Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.350
Filtrar
1.
J Agric Food Chem ; 71(2): 994-1001, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36602115

RESUMO

The primary active components of breast milk are human milk oligosaccharides (HMOs). HMOs provide many benefits to infants, including regulating their metabolism, immune system, and brain development. Recent studies have emphasized that HMOs act as prebiotics by the metabolism of intestinal microorganisms to produce short-chain fatty acids, which are crucial for infant development. In addition, HMOs with different structural characteristics can form different microbial compositions. HMOs-induced predominant microbes, including Bifidobacterium infantis, B. bifidum, B. breve, and B. longum, and their metabolites demonstrated pertinent health-promoting properties. Meanwhile, HMOs could also directly reduce the occurrence of diseases through the effects of preventing pathogen infection. In this review, we address the probable function of HMOs inside the HMOs-gut microbiota-infant network, by describing the physiological functions of HMOs and the implications of diet on the HMOs-gut microbiota-infant network.


Assuntos
Bifidobacterium bifidum , Microbioma Gastrointestinal , Lactente , Feminino , Criança , Humanos , Leite Humano/química , Saúde do Lactente , Bifidobacterium/metabolismo , Oligossacarídeos/química
2.
Nutrients ; 14(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501069

RESUMO

The purpose of this study was to investigate the effects of different dietary fiber compounds (DFCs) on characteristic human flora and their metabolites mediated by the longevity dietary pattern analyzed by in vitro fermentation. The results show that DFC1 (cereal fiber) increased the level of Lactobacillus (p < 0.05), DFC2 (fruit and vegetable and cereal fiber) promoted the growth of Lactobacillus and Bifidobacterium more significantly than DFC3 (fruit and vegetable fiber) (p < 0.01), and all three DFCs decreased the level of Escherichia coli (p < 0.05). The metabolomic analysis showed that there was variability in the metabolites and the metabolic pathways of different DFCs. The redundancy analysis revealed that the fiber content was positively correlated with Lactobacillus, Bifidobacterium, Bacteroides, acetic acid, butyric acid, propionic acid, lactic acid, and betaine, and negatively correlated with Escherichia coli, succinic acid, alanine, choline, aspartic acid, and α-glucose. Overall, this study found that different DFCs have different positive correlations on characteristic human flora and metabolites, and DFC2 is more favorable to the proliferation of the intestinal beneficial genera Lactobacillus and Bifidobacterium after in vitro fermentation, having a probiotic role in glucose, amino acid, and lipid metabolisms. This study may provide a theoretical reference for the search of optimal dietary fiber combination strategies mediated by longevity dietary pattern.


Assuntos
Fibras na Dieta , Ácidos Graxos Voláteis , Humanos , Ácidos Graxos Voláteis/metabolismo , Fibras na Dieta/análise , Fermentação , Bifidobacterium/metabolismo , Lactobacillus/metabolismo , Escherichia coli/metabolismo , Glucose/metabolismo
3.
Nutrients ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364942

RESUMO

Black corn has been attracting attention to investigate its biological properties due to its anthocyanin composition, mainly cyanidin-3-glucoside. Our study evaluated the effects of black corn extract (BCE) on intestinal morphology, gene expression, and the cecal microbiome. The BCE intra-amniotic administration was evaluated by an animal model in Gallus gallus. The eggs (n = 8 per group) were divided into: (1) no injection; (2) 18 MΩ H2O; (3) 5% black corn extract (BCE); and (4) 0.38% cyanidin-3-glucoside (C3G). A total of 1 mL of each component was injected intra-amniotic on day 17 of incubation. On day 21, the animals were euthanized after hatching, and the duodenum and cecum content were collected. The cecal microbiome changes were attributed to BCE administration, increasing the population of Bifidobacterium and Clostridium, and decreasing E. coli. The BCE did not change the gene expression of intestinal inflammation and functionality. The BCE administration maintained the villi height, Paneth cell number, and goblet cell diameter (in the villi and crypt), similar to the H2O injection but smaller than the C3G. Moreover, a positive correlation was observed between Bifidobacterium, Clostridium, E. coli, and villi GC diameter. The BCE promoted positive changes in the cecum microbiome and maintained intestinal morphology and functionality.


Assuntos
Galinhas , Zea mays , Animais , Galinhas/metabolismo , Zea mays/metabolismo , Antocianinas/farmacologia , Antocianinas/metabolismo , Escherichia coli/metabolismo , Ceco/metabolismo , Bifidobacterium/metabolismo , Clostridium , Extratos Vegetais/farmacologia
4.
Microbiome ; 10(1): 188, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333752

RESUMO

BACKGROUND: Comparisons of the gut microbiome of lean and obese humans have revealed that obesity is associated with the gut microbiome plus changes in numerous environmental factors, including high-fat diet (HFD). Here, we report that two species of Bifidobacterium are crucial to controlling metabolic parameters in the Korean population. RESULTS: Based on gut microbial analysis from 99 Korean individuals, we observed the abundance of Bifidobacterium longum and Bifidobacterium bifidum was markedly reduced in individuals with increased visceral adipose tissue (VAT), body mass index (BMI), blood triglyceride (TG), and fatty liver. Bacterial transcriptomic analysis revealed that carbohydrate/nucleoside metabolic processes of Bifidobacterium longum and Bifidobacterium bifidum were associated with protecting against diet-induced obesity. Oral treatment of specific commercial Bifidobacterium longum and Bifidobacterium bifidum enhanced bile acid signaling contributing to potentiate oxidative phosphorylation (OXPHOS) in adipose tissues, leading to reduction of body weight gain and improvement in hepatic steatosis and glucose homeostasis. Bifidobacterium longum or Bifidobacterium bifidum manipulated intestinal sterol biosynthetic processes to protect against diet-induced obesity in germ-free mice. CONCLUSIONS: Our findings support the notion that treatment of carbohydrate/nucleoside metabolic processes-enriched Bifidobacterium longum and Bifidobacterium bifidum would be a novel therapeutic strategy for reprograming the host metabolic homeostasis to protect against metabolic syndromes, including diet-induced obesity. Video Abstract.


Assuntos
Bifidobacterium longum , Bifidobacterium , Humanos , Camundongos , Animais , Bifidobacterium/metabolismo , Nucleosídeos/metabolismo , Nucleosídeos/uso terapêutico , Fosforilação Oxidativa , Obesidade/microbiologia , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo Branco/metabolismo
5.
Cell ; 185(23): 4280-4297.e12, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36323316

RESUMO

The gut microbiome has an important role in infant health and development. We characterized the fecal microbiome and metabolome of 222 young children in Dhaka, Bangladesh during the first two years of life. A distinct Bifidobacterium longum clade expanded with introduction of solid foods and harbored enzymes for utilizing both breast milk and solid food substrates. The clade was highly prevalent in Bangladesh, present globally (at lower prevalence), and correlated with many other gut taxa and metabolites, indicating an important role in gut ecology. We also found that the B. longum clades and associated metabolites were implicated in childhood diarrhea and early growth, including positive associations between growth measures and B. longum subsp. infantis, indolelactate and N-acetylglutamate. Our data demonstrate geographic, cultural, seasonal, and ecological heterogeneity that should be accounted for when identifying microbiome factors implicated in and potentially benefiting infant development.


Assuntos
Bifidobacterium longum , Lactente , Criança , Feminino , Humanos , Pré-Escolar , Bifidobacterium longum/metabolismo , Bifidobacterium/metabolismo , Desmame , Oligossacarídeos/metabolismo , Bangladesh , Leite Humano , Fezes/microbiologia
6.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362285

RESUMO

Amino acids, which are important compatible solutes, play a significant role in probiotic lyophilization. However, studies on the functions of Bifidobacterium during freeze-drying are limited. Therefore, in this study, we compared the freeze-drying survival rate of Bifidobacterium longum CCFM 1029 cultivated in different media containing different kinds of compatible solutes. We found that the addition of 21 g/L proline to the culture media substantially improved the freeze-drying survival rate of B. longum CCFM 1029 from 18.61 ± 0.42% to 38.74 ± 1.58%. Interestingly, this change has only been observed when the osmotic pressure of the external culture environment is increased. Under these conditions, we found that proline accumulation in this strain increased significantly. This change also helped the strain to maintain its membrane integrity and the activity of some key enzymes during freeze-drying. Overall, these results show that the addition of proline can help the strain resist a tough environment during lyophilization. The findings of this study provide preliminary data for producers of probiotics who wish to achieve higher freeze-drying survival rates during industrial production.


Assuntos
Bifidobacterium longum , Probióticos , Taxa de Sobrevida , Prolina/metabolismo , Liofilização , Bifidobacterium/metabolismo
7.
Gut Microbes ; 14(1): 2127456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36195972

RESUMO

Severe acute pancreatitis (SAP) is a critical illness characterized by a severe systemic inflammatory response resulting in persistent multiple organ failure and sepsis. The intestinal microbiome is increasingly appreciated to play a crucial role in modulation of AP disease outcome, but limited information is available about the identity and mechanism of action for specific commensal bacteria involved in AP-associated inflammation. Here we show that Bifidobacteria, particularly B. animalis, can protect against AP by regulating pancreatic and systemic inflammation in germ-free (GF) and oral antibiotic-treated (Abx) mouse models. Colonization by B. animalis and administration of its metabolite lactate protected Abx and GF mice from AP by reducing serum amylase concentration, ameliorating pancreatic lesions and improving survival rate after retrograde injection of sodium taurocholate. B. animalis relieved macrophage-associated local and systemic inflammation of AP in a TLR4/MyD88- and NLRP3/Caspase1-dependent manner through its metabolite lactate. Supporting our findings from the mouse study, clinical AP patients exhibited a decreased fecal abundance of Bifidobacteria that was inversely correlated with the severity of systemic inflammatory responses. These results may shed light on the heterogeneity of clinical outcomes and drive the development of more efficacious therapeutic interventions for AP, and potentially for other inflammatory disorders.


Assuntos
Microbioma Gastrointestinal , Pancreatite , Doença Aguda , Amilases/metabolismo , Amilases/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Bifidobacterium/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ácido Láctico , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pancreatite/metabolismo , Ácido Taurocólico , Receptor 4 Toll-Like/metabolismo
8.
Food Funct ; 13(20): 10759-10768, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36190142

RESUMO

The influence of phenolic compound extracts from three colored rice cultivars on the gut microbiota was investigated. The results revealed that protocatechuic acid, chlorogenic acid, caffeic acid and p-coumaric acid were the major metabolites after gut microbiota fermentation. The presence of phenolic compounds led to a significantly decreased ratio of Firmicutes and Bacteroidetes, while the abundance of Proteobacteria decreased. At the genus level, phenolic compounds promoted an increase of Prevotella, Megamonas and Bifidobacterium, while the abundance of Bacteroides and Escherichia-Shigella was inhibited. The concentration of ferulic acid and syringic acid was positively correlated with Bifidobacterium, while Megamonas was positively correlated with catechin and caffeic acid. The abundance of Escherichia-Shigella and Citrobacter was found to be significantly negatively correlated with chlorogenic acid. More importantly, this study revealed that the presence of phenolic compounds generated more propionate, followed by acetate, but not butyrate after gut microbiota fermentation.


Assuntos
Catequina , Microbioma Gastrointestinal , Oryza , Bifidobacterium/metabolismo , Ácidos Cafeicos , Ácido Clorogênico , Fermentação , Oryza/química , Fenóis/química , Propionatos/metabolismo
9.
Appl Environ Microbiol ; 88(20): e0129922, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36200766

RESUMO

Xylans, a family of xylose-based polysaccharides, are dietary fibers resistant to digestion. They therefore reach the large intestine intact; there, they are utilized by members of the gut microbiota. They are initially broken down by primary degraders that utilize extracellular xylanases to cleave xylan into smaller oligomers. The resulting xylooligosaccharides (XOS) can either be further metabolized directly by primary degraders or cross-feed secondary consumers, including Bifidobacterium. While several Bifidobacterium species have metabolic systems for XOS, most grow poorly on longer-chain XOS and xylan substrates. In this study, we isolated strains of Bifidobacterium pseudocatenulatum and observed that some, including B. pseudocatenulatum ED02, displayed growth on XOS with a high degree of polymerization (DP) and straight-chain xylan, suggesting a primary degrader phenotype that is rare in Bifidobacterium. In silico analyses revealed that only the genomes of these xylan-fermenting (xylan+) strains contained an extracellular GH10 endo-ß-1.4 xylanase, a key enzyme for primary degradation of xylan. The presence of an extracellular xylanase was confirmed by the appearance of xylan hydrolysis products in cell-free supernatants. Extracellular xylanolytic activity was only detected in xylan+ strains, as indicated by the production of XOS fragments with a DP of 2 to 6, identified by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Additionally, in vitro fecal fermentations revealed that strains with a xylan+ phenotype can persist with xylan supplementation. These results indicate that xylan+ B. pseudocatenulatum strains may have a competitive advantage in the complex environment of the gastrointestinal tract, due to their ability to act as primary degraders of xylan through extracellular enzymatic degradation. IMPORTANCE The beneficial health effects of dietary fiber are now well established. Moreover, low fiber consumption is associated with increased risks of metabolic and systemic diseases. This so-called "fiber gap" also has a profound impact on the composition of the gut microbiome, leading to a disrupted or dysbiotic microbiota. Therefore, understanding the mechanisms by which keystone bacterial species in the gut utilize xylans and other dietary fibers may provide a basis for developing strategies to restore gut microbiome function. The results described here provide biochemical and genetic evidence for primary xylan utilization by human-derived Bifidobacterium pseudocatenulatum and show also that cooperative utilization of xylans occurs among other members of this species.


Assuntos
Bifidobacterium pseudocatenulatum , Xilanos , Humanos , Xilanos/metabolismo , Bifidobacterium pseudocatenulatum/metabolismo , Xilose/metabolismo , Glucuronatos/metabolismo , Oligossacarídeos/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Bifidobacterium/metabolismo , Hidrólise , Fibras na Dieta/metabolismo
10.
J Nanobiotechnology ; 20(1): 439, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207740

RESUMO

BACKGROUND: Dysbiosis or imbalance of gut microbiota in Alzheimer's disease (AD) affects the production of short-chain fatty acids (SCFAs), whereas exogenous SCFAs supplementation exacerbates brain Aß burden in APP/PS1 mice. Bifidobacterium is the main producer of SCFAs in the gut flora, but oral administration of Bifidobacterium is ineffective due to strong acids and bile salts in the gastrointestinal tract. Therefore, regulating the levels of SCFAs in the gut is of great significance for AD treatment. METHODS: We investigated the feasibility of intranasal delivery of MSNs-Bifidobacterium (MSNs-Bi) to the gut and their effect on behavior and brain pathology in APP/PS1 mice. RESULTS: Mesoporous silica nanospheres (MSNs) were efficiently immobilized on the surface of Bifidobacterium. After intranasal administration, fluorescence imaging of MSNs-Bi in the abdominal cavity and gastrointestinal tract revealed that intranasally delivered MSNs-Bi could be transported through the brain to the peripheral intestine. Intranasal administration of MSNs-Bi not only inhibited intestinal inflammation and reduced brain Aß burden but also improved olfactory sensitivity in APP/PS1 mice. CONCLUSIONS: These findings suggested that restoring the balance of the gut microbiome contributes to ameliorating cognitive impairment in AD, and that intranasal administration of MSNs-Bi may be an effective therapeutic strategy for the prevention of AD and intestinal disease.


Assuntos
Doença de Alzheimer , Nanopartículas , Transtornos do Olfato , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Bifidobacterium/metabolismo , Ácidos e Sais Biliares , Encéfalo/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Voláteis , Camundongos , Camundongos Transgênicos , Transtornos do Olfato/patologia , Dióxido de Silício
11.
J Dairy Sci ; 105(12): 9426-9438, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36307244

RESUMO

The addition of Bifidobacterium to goat milk has dual effects on health, for which various inherent nutrients of goat milk are retained and live probiotics are provided. We explored the effect of Bifidobacterium animalis ssp. lactis Probio-M8 (Probio-M8) on fermentation characteristics, formation of organic acid, sensory properties, and storage characteristics of fermented goat milk (with added 4.0% sucrose). Addition of Probio-M8 decreased the fermentation time and significantly increased the content of functional organic acids, such as acetic acid, and functional long-chain unsaturated fatty acids, including linoleic acid, α-linolenic acid, and docosahexaenoic acid. Furthermore, the contents of medium-chain and short-chain fatty acids, which are related to "goaty" flavor, were significantly lower in the Probio-M8 treatment compared with the control. The number of living Probio-M8 decreased from 8.27 log cfu/mL (1.80 × 108 cfu/mL) to 7.94 log cfu/mL (0.79 × 108 cfu/mL) after 28 d of storage. Titratable acidity and pH value did not differ between the control group and experimental group (containing Probio-M8). Sensory evaluation indicated a lower goaty flavor and odor in the Probio-M8 fermented milk. Our results suggest that the addition of the probiotic Probio-M8 could improve the sensory, physicochemical, and functional properties of fermented goat milk.


Assuntos
Bifidobacterium animalis , Probióticos , Animais , Bifidobacterium animalis/metabolismo , Leite/química , Probióticos/metabolismo , Bifidobacterium/metabolismo , Fermentação , Ácidos Graxos/metabolismo , Cabras/metabolismo
12.
Appl Microbiol Biotechnol ; 106(23): 7845-7856, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36307628

RESUMO

The genetic engineering of bacteria for food applications has biosafety requirements, including the use of non-antibiotic selectable markers. These can be gene-encoding bacteriocin immunity proteins, such as nisI and pedB, which require the use of promoters to ensure optimal expression. Our aim was to search for promoters for the expression of pediocin (pedB) and nisin (nisI) immunity genes, which could allow the selection of a wide variety of transformed lactic acid bacteria (LAB) and bifidobacteria strains. Eight promoters from LAB or bifidobacteria were initially studied using evoglow-Pp1 as the reporter gene in Lactococcus lactis NZ9000, resulting in the selection of P32, P3N, PTuR and PEF-P, which exhibited a strong constitutive expression. These promoters were further tested for the expression of the food-grade selectable markers pedB and nisI in agar diffusion assays with pediocin and nisin, respectively. The results obtained demonstrated that both the PTuR and PEF-P promoters allowed a good level of expression of nisI and pedB in the LAB and bifidobacteria strains tested. A suitable concentration of nisin or pediocin could be established for the selection of the strains transformed with vectors harbouring the combination of the selected promoters and markers nisI and pedB, and this was successfully applied to different strains of LAB and bifidobacteria. Therefore, PTuR and PEF-P promoters are excellent candidates for the expression of nisI and/or pedB as selectable markers in LAB and bifidobacteria, and they are suitable for use in food grade vectors to allow the selection of genetically engineered strains. KEY POINTS: • Food-grade vectors require non-antibiotic selectable markers such as pedB and nisI. • Eight promoters from LAB or bifidobacteria were initially tested in L. lactis NZ9000. • PTuR and PEF-P efficiently drove the expression of pedB and nisI in LAB and bifidobacteria.


Assuntos
Bacteriocinas , Lactobacillales , Lactococcus lactis , Nisina , Pediocinas , Lactobacillales/genética , Lactobacillales/metabolismo , Bifidobacterium/genética , Bifidobacterium/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
13.
J Agric Food Chem ; 70(37): 11678-11688, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36095239

RESUMO

Bifidobacteria are important mediators of immune system development within the gastrointestinal system and immunological homeostasis. The present study explored the anti-colitic activity of Bifidobacterium bifidum H3-R2 in a murine dextran sulfate sodium (DSS)-induced model of ulcerative colitis (UC). Moreover, this study offers novel insight regarding the molecular basis for the probiotic properties of B. bifidum H3-R2 by analyzing the underlying mechanisms whereby B. bifidum H3-R2-derived proteins affect the intestinal barrier. B. bifidum H3-R2 administration was sufficient to alleviate clinical manifestations consistent with DSS-induced colitis, restoring aberrant inflammatory cytokine production, enhancing tight junction protein expression, and positively impacting overall intestinal microecological homeostasis in these animals. Moreover, the bifidobacteria-derived GroEL and transaldolase (TAL) proteins were found to regulate tight junction protein expression via the NF-κB, myosin light chain kinase (MLCK), RhoA/Rho-associated protein kinase (ROCK), and mitogen-activated protein kinase (MAPK) signaling pathways, preventing the lipopolysaccharide (LPS)-mediated disruption of the intestinal epithelial cell barrier.


Assuntos
Bifidobacterium bifidum , Colite Ulcerativa , Colite , Animais , Bifidobacterium/metabolismo , Bifidobacterium bifidum/genética , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Junções Íntimas/metabolismo , Transaldolase/metabolismo
14.
J Microbiol Biotechnol ; 32(9): 1186-1194, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36039384

RESUMO

The intake of probiotic lactic acid bacteria not only promotes digestion through the microbiome regulated host intestinal metabolism but also improves diseases such as irritable bowel syndrome and inflammatory bowel disease, and suppresses pathogenic harmful bacteria. This investigation aimed to evaluate the immunomodulatory effects in intestinal epithelial cells and to study the clinical efficacy of the selected the Bifidobacterium breve and Bifidobacterium longum groups. The physiological and biochemical properties were characterized, and immunomodulatory activity was measured against pathogenic bacteria. In order to find out the mechanism of inflammatory action of the eight viable and sonicated Bifidobacterium spp., we tried to confirm the changes in the pro-inflammatory cytokines (TNF-α, interleukin (IL)-6, IL-12) and anti-inflammatory cytokine (IL-10), and chemokines, (monocyte chemoattractant protein-1, IL-8) and inflammatory enzymatic mediator (nitric oxide) against Enterococcus faecalis ATCC 29212 infection in Caco-2 cells and RAW 264.7 cells. The clinical efficacy of the selected B. breve and B. longum group was studied as a probiotic adjuvant for acute diarrhea in children by oral administration. The results showed significant immunomodulatory effects on the expression levels of TNF-α, IL-6, IL-12, MCP-1, IL-8 and NO, in sonicated Bifidobacterium extracts and viable bifidobacteria. Moreover, each of the Bifidobacterium strains was found to react more specifically to different cytokines. However, treatment with sonicated Bifidobacterium extracts showed a more significant effect compared to treatment with the viable bacteria. We suggest that probiotics functions should be subdivided according to individual characteristics, and that personalized probiotics should be designed to address individual applications.


Assuntos
Bifidobacterium breve , Bifidobacterium longum , Probióticos , Bifidobacterium/metabolismo , Bifidobacterium breve/metabolismo , Bifidobacterium longum/metabolismo , Células CACO-2 , Quimiocina CCL2 , Quimiocinas , Criança , Citocinas/metabolismo , Diarreia/terapia , Humanos , Interleucina-10 , Interleucina-12 , Interleucina-6 , Interleucina-8 , Óxido Nítrico , Fator de Necrose Tumoral alfa
15.
Molecules ; 27(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889370

RESUMO

Expression and purification of ß-galactosidases derived from Bifidobacterium provide a new resource for efficient lactose hydrolysis and lactose intolerance alleviation. Here, we cloned and expressed two ß-galactosidases derived from Bifidobacterium. The optimal pH for BLGLB1 was 5.5, and the optimal temperature was 45 °C, at which the enzyme activity of BLGLB1 was higher than that of commercial enzyme E (300 ± 3.6 U/mg) under its optimal conditions, reaching 2200 ± 15 U/mg. The optimal pH and temperature for BPGLB1 were 6.0 and 45 °C, respectively, and the enzyme activity (0.58 ± 0.03 U/mg) under optimum conditions was significantly lower than that of BLGLB1. The structures of the two ß-galactosidase were similar, with all known key sites conserved. When o-nitrophenyl-ß-D-galactoside (oNPG) was used as an enzyme reaction substrate, the maximum reaction velocity (Vmax) for BLGLB1 and BPGLB1 was 3700 ± 100 U/mg and 1.1 ± 0.1 U/mg, respectively. The kinetic constant (Km) of BLGLB1 and BPGLB1 was 1.9 ± 0.1 and 1.3 ± 0.3 mmol/L, respectively. The respective catalytic constant (kcat) of BLGLB1 and BPGLB1 was 1700 ± 40 s-1 and 0.5 ± 0.02 s-1, respectively; the respective kcat/Km value of BLGLB1 and BPGLB1 was 870 L/(mmol∙s) and 0.36 L/(mmol∙s), respectively. The Km, kcat and Vmax values of BLGLB1 were superior to those of earlier reported ß-galactosidase derived from Bifidobacterium. Overall, BLGLB1 has potential application in the food industry.


Assuntos
Bifidobacterium longum , Bifidobacterium pseudocatenulatum , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bifidobacterium longum/genética , Bifidobacterium pseudocatenulatum/metabolismo , Clonagem Molecular , Concentração de Íons de Hidrogênio , Cinética , Lactose/metabolismo , Temperatura , beta-Galactosidase/química
16.
NPJ Biofilms Microbiomes ; 8(1): 60, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858888

RESUMO

While deprivation of dietary fiber has been associated with adverse health outcomes, investigations concerning the effect of dietary fiber on the gut microbiome have been largely limited to compositional sequence-based analyses or utilize a defined microbiota not native to the host. To extend understanding of the microbiome's functional response to dietary fiber deprivation beyond correlative evidence from sequence-based analyses, approaches capable of measuring functional enzymatic activity are needed. In this study, we use an activity-based protein profiling (ABPP) approach to identify sugar metabolizing and transport proteins in native mouse gut microbiomes that respond with differential activity to the deprivation or supplementation of the soluble dietary fibers inulin and pectin. We found that the microbiome of mice subjected to a high fiber diet high in soluble fiber had increased functional activity of multiple proteins, including glycoside hydrolases, polysaccharide lyases, and sugar transport proteins from diverse taxa. The results point to an increase in activity of the Bifidobacterium shunt metabolic pathway in the microbiome of mice fed high fiber diets. In those subjected to a low fiber diet, we identified a shift from the degradation of dietary fibers to that of gut mucins, in particular by the recently isolated taxon "Musculibacterium intestinale", which experienced dramatic growth in response to fiber deprivation. When combined with metabolomics and shotgun metagenomics analyses, our findings provide a functional investigation of dietary fiber metabolism in the gut microbiome and demonstrates the power of a combined ABPP-multiomics approach for characterizing the response of the gut microbiome to perturbations.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias , Bifidobacterium/metabolismo , Proteínas de Transporte/metabolismo , Fibras na Dieta , Fezes/microbiologia , Camundongos , Mucinas/metabolismo , Mucinas/farmacologia , Açúcares/metabolismo , Açúcares/farmacologia
17.
Front Immunol ; 13: 871705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860248

RESUMO

Aim: Our objective was to investigate whether Bifidobacterium infantis inhibits PI3K-Akt-mTOR signaling and upregulates Foxp3 expression through PD-L1 and to explore the possible mechanism of action of B. infantis in cellular immunosuppression. Method: The effects of B. infantis supernatant on PD-L1, PD-1, Foxp3, and the PI3K-Akt-mTOR signaling pathway were observed by culturing HCT-116 cells. Simultaneously, the effects of blocking PD-L1 on PD-1, on Foxp3 protein and mRNA, and on the PI3K-Akt-mTOR signaling pathway protein were observed. Results: B. infantis supernatant was able to upregulate the protein and mRNA expression of PD-L1 and Foxp3 and downregulate the phosphorylated protein expression of PI3K, Akt, and mTOR (P < 0.05); however, for PI3K, Akt, and mTOR, there was no change in the total protein expression. After the blocking of PD-L1, the stimulatory effect of B. infantis supernatant on Foxp3 and the inhibitory effect on the phosphorylated protein expression of PI3K, Akt, and mTOR were weakened. Conclusion: B. infantis may inhibit the PI3K-Akt-mTOR signaling pathway and promote the expression of Foxp3 through PD-L1, which may be a target via which B. infantis exerts its immunosuppressive effect.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Bifidobacterium/metabolismo , Bifidobacterium longum subspecies infantis/genética , Bifidobacterium longum subspecies infantis/metabolismo , Colo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
18.
Sci Rep ; 12(1): 10477, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729224

RESUMO

Bifidobacteria are amongst the first bacteria to colonize the human gastro-intestinal system and have been proposed to play a crucial role in the development of the infant gut since their absence is correlated to the development of diseases later in life. Bifidobacteria have the capacity to metabolize a diverse range of (complex) carbohydrates, reflecting their adaptation to the lower gastro-intestinal tract. Detailed understanding of carbohydrate metabolism regulation in this genus is of prime importance and availability of additional genetic tools easing such studies would be beneficial. To develop a fluorescent protein-based reporter system that can be used in B. longum NCC 2705, we first selected the most promising fluorescent protein out of the seven we tested (i.e., mCherry). This reporter protein was then used to study the carbohydrate mediated activation of PBl1518 and PBl1694, two promoters respectively predicted to be controlled by the transcriptional factors AraQ and AraU, previously suggested to regulate arabinose utilization and proposed to also act as global transcriptional regulators in bifidobacteria. We confirmed that in B. longum NCC 2705 the AraQ controlled promoter (PBl1518) is induced strongly by arabinose and established that the AraU controlled promoter (PBl1694) was mostly induced by the hexoses galactose and fructose. Combining the mCherry reporter system with flow cytometry, we established that NCC 2705 is able to co-metabolize arabinose and glucose while galactose was only consumed after glucose exhaustion, thus illustrating the complexity of different carbohydrate consumption patterns and their specific regulation in this strain.


Assuntos
Bifidobacterium longum , Arabinose/metabolismo , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bifidobacterium longum/genética , Carboidratos , Galactose/metabolismo , Glucose/metabolismo , Humanos , Lactente
19.
Nutrients ; 14(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35745208

RESUMO

The prevalence of diabetes mellitus is increasing globally. Probiotics have been shown to be an effective intervention for diabetes. This study focused on the relieving effects and possible mechanisms of 16 strains of two dominant Bifidobacterium species (B. bifidum and B. adolescentis, which exist in the human gut at different life stages) on type 2 diabetes (T2D). The results indicated that more B. adolescentis strains appeared to be superior in alleviating T2D symptoms than B. bifidum strains. This effect was closely related to the ability of B. adolescentis to restore the homeostasis of the gut microbiota, increase the abundance of short-chain fatty acid-producing flora, and alleviate inflammation in mice with T2D. In addition, compared with B. bifidum, B. adolescentis had a higher number of core genes, and these genes were more evolutionarily stable, including unique environmental tolerance, carbon and nitrogen utilization genes, and a blood sugar regulation gene, glgP. This may be one of the reasons why B. adolescentis is more likely to colonize in the adult gut and show a superior ability to relieve T2D. This study provides insights into future studies aimed at investigating probiotics for the treatment of metabolic diseases.


Assuntos
Bifidobacterium adolescentis , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Probióticos , Animais , Bifidobacterium/metabolismo , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Camundongos , Probióticos/uso terapêutico
20.
BMC Microbiol ; 22(1): 158, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710325

RESUMO

BACKGROUND: The two subspecies of Bifidobacterium catenulatum, B. catenulatum subsp. kashiwanohense and B. catenulatum subsp. catenulatum, are usually from the infant and adult gut, respectively. However, the genomic analysis of their functional difference and genetic divergence has been rare. Here, 16 B. catenulatum strains, including 2 newly sequenced strains, were analysed through comparative genomics. RESULTS: A phylogenetic tree based on 785 core genes indicated that the two subspecies of B. catenulatum were significantly separated. The comparison of genomic characteristics revealed that the two subspecies had significantly different genomic sizes (p < 0.05) but similar GC contents. The functional comparison revealed the most significant difference in genes of carbohydrate utilisation. Carbohydrate-active enzymes (CAZyme) present two clustering patterns in B. catenulatum. The B. catenulatum subsp. kashiwanohense specially including the glycoside hydrolases 95 (GH95) and carbohydrate-binding modules 51 (CBM51) families involved in the metabolism of human milk oligosaccharides (HMO) common in infants, also, the corresponding fucosylated HMO gene clusters were detected. Meanwhile, B. catenulatum subsp. catenulatum rich in GH3 may metabolise more plant-derived glycan in the adult intestine. CONCLUSIONS: These findings provide genomic evidence of carbohydrate utilisation bias, which may be a key cause of the genetic divergence of two B. catenulatum subspecies.


Assuntos
Bifidobacterium , Oligossacarídeos , Bifidobacterium/metabolismo , Carboidratos/análise , Genômica , Humanos , Lactente , Leite Humano/química , Oligossacarídeos/análise , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...