed use of specific probiotics or molecules. Video abstract.


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Probióticos , Sulfaleno , Envelhecimento , Animais , Galactose , Microbioma Gastrointestinal/genética , Humanos , Camundongos
2.
Biomed Res Int ; 2021: 6662027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34258278

RESUMO

Purpose: The aim of this work was to analyze the complete genome of probiotic bacteria Lactobacillus plantarum 8 RA 3, Lactobacillus fermentum 90 TC-4, Lactobacillus fermentum 39, Bifidobacterium bifidum 791, Bifidobacterium bifidum 1, and Bifidobacterium longum 379 and to test their activity against influenza A and SARS-CoV-2 viruses. Methods: To confirm the taxonomic affiliation of the bacterial strains, MALDI TOF mass spectrometry and biochemical test systems were used. Whole genome sequencing was performed on the Illumina Inc. MiSeq platform. To determine the antiviral activity, A/Lipetsk/1V/2018 (H1N1 pdm09) (EPI_ISL_332798) and A/common gull/Saratov/1676/2018 (H5N6) (EPI_ISL_336925) influenza viruses and SARS-CoV-2 virus strain Australia/VIC01/2020 (GenBank: MT007544.1) were used. Results: All studied probiotic bacteria are nonpathogenic for humans and do not contain the determinants of transmission-type antibiotic resistance and integrated plasmids. Resistance to antibiotics of different classes is explained by the presence of molecular efflux pumps of the MatE and MFS families. Cultures of L. fermentum 90 TC 4, L. plantarum 8 RA 3, and B. bifidum 791 showed a pronounced activity against influenza A viruses in MDCK cells. Activity against the SARS-CoV-2 virus was demonstrated only by the L. fermentum 90 TC 4 strain in VERO cells. Conclusions: The studied probiotic bacteria are safe, have antiviral activity, and are of great importance for the prevention of diseases caused by respiratory viruses that can also infect the human intestine.


Assuntos
Bifidobacterium longum/genética , COVID-19/metabolismo , Lactobacillus/genética , Probióticos/farmacologia , SARS-CoV-2/metabolismo , Animais , COVID-19/terapia , Chlorocebus aethiops , Cães , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Células Madin Darby de Rim Canino , Células Vero
3.
J Med Food ; 24(6): 606-616, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34077675

RESUMO

Overexposure to ultraviolet B (UVB) irradiation induces photoaging that is characterized by the formation of wrinkles and loss of skin elasticity. To understand the mechanism of action of probiotics and prebiotics in skin protection against photoaging, we investigated the effects of dietary supplementation with the probiotic, Bifidobacterium longum, and prebiotic, galacto-oligosaccharide, on UVB-induced photoaging in hairless mice. We measured short chain fatty acid (SCFA) levels, antioxidant enzyme activity, and inflammatory signaling protein levels to elucidate the possible mechanisms underlying the effects of the dietary supplements B. longum and galacto-oligosaccharide. We observed that dietary supplementation with B. longum and galacto-oligosaccharide, individually and in combination, exerted protective effects against UVB-induced photoaging, showing anti-inflammatory and antioxidative effects. In particular, supplementation with the combination of B. longum and galacto-oligosaccharide showed stronger protective effects than supplementation with the probiotic or prebiotic alone. In addition, the serum levels of SCFAs and acetate were increased following dietary supplementation with B. longum and galacto-oligosaccharide, especially in combination. Therefore, we suggest that the combination of B. longum and galacto-oligosaccharide may potentially be used as a functional food to protect UVB-induced photoaging.


Assuntos
Bifidobacterium longum , Envelhecimento da Pele , Animais , Bifidobacterium , Camundongos , Camundongos Pelados , Oligossacarídeos/farmacologia , Prebióticos , Raios Ultravioleta/efeitos adversos
4.
Gene ; 795: 145781, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34153410

RESUMO

The Bifidobacterium longum 51A strain of isolated from feces of a healthy child, has demonstrated probiotic properties by in vivo and in vitro studies, which may be assigned to its production of metabolites such as acetate. Thus, through the study of comparative genomics, the present work sought to identify unique genes that might be related to the production of acetate. To perform the study, the DNA strain was sequenced using Illumina HiSeq technology, followed by assembly and manual curation of coding sequences. Comparative analysis was performed including 19 complete B. longum genomes available in Genbank/NCBI. In the phylogenetic analysis, the CECT 7210 and 157F strains of B. longum subsp. infantis aggregated within the subsp. longum cluster, suggesting that their taxonomic classification should be reviewed. The strain 51A of B. longum has 26 unique genes, six of which are possibly related to carbohydrate metabolism and acetate production. The phosphoketolase pathway from B. longum 51A showed a difference in acetyl-phosphate production. This result seems to corroborate the analysis of their unique genes, whose presence suggests the strain may use different sources of carbohydrates that allow a greater production of acetate and consequently offer benefits to the host health.


Assuntos
Acetatos/metabolismo , Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo , Metabolismo dos Carboidratos/genética , Genes Bacterianos , Probióticos/metabolismo , Sequência de Bases , Bifidobacterium longum/classificação , Criança , Simulação por Computador , Fezes/microbiologia , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Análise de Sequência de DNA
5.
Nutrients ; 13(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070274

RESUMO

The decrease in ovarian hormone secretion that occurs during menopause results in an increase in body weight and adipose tissue mass. Probiotics and soy isoflavones (SIFs) could affect the gut microbiota and exert anti-obesity effects. The objective of this study was to investigate the effects of probiotics and a diet containing SIF (SIF diet) on ovariectomized mice with menopausal obesity, including the gut microbiome. The results demonstrate that Bifidobacterium longum 15M1 can reverse menopausal obesity, whilst the combination of Lactobacillus plantarum 30M5 and a SIF diet was more effective in alleviating menopausal lipid metabolism disorder than either components alone. Probiotics and SIFs play different anti-obesity roles in menopausal mice. Furthermore, 30M5 alters the metabolites of the gut microbiota that increase the circulating estrogen level, upregulates the expression of estrogen receptor α in abdominal adipose tissue and improves the production of short-chain fatty acids (SCFAs). A SIF diet can significantly alter the structure of the fecal bacterial community and enrich the pathways related to SCFAs production. Moreover, 30M5 and a SIF diet acted synergistically to effectively resolve abnormal serum lipid levels in ovariectomized mice, and these effects appear to be associated with regulation of the diversity and structure of the intestinal microbiota to enhance SCFAs production and promote estrogen circulation.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Isoflavonas/farmacologia , Menopausa/metabolismo , Obesidade/dietoterapia , Probióticos/farmacologia , Animais , Bifidobacterium longum/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Humanos , Lactobacillus plantarum/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Doenças Metabólicas/dietoterapia , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia/métodos
6.
J Agric Food Chem ; 69(21): 6032-6042, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34008977

RESUMO

Although the health benefits of probiotics have been widely known for decades, there has still been limited use of probiotic bacteria in anti-obesity therapy. Herein, we demonstrated the role of Bifidobacterium longum subsp. infantis YB0411 (YB, which was selected by an in vitro adipogenesis assay) in adipogenic differentiation in 3T3-L1 pre-adipocytes. We observed that YB-treatment effectively reduced triglyceride accumulation and the expression of CCAAT/enhancer-binding protein α, ß, and δ (C/EBPα, C/EBPß, and C/EBPδ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (aP2), and acetyl-CoA carboxylase (ACC). YB-treatment also reduced the levels of core autophagic markers (p62 and LC3B) in 3T3-L1 pre-adipocytes. Small-interfering-RNA-mediated knockdown and competitive-chemical-inhibition assays showed that AMP-activated protein kinase (AMPK) commenced the anti-adipogenic effect of YB. In addition, YB supplement markedly reduced body weight and fat accretion in mice with high-fat-diet-induced obesity. Our findings suggest that YB may be used as a potential probiotic candidate to ameliorate obesity.


Assuntos
Adipogenia , Bifidobacterium longum , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Adipócitos , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Diferenciação Celular , Camundongos , Obesidade/genética , PPAR gama/genética
7.
PLoS One ; 16(4): e0249817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857178

RESUMO

The purpose of this research is to investigate the relationship between the microbiota of the gastrointestinal (GI) system and relative gene expression of miRNAs and mRNAs in the brain. C57BL/6 mice and Balb/c mice are fed Bifidobacterium longum, a well-characterized probiotic bacterial species shown to change behavior and improve sociability of Balb/c mice. After feeding, RNA was extracted from whole brains and PCR arrays were utilized to determine changes in the gene expression of brain-specific miRNAs. The results of these PCR arrays reveal that the relative gene expression of mmu-mir-652-3p is sensitive to B. longum probiotic treatment in C57BL/6 mice. qPCR was performed to measure expression of Dab1, an mRNA target of this miRNA. Dab1 expression is also dependent on B. longum. The goal of this study is to further understand the relationship between the gut microbiota and its impacts on neurological gene expression and brain function.


Assuntos
Bifidobacterium longum/patogenicidade , Encéfalo/metabolismo , Microbioma Gastrointestinal , MicroRNAs/genética , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Probióticos
8.
Nutrients ; 13(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923663

RESUMO

The main objective of this research was to carry out an experimental study, triple-blind, on the possible immunophysiological effects of a nutritional supplement (synbiotic, Gasteel Plus®, Heel España S.A.U.), containing a mixture of probiotic strains, such as Bifidobacterium lactis CBP-001010, Lactobacillus rhamnosus CNCM I-4036, and Bifidobacterium longum ES1, as well as the prebiotic fructooligosaccharides, on both professional athletes and sedentary people. The effects on some inflammatory/immune (IL-1ß, IL-10, and immunoglobulin A) and stress (epinephrine, norepinephrine, dopamine, serotonin, corticotropin-releasing hormone (CRH), Adrenocorticotropic hormone (ACTH), and cortisol) biomarkers were evaluated, determined by flow cytometer and ELISA. The effects on metabolic profile and physical activity, as well as on various parameters that could affect physical and mental health, were also evaluated via the use of accelerometry and validated questionnaires. The participants were professional soccer players in the Second Division B of the Spanish League and sedentary students of the same sex and age range. Both study groups were randomly divided into two groups: a control group-administered with placebo, and an experimental group-administered with the synbiotic. Each participant was evaluated at baseline, as well as after the intervention, which lasted one month. Only in the athlete group did the synbiotic intervention clearly improve objective physical activity and sleep quality, as well as perceived general health, stress, and anxiety levels. Furthermore, the synbiotic induced an immunophysiological bioregulatory effect, depending on the basal situation of each experimental group, particularly in the systemic levels of IL-1ß (increased significantly only in the sedentary group), CRH (decreased significantly only in the sedentary group), and dopamine (increased significantly only in the athlete group). There were no significant differences between groups in the levels of immunoglobulin A or in the metabolic profile as a result of the intervention. It is concluded that synbiotic nutritional supplements can improve anxiety, stress, and sleep quality, particularly in sportspeople, which appears to be linked to an improved immuno-neuroendocrine response in which IL-1ß, CRH, and dopamine are clearly involved.


Assuntos
Sistema Imunitário/microbiologia , Sistemas Neurossecretores/microbiologia , Futebol/fisiologia , Estresse Psicológico/microbiologia , Simbióticos/administração & dosagem , Acelerometria , Adulto , Ansiedade/sangue , Ansiedade/microbiologia , Ansiedade/terapia , Atletas/psicologia , Bifidobacterium animalis , Bifidobacterium longum , Biomarcadores/sangue , Hormônio Liberador da Corticotropina/sangue , Dopamina/sangue , Exercício Físico , Feminino , Humanos , Interleucina-1beta/sangue , Lactobacillus rhamnosus , Masculino , Oligossacarídeos/administração & dosagem , Projetos Piloto , Probióticos/administração & dosagem , Projetos de Pesquisa , Comportamento Sedentário , Sono , Estresse Psicológico/sangue , Estresse Psicológico/terapia , Estudantes/psicologia , Inquéritos e Questionários , Adulto Jovem
9.
Food Funct ; 12(8): 3476-3492, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33900330

RESUMO

Bifidobacterium longum (B. longum) species are widely used to prevent and treat ulcerative colitis (UC). In this study, phylogenetic and pan-genomic characterization of 122 B. longum strains was performed on the basis of 936 core genes; among these, four strains from different branches of the phylogenetic tree were selected for an evaluation of anti-inflammatory and immune modulatory activities in a DSS-induced colitis mouse model. Among the tested B. longum strains (B. longum FBJ20M1, B. longum FGDLZ8M1, B. longum FGSZY16M3, and B. longum FJSWXJ2M1), B. longum FGDLZ8M1 was found to most effectively alleviate colitis by reducing the expression of pro-inflammatory cytokines, restoring the colon length, and maintaining the mucosal integrity. The anti-inflammatory mechanisms of B. longum FGDLZ8M1 were related to the inhibition of NF-κB signaling. Genomic analysis indicated that these protective effects of B. longum FGDLZ8M1 may be related to specific genes associated with carbohydrate transport and metabolism and defense mechanisms (e.g., tolerance to bile salts and acids). Correlation analysis indicated that gastrointestinal transit tolerance was the most strongly associated factor. Our findings may contribute to the rapid screening of lactic acid bacterial strains with UC-alleviating effects.


Assuntos
Bifidobacterium longum/fisiologia , Colite Ulcerativa/terapia , Animais , Anti-Inflamatórios , Bifidobacterium longum/classificação , Bifidobacterium longum/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/imunologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Filogenia
10.
Clin Nutr ESPEN ; 42: 15-21, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33745570

RESUMO

BACKGROUNDS & AIMS: Strains belonging to bifidobacteria have been documented as being helpful in adults with intestinal dysbiosis conditions, like those related to irritable bowel syndrome (IBS). This review aims to present the most relevant evidence regarding the efficacy of Bifidobacterium longum W11, a Bifidobacterium used in clinical settings for conditions such as IBS and inflammatory bowel disease. METHODS: The following electronic databases were systematically searched up to August 2020: MEDLINE (via PubMed), EMBASE, Cochrane Central Database of Controlled Trials (via CENTRAL), Google Scholar, and Clinicaltrials.gov. RESULTS: Data arising from pooled analysis, 7 in vitro/pharmacological studies, 7 clinical trials including 1 randomized, double-blind and placebo-controlled, showed that the probiotic strain B. longum W11 has been extensively studied for its efficacy in subjects with IBS with constipation, leading to a significant reduction in symptoms. In particular, its role in alleviating constipation was also confirmed in subjects for whom a low-calorie weight-loss diet led to the slowing down of gut motility. The probiotic characteristics of B. longum W11 were further demonstrated in the treatment of minimal hepatic encephalopathy and hepatic disease. The most remarkable trait of B. longum W11 is its non-transmissible antibiotic resistance, due to a nucleotide polymorphism mutation in the rpoB gene, making it resistant to antibiotics of the rifampicin group, including rifaximin. The co-administration of B. longum W11 and rifaximin in patients with symptomatic uncomplicated diverticular disease brought about a further significant improvement in the clinical condition compared to patients treated with rifaximin alone. B. longum W11 is a probiotic which could synergize with rifaximin as an adjuvant to antibiotic treatment. CONCLUSIONS: Taken altogether these findings demonstrate the clinical role of the strain W11 both in some functional and in some inflammatory bowel diseases.


Assuntos
Bifidobacterium longum , Síndrome do Intestino Irritável , Probióticos , Adulto , Antibacterianos/uso terapêutico , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Rifaximina/uso terapêutico
11.
ACS Chem Biol ; 16(4): 701-711, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33764747

RESUMO

N-Glycosylation is a fundamental protein modification found in both eukaryotes and archaea. Despite lacking N-glycans, many commensal and pathogenic bacteria have developed mechanisms to degrade these isoforms for a variety of functions, including nutrient acquisition and evasion of the immune system. Although much is known about many of the enzymes responsible for N-glycan degradation, the enzymes involved in cleaving the N-glycan core have only recently been discovered. Thus, some of the structural details have yet to be characterized, and little is known about their full distribution among bacterial strains and specifically within potential Gram-positive polysaccharide utilization loci. Here, we report crystal structures for Family 5, Subfamily 18 (GH5_18) glycoside hydrolases from the gut bacterium Bifidobacterium longum (BlGH5_18) and the soil bacterium Streptomyces cattleya (ScGH5_18), which hydrolyze the core Manß1-4GlcNAc disaccharide. Structures of these enzymes in complex with Manß1-4GlcNAc reveal a more complete picture of the -1 subsite. They also show that a C-terminal active site cap present in BlGH5_18 is absent in ScGH5_18. Although this C-terminal cap is not widely distributed throughout the GH5_18 family, it is important for full enzyme activity. In addition, we show that GH5_18 enzymes are found in Gram-positive polysaccharide utilization loci that share common genes, likely dedicated to importing and degrading N-glycan core structures.


Assuntos
Bifidobacterium longum/metabolismo , Polissacarídeos/metabolismo , Bifidobacterium longum/genética , Domínio Catalítico , Genes Bacterianos , Glicosilação , Hidrólise
12.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525627

RESUMO

Hypercholesterolemia is an independent risk factor of cardiovascular disease, which is among the major causes of death worldwide. The aim of this study was to explore whether Bifidobacterium longum strains exerted intra-species differences in cholesterol-lowering effects in hypercholesterolemic rats and to investigate the potential mechanisms. SD rats underwent gavage with each B. longum strain (CCFM 1077, I3, J3 and B3) daily for 28 days. B. longum CCFM 1077 exerted the most potent cholesterol-lowering effect, followed by B. longum I3 and B3, whereas B. longum B3 had no effect in alleviating hypercholesterolemia. Divergent alleviation of different B. longum strains on hypercholesterolemia can be attributed to the differences in bile salt deconjugation ability and cholesterol assimilation ability in vitro. By 16S rRNA metagenomics analysis, the relative abundance of beneficial genus increased in the B. longum CCFM 1077 treatment group. The expression of key genes involved in cholesterol metabolism were also altered after the B. longum CCFM 1077 treatment. In conclusion, B. longum exhibits strain-specific effects in the alleviation of hypercholesterolemia, mainly due to differences in bacterial characteristics, bile salt deconjugation ability, cholesterol assimilation ability, expressions of key genes involved in cholesterol metabolism and alterations of gut microbiota.


Assuntos
Bactérias/classificação , Bifidobacterium longum/fisiologia , Colesterol/efeitos adversos , Hipercolesterolemia/terapia , Análise de Sequência de DNA/métodos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bifidobacterium longum/classificação , Colesterol/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Modelos Animais de Doenças , Fezes/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Hipercolesterolemia/induzido quimicamente , Hipercolesterolemia/genética , Hipercolesterolemia/microbiologia , Metagenômica , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
13.
Benef Microbes ; 12(2): 199-209, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33573507

RESUMO

Allergic contact dermatitis (ACD) is a common allergic skin disease that affects individuals subjected to different antigen exposure conditions and significantly impacts the quality of life of those affected. Numerous studies have demonstrated that probiotics suppress inflammation through immunomodulatory effects. In this study, we aimed to evaluate the effect of the probiotic Bifidobacterium longum 51A as a preventive treatment for ACD using an oxazolone-induced murine model. We demonstrated that B. longum 51A exerted a prophylactic effect on oxazolone-induced ACD-like skin inflammation via reductions in ear and dermal thickness and leucocyte infiltration. The administration of inactivated B. longum 51A did not affect oxazolone-induced ACD-like skin inflammation, suggesting that the bacteria must be alive to be effective. Given that B. longum 51A is an acetate producer, we treated mice with acetate intraperitoneally, which also prevented ear and dermal thickening. Moreover, the tissue levels of the inflammatory cytokines and chemokines interleukin (IL)-10, IL-33, tumour necrosis factor-α, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein-1 and chemokine (C-C motif) ligand 5/RANTES were significantly reduced after probiotic treatment, but only IL-33 and IL-10 were reduced when the mice were treated with acetate. These results show that B. longum 51A exerted a potential prophylactic effect on skin inflammation and that acetate represents one potential mechanism. However, other factors are likely involved since these two treatments do not yield the same results.


Assuntos
Bifidobacterium longum/fisiologia , Dermatite Alérgica de Contato/imunologia , Dermatite Alérgica de Contato/prevenção & controle , Probióticos/administração & dosagem , Animais , Citocinas/genética , Citocinas/imunologia , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/genética , Feminino , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-33/genética , Interleucina-33/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Oxazolona/efeitos adversos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
14.
Nutrients ; 13(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525601

RESUMO

BACKGROUND: Oxysterol relationship with cardiovascular (CV) risk factors is poorly explored, especially in moderately hypercholesterolaemic subjects. Moreover, the impact of nutraceuticals controlling hypercholesterolaemia on plasma levels of 24-, 25- and 27-hydroxycholesterol (24-OHC, 25-OHC, 27-OHC) is unknown. METHODS: Subjects (n = 33; 18-70 years) with moderate hypercholesterolaemia (low-density lipoprotein cholesterol (LDL-C:): 130-200 mg/dL), in primary CV prevention as well as low CV risk were studied cross-sectionally. Moreover, they were evaluated after treatment with a nutraceutical combination (Bifidobacterium longum BB536, red yeast rice extract (10 mg/dose monacolin K)), following a double-blind, randomized, placebo-controlled design. We evaluated 24-OHC, 25-OHC and 27-OHC levels by gas chromatography/mass spectrometry analysis. RESULTS: 24-OHC and 25-OHC were significantly correlated, 24-OHC was correlated with apoB. 27-OHC and 27-OHC/total cholesterol (TC) were higher in men (median 209 ng/mL and 77 ng/mg, respectively) vs. women (median 168 ng/mL and 56 ng/mg, respectively); 27-OHC/TC was significantly correlated with abdominal circumference, visceral fat and, negatively, with high-density lipoprotein cholesterol (HDL-C). Triglycerides were significantly correlated with 24-OHC, 25-OHC and 27-OHC and with 24-OHC/TC and 25-OHC/TC. After intervention, 27-OHC levels were significantly reduced by 10.4% in the nutraceutical group Levels of 24-OHC, 24-OHC/TC, 25-OHC, 25-OHC/TC and 27-OHC/TC were unchanged. CONCLUSIONS: In this study, conducted in moderate hypercholesterolemic subjects, we observed novel relationships between 24-OHC, 25-OHC and 27-OHC and CV risk biomarkers. In addition, no adverse changes of OHC levels upon nutraceutical treatment were found.


Assuntos
Aterosclerose/metabolismo , Bifidobacterium longum/fisiologia , Produtos Biológicos/uso terapêutico , Biomarcadores/metabolismo , Suplementos Nutricionais , Hipercolesterolemia/tratamento farmacológico , Oxisteróis/metabolismo , Idoso , Aterosclerose/sangue , Colesterol/sangue , Feminino , Humanos , Hipercolesterolemia/sangue , Masculino , Pessoa de Meia-Idade , Oxisteróis/sangue , Placebos
15.
Int J Biol Macromol ; 178: 53-62, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33581210

RESUMO

The ability of chitosan (1% w/v), Bifidobacterium longum (108 CFU mL-1) and Saccharomyces cerevisiae (108 CFU mL-1) separately or in combination (chitosan/B. longum, chitosan/S. cerevisiae, B. longum/S. cerevisiae) was assessed for lead (II) removal from aqueous solutions. The results showed chitosan/B. longum adsorbent had higher adsorption percentage in comparison with other adsorbents (p < 0.05). It was selected as the most efficient adsorbent and the effect of process variables including initial metal concentration (0.01-5 mg L-1), contact time (5-180 min), temperature (4-37 °C) and pH (3-6) on the its removal efficiency was evaluated with a Box-Behnken design. Twenty-seven test runs were performed and the optimal conditions for metal adsorption was observed at metal concentration of 2.5 mg L-1, contact time of 180 min, temperature of 37 °C and pH 4.5. The maximum lead (II) adsorption yield under optimal conditions was 97.6%. The foreign ions didn't diminish lead (II) adsorption by chitosan/B. longum and it had high selectivity toward the lead (II). Adsorption behavior was analyzed using the Freundlich and the Langmuir isotherms. The correlation coefficients (R2) demonstrated the Langmuir model had a better description on metal adsorption process. Overall, isotherms revealed chemisorption and physisorption were probably involved in metal adsorption on adsorbent.


Assuntos
Bifidobacterium longum/fisiologia , Quitosana/química , Chumbo/química , Saccharomyces cerevisiae/fisiologia , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção
16.
Biosci Biotechnol Biochem ; 85(2): 324-331, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604645

RESUMO

APS001F is a strain of Bifidobacterium longum genetically engineered to express cytosine deaminase that converts 5-fluorocytosine (5-FC) to 5-fluorouracil. In the present study, antitumor effects of APS001F plus 5-FC (APS001F/5-FC) in combination with anti-PD-1 monoclonal antibody were investigated using a CT26 syngeneic mouse model. Both of dosing of APS001F/5-FC before and after anti-PD-1 mAb in the combination dosing exhibited antitumor effects as well as prolonged survival over the nontreated control. The survival rate in the combination therapy significantly increased over the monotherapy with APS001F/5-FC and that with anti-PD-1 mAb. Regulatory T cells among CD4+ T cells in tumor decreased in the combination therapy, while the ratio of CD8+ T cells was maintained in all groups. Taken these results together, APS001F/5-FC not only demonstrates a direct antitumor activity, but also immunomodulatory effects once localized in the hypoxic region of the tumor, which allows anti-PD-1 mAb to exert potentiated antitumor effects.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos/farmacologia , Bifidobacterium longum/fisiologia , Flucitosina/farmacologia , Engenharia Genética , Receptor de Morte Celular Programada 1/imunologia , Animais , Bifidobacterium longum/genética , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Camundongos
17.
Calcif Tissue Int ; 108(5): 654-666, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33388801

RESUMO

The probiotic Bifidobacterium longum subsp. longum 35624® (B. longum 35624®), with its surface exopolysaccharide (EPS624), has previously been demonstrated to induce immunoregulatory responses in the host and may, therefore, be a novel approach to prevent bone loss in inflammatory conditions such as post-menopausal osteoporosis (PMO). The aim of this study was to investigate the effect of EPS624 on osteoclast and osteoblast differentiation and to assess the potential of B. longum 35624® to prevent bone loss in vivo. In vitro cell assays were used to assess the impact of EPS624 on osteoclast and osteoblast differentiation. The potential of two probiotic B. longum 35624® strains, including an EPS-deficient strain, for preventing ovariectomy (Ovx)-induced bone loss was assessed in a murine model. EPS624 prevented osteoclast formation from murine bone marrow precursors under both normal and TNFα-induced inflammatory conditions and modestly increased mineralized matrix deposition in osteogenic cell cultures. However, in the presence of an anti-TLR2 blocking antibody, or in MyD88-/- osteoclast precursors, the inhibitory effect of EPS624 on osteoclast formation was diminished or completely prevented, respectively. Moreover, EPS624 induced IL-10 production in osteoclast precursors in a TLR2-dependent manner, although IL-10 was dispensable in the EPS624-mediated inhibition of osteoclast formation. In addition, EPS624-producing B. longum 35624® partially prevented bone loss in Ovx mice when administered by oral gavage. This study introduced EPS624 as a potential anti-resorptive therapy, although optimal in vivo delivery of the probiotic strain for treating low-grade inflammatory diseases such as PMO remains to be determined.


Assuntos
Bifidobacterium longum , Animais , Bifidobacterium , Feminino , Camundongos , Osteoclastos , Receptor 2 Toll-Like
18.
Intern Med ; 60(3): 453-456, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32963153

RESUMO

An 86-year-old woman was admitted for the investigation of atelectasis of the upper lobe of her right lung with a mass shadow in the hilum (Golden S sign). Chest computed tomography revealed swollen connective tissue around the right bronchus, and needle aspirate grew Bifidobacterium longum and Veillonella species. She was diagnosed with peribronchial connective tissue infection, and her condition improved with antibiotics. Although this sign is strongly suggestive of malignant disease, benign disease should be considered in the differential diagnosis. Pulmonary infection caused by Bifidobacterium longum is extremely rare; however, clinicians should consider it as a possible cause of pulmonary infections.


Assuntos
Bifidobacterium longum , Neoplasias Pulmonares , Atelectasia Pulmonar , Idoso de 80 Anos ou mais , Tecido Conjuntivo , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Veillonella
19.
EBioMedicine ; 63: 103176, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33349590

RESUMO

BACKGROUND: The human gut microbiota has emerged as a key factor in the development of obesity. Certain probiotic strains have shown anti-obesity effects. The objective of this study was to investigate whether Bifidobacterium longum APC1472 has anti-obesity effects in high-fat diet (HFD)-induced obese mice and whether B. longum APC1472 supplementation reduces body-mass index (BMI) in healthy overweight/obese individuals as the primary outcome. B. longum APC1472 effects on waist-to-hip ratio (W/H ratio) and on obesity-associated plasma biomarkers were analysed as secondary outcomes. METHODS: B. longum APC1472 was administered to HFD-fed C57BL/6 mice in drinking water for 16 weeks. In the human intervention trial, participants received B. longum APC1472 or placebo supplementation for 12 weeks, during which primary and secondary outcomes were measured at the beginning and end of the intervention. FINDINGS: B. longum APC1472 supplementation was associated with decreased bodyweight, fat depots accumulation and increased glucose tolerance in HFD-fed mice. While, in healthy overweight/obese adults, the supplementation of B. longum APC1472 strain did not change primary outcomes of BMI (0.03, 95% CI [-0.4, 0.3]) or W/H ratio (0.003, 95% CI [-0.01, 0.01]), a positive effect on the secondary outcome of fasting blood glucose levels was found (-0.299, 95% CI [-0.44, -0.09]). INTERPRETATION: This study shows a positive translational effect of B. longum APC1472 on fasting blood glucose from a preclinical mouse model of obesity to a human intervention study in otherwise healthy overweight and obese individuals. This highlights the promising potential of B. longum APC1472 to be developed as a valuable supplement in reducing specific markers of obesity. FUNDING: This research was funded in part by Science Foundation Ireland in the form of a Research Centre grant (SFI/12/RC/2273) to APC Microbiome Ireland and by a research grant from Cremo S.A.


Assuntos
Bifidobacterium longum/fisiologia , Resistência à Doença , Interações entre Hospedeiro e Microrganismos , Obesidade/metabolismo , Adiposidade , Corticosteroides/sangue , Animais , Biomarcadores , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Metabolismo Energético , Glucose/metabolismo , Leptina/sangue , Masculino , Camundongos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Obesidade/etiologia , Probióticos , Roedores , Pesquisa Médica Translacional
20.
Biol Res Nurs ; 23(1): 100-108, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32700545

RESUMO

BACKGROUND: Obesity and non-alcoholic fatty liver disease (NAFLD) have been increasing at an alarming rate worldwide. Bifidobacterium longum (BL), a common member of the human gut microbiota, has important health benefits through several mechanisms. OBJECTIVES: We evaluated the BL supplementation effects on body metabolism and renin-angiotensin components hepatic expression in mice fed a high-fat diet. METHODS: Thirty-two male mice were divided into four groups: standard diet + placebo (ST), standard diet + Bifidobacterium longum (ST + BL), high-fat diet + placebo (HFD) and high-fat diet + Bifidobacterium longum (HFD + BL). Following the obesity induction period, the ST + BL and HFD + BL groups were supplemented with Bifidobacterium longum for 4 weeks. Then, body, biochemical, histological and molecular parameters were evaluated. RESULTS: HFD + BL mice had a significant decrease in adipose tissue mass and blood glucose levels, as well as a significant reduction in blood glucose during an intraperitoneal glucose tolerance test. The treatment also resulted in reduced levels of total cholesterol and hepatic fat accumulation. Moreover, we observed an increase in angiotensin converting enzyme 2 (ACE2) and Mas receptor (MASR) expression levels in BL-treated obese mice. CONCLUSIONS: These data demonstrate that BL may have the potential to prevent obesity and NAFLD by modulating the mRNA expression of renin-angiotensin system components.


Assuntos
Bifidobacterium longum/fisiologia , Suplementos Nutricionais , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Probióticos/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/prevenção & controle , Probióticos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...