Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.883
Filtrar
1.
Environ Monit Assess ; 193(10): 653, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528154

RESUMO

The use of fast-growing tree species, such as Casuarina glauca for wastewater treatment could improve the quality of wastewater and offer an ecological and sustainable system. A hydroponically experiment was conducted to evaluate C. glauca ability to remove heavy metals from secondary treated urban wastewater (SWW). The effect of the SWW on plant biomass, some physiological parameters, heavy metals (Cd, Pb, Ni and Zn) bioaccumulation and removal from wastewater was evaluated. After 28 days, wastewater treatment C. glauca showed high efficiency for the removal of pathogenic bacteria such as faecal coliforms and faecal streptococci from SWW. A significant reduction was found for electrical conductivity, biochemical oxygen demand, chemical oxygen demand and suspended solids with 31%, 92%, 83% and 31% respectively. Casuarina glauca plants were able to remove heavy metal ions Cd, Pb, Ni and Zn from SWW and the removal efficiency was 92%, 77%, 83% and 73%, respectively. Casuarina glauca plants accumulated concentrations of heavy metals (Cd, Pb, Ni and Zn) in their roots higher than the shoots. SWW had a remarkable effect on plant growth and photosynthetic capacity in C. glauca compared with plants grown in tap water (control). The results indicated that C. glauca can act as scavengers of heavy metal ions from polluted water and confirms their ability for wastewater treatment.


Assuntos
Metais Pesados , Purificação da Água , Biodegradação Ambiental , Biomassa , Monitoramento Ambiental , Metais Pesados/análise , Águas Residuárias/análise
2.
Sci Total Environ ; 792: 148411, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465037

RESUMO

Biodegradation of soil contaminants may be promoted near plant roots due to the "rhizosphere effect" which may enhance microbial growth and activity. However, the effects of different plant cultivars within a single species on degradation remains unclear. Here, we evaluated the removal of soil total petroleum hydrocarbons (TPHs) by ten different cultivars of tall fescue grass (Festuca arundinacea L.) and their associated rhizosphere microbiomes. TPH removal efficiency across the ten different cultivars was not significantly correlated with plant biomass. Rhizing Star and Greenbrooks cultivars showed the maximum (76.6%) and minimum (62.2%) TPH removal efficiencies, respectively, after 120 days. Significant differences were observed between these two cultivars in the composition of rhizosphere bacterial and fungal communities, especially during the early stages (day 30) of remediation but the differences decreased later (day 90). Putative petroleum-degrading bacterial and fungal guilds were enriched in the presence of tall fescue. Moreover, the complexity of microbial networks declined in treatments with higher TPH removal efficiency. The relative abundances of saprotrophic fungi and putative genes alkB and C12O in bacetria involved in petroleum degradation increased, especially in the presence of Rhizing Star cultivar, and this was consistent with the TPH removal efficiency results. These results indicate the potential of tall fescue grass cultivars and their associated rhizosphere microbiomes to phytoremediate petroleum hydrocarbon-contaminated soils.


Assuntos
Festuca , Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
3.
Sci Total Environ ; 792: 148454, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465049

RESUMO

Nano zero-valent iron particles (nZVI, 0.09 wt%), micro zero-valent iron particles (mZVI, 0.09 wt%), granular activated carbon (GAC, 3.03 wt%), GAC supported nZVI (nZVI/GAC, 3.12 wt%) and nZVI&GAC (nZVI 0.09 wt%, GAC 3.03 wt%) were evaluated for their effects on polychlorinated biphenyls (PCBs) anaerobic reductive dechlorination, detoxification, as well as microbial community structure in Taihu Lake (China) sediment microcosms. The results showed that all of these five materials could stimulate PCBs reductive dechlorination, especially for dioxin-like PCB congeners, and nZVI&GAC had the best removal effect on PCBs. The reduction of total PCBs increased from 13.5% to 33.2%. H2 generated by zero-valent iron corrosion was utilized by organohalide-respiring bacteria (OHRB) to enhance the dechlorination of PCBs predominantly via meta chlorine removal in the short term. The addition of ZVI had little impact on the total bacterial abundance and the microbial community structure. The adsorption of GAC and potential bioremediation properties of attached biofilm could promote the long-term removal of PCBs. GAC, nZVI/GAC, nZVI&GAC had different influences on the microbial structure. These findings provide insights into the biostimulation technique for in situ remediations of PCBs contaminated sediments.


Assuntos
Microbiota , Bifenilos Policlorados , Biodegradação Ambiental , Catálise , Cloro , Sedimentos Geológicos , Ferro , Lagos , Bifenilos Policlorados/análise
4.
Sci Total Environ ; 792: 148486, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465064

RESUMO

Bisphenol A (BPA) is widely distributed in littoral zones and may cause adverse impacts on mangrove ecosystem. Biodegradation and phytoremediation are two primary processes for BPA dissipation in mangrove soils. However, the rhizosphere effects of different mangrove species on BPA elimination are still unresolved. In this study, three typical mangrove seedlings, namely Avicennia marina, Bruguiera gymnorrhiza (L.) and Aegiceras corniculatum, were cultivated in soil microcosms for four months and then subjected to 28-day continuous BPA amendment. Un-planted soil microcosms (as control) were also set up. The BPA residual rates and root exudates were monitored, and the metabolic pathways as well as functional microbial communities were also investigated to decipher the rhizosphere effects based on metagenomic analysis. The BPA residual rates in all planted soils were significantly lower than that in un-planted soil on day 7. Both plantation and BPA dosage had significant effects on bacterial abundance. A distinct separation of microbial structure was found between planted and un-planted soil microcosms. Genera Pseudomonas and Lutibacter got enriched with BPA addition and may play important roles in BPA biodegradation. The shifts in bacterial community structure upon BPA addition were different among the microcosms with different mangrove species. Genus Novosphingobium increased in Avicennia marina and Bruguiera gymnorrhiza (L.) rhizosphere soils but decreased in Aegiceras corniculatum rhizosphere soil. Based on KEGG annotation and binning analysis, the proposal of BPA degradation pathways and the quantification of relevant functional genes were achieved. The roles of Pseudomonas and Novosphingobium may differ in lower BPA degradation pathways. The quantity variation patterns of functional genes during the 28-day BPA amendment were different among soil microcosms and bacterial genera.


Assuntos
Microbiota , Rizosfera , Compostos Benzidrílicos/toxicidade , Biodegradação Ambiental , Fenóis , Solo , Microbiologia do Solo
5.
J Environ Sci (China) ; 108: 134-144, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34465427

RESUMO

Biodegradation mechanisms and microbial functional diversity during coupled p-nitrophenol (PNP) and p-aminophenol (PAP) degradation were studied in a bioelectrochemical system. PNP in the biocathode and PAP in the bioanode were almost completely removed within 28hr and 68hr respectively. The degradation followed the steps including hydrating hydroxyalkylation, dehydrogenating carbonylation, and hydrolating ring cleavage, etc. Metagemomic analysis based on the KEGG and eggNOG database annotations revealed the microbial composition and functional genes/enzymes related to phenol degradation in the system. The predominant bacteria genera were Lautropia, Pandoraea, Thiobacillus, Ignavibacterium, Truepera and Hyphomicrobium. The recognized biodegradation genes/enzymes related to pollutant degradation were as follows: pmo, hbd, & ppo for phenol degradation, nzba, amie, & badh for aromatic degradation, and CYP & p450 for xenobiotics degradation, etc. The co-occurrence of ARGs (antibiotic resistant genes), such as adeF, MexJ, ErmF, PDC-93 and Escherichia_coli_mdfA, etc., were annotated in CARD database during the biodegradation process. The Proteobacteria & Actinobacteria phylum was the primary host of both the biodegradation genes & ARGs in this system. The microbial functional diversity ensured the effective biodegradation of the phenol pollutants in the bioelectrochemical system.


Assuntos
Aminofenóis , Nitrofenóis , Biodegradação Ambiental
6.
Chemosphere ; 282: 131096, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470158

RESUMO

The plant Phytolacca americana L. simultaneously hyperaccumulates manganese (Mn) and rare earth elements (REEs), but the underlying mechanisms are largely unknown. In this study, P. americana and the corresponding rhizosphere soil samples were collected from an ion-adsorption REE mine area in China, and the elemental composition and soil properties were analyzed in order to explore the relationship between metal accumulation and soil properties. The results show that P. americana accumulates high concentrations of REEs (up to 1040 mg kg-1), Mn (up to 10400 mg kg-1) and aluminum (Al) (up to 5960 mg kg-1) in leaves. The REE concentrations in leaves were positively correlated with those of Al, Fe and Zn, while light REE concentrations were negatively correlated with P concentrations (p < 0.05). The soil properties explained 81.7%, 72.9% and 67.1% of REEs, Mn and Al accumulated in P. americana, respectively. The variation of REE accumulation in P. americana was primarily explained by plant available P (24.4%), pH (12.9%), TOC (9.4%) and total P (7.7%). The accumulation of Mn was primarily explained by plant available REEs (42.9%) and available Al (13.1%) while Al in P. americana was primarily explained by soil pH (14.4%). This study suggests the potential by regulation of soil properties in improving the efficiency of phytoextraction for REEs by hyperaccumulators.


Assuntos
Metais Terras Raras , Phytolacca americana , Poluentes do Solo , Alumínio , Biodegradação Ambiental , Manganês , Raízes de Plantas , Solo
7.
Chemosphere ; 282: 131135, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470171

RESUMO

Hexavalent chromium is a highly toxic element generated due to indiscriminate chromite mining in Sukinda, Odisha. In the present research investigation a relatively higher Cr(VI) resistant (900 mg L-1) bacterium CWB-54 was isolated from the chromite mine water. Based on the biochemical and molecular analysis the strain (CWB-54) was identified as Exiguobacterium mexicanum. When this bacterium was grown at 35 °C, 100 rpm, pH~8.0, and fructose as an electron donor, it could reduce the total hexavalent chromium (100 mg L-1) supplemented in the medium within 33 h of incubation period. Though experiment was carried out to study the effect of Mn, Ni, Cd, Hg and Zn on Cr(VI) reduction by the strain E. mexicanum it has been observed that in the presence of Cd and Hg, Cr(VI) reduction drastically decreased. Characterization of Cr(VI) reduced product by SEM-EDX and TEM analysis revealed intracellular and extracellular Cr(III) deposition in the bacterium, which is assumed to be Cr(OH)3 precipitate in nanometric size. But the extracellular chromate reductase enzyme production is found to be negligible as compared to the intracellular enzyme production. The increased concentration of Cr(VI) above (1000 mg L-1) also showed the genotoxic effect on the DNA. Several reports have been published on Exiguobacterium sp. on different scientific aspect but the current report on the reduction of toxic Cr(VI) by a new species E. mexicanum is a novel one which established the potentiality of this microorganism for a broad area of application.


Assuntos
Exiguobacterium , Solo , Biodegradação Ambiental , Cromo , Oxirredução
8.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2688-2702, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472289

RESUMO

Plastics are widely used in daily life. Due to poor management and disposal, about 80% of plastic wastes were buried in landfills and eventually became land and ocean waste, causing serious environmental pollution. Recycling plastics is a desirable approach, but not applicable for most of the plastic waste. Microbial degradation offers an environmentally friendly way to degrade the plastic wastes, and this review summarizes the potential microbes, enzymes, and the underpinning mechanisms for degrading six most commonly used plastics including polyethylene terephthalate, polyethylene, polyvinyl chloride, polypropylene, polystyrene and polyurethane. The challenges and future perspectives on microbial degradation of plastics were proposed.


Assuntos
Plásticos , Reciclagem , Biodegradação Ambiental , Poliuretanos
9.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2765-2778, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472294

RESUMO

Petroleum hydrocarbon pollutants are difficult to be degraded, and bioremediation has received increasing attention for remediating the hydrocarbon polluted area. This review started by introducing the interphase adaptation and transport process of hydrocarbon by microbes. Subsequently, the advances made in the identification of hydrocarbon-degrading strains and genes as well as elucidation of metabolic pathways and underpinning mechanisms in the biodegradation of typical petroleum hydrocarbon pollutants were summarized. The capability of wild-type hydrocarbon degrading bacteria can be enhanced through genetic engineering and metabolic engineering. With the rapid development of synthetic biology, the bioremediation of hydrocarbon polluted area can be further improved by engineering the metabolic pathways of hydrocarbon-degrading microbes, or through design and construction of synthetic microbial consortia.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos , Poluição por Petróleo/análise , Microbiologia do Solo
10.
Braz J Biol ; 83: e242536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495143

RESUMO

Chromium (VI) a highly toxic metal, a major constituent of industrial waste. It is continuously release in soil and water, causes environmental and health related issues, which is increasing public concern in developing countries like Pakistan. The basic aim of this study was isolation and screening of chromium resistant bacteria from industrial waste collected from Korangi and Lyari, Karachi (24˚52'46.0"N 66˚59'25.7"E and 24˚48'37.5"N 67˚06'52.6"E). Among total of 53 isolated strains, seven bacterial strains were selected through selective enrichment and identified on the basis of morphological and biochemical characteristics. These strains were designated as S11, S13, S17, S18, S30, S35 and S48, resistance was determined against varying concentrations of chromium (100-1500 mg/l). Two bacterial strains S35 and S48 showed maximum resistance to chromium (1600 mg/l). Bacterial strains S35 and S48 were identified through 16S rRNA sequence and showed 99% similarity to Bacillus paranthracis and Bacillus paramycoides. Furthermore, growth condition including temperature and pH were optimized for both bacterial strains, showed maximum growth at temperature 30ºC and at optimum pH 7.5 and 6.5 respectively. It is concluded that indigenous bacterial strains isolated from metal contaminated industrial effluent use their innate ability to transform toxic heavy metals to less or nontoxic form and can offer an effective tool for monitoring heavy metal contamination in the environment.


Assuntos
Cromo , Metais Pesados , Bacillus , Bactérias/genética , Biodegradação Ambiental , Resíduos Industriais/análise , RNA Ribossômico 16S/genética
11.
J Hazard Mater ; 416: 125855, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492804

RESUMO

The environment is being polluted in different many with metal and metalloid pollution, mostly due to anthropogenic activity, which is directly affecting human and environmental health. Metals and metalloids are highly toxic at low concentrations and contribute primarily to the survival equilibrium of activities in the environment. However, because of non-degradable, they persist in nature and these metal and metalloids bioaccumulate in the food chain. Genetically engineered microorganisms (GEMs) mediated techniques for the removal of metals and metalloids are considered an environmentally safe and economically feasible strategy. Various forms of GEMs, including fungi, algae, and bacteria have been produced by recombinant DNA and RNA technologies, which have been used to eliminate metal and metalloids compounds from the polluted areas. Besides, GEMs have the potentiality to produce enzymes and other metabolites that are capable of tolerating metals stress and detoxify the pollutants. Thus, the aim of this review is to discuss the use of GEMs as advanced tools to produce metabolites, signaling molecules, proteins through genetic expression during metal and metalloids interaction, which help in the breakdown of persistent pollutants in the environment.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Fungos , Humanos , Poluentes do Solo/análise
12.
J Hazard Mater ; 416: 125898, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492836

RESUMO

Moso bamboo is considered a potential species for heavy metal (HM) phytoremediation; however, the effect of intercropping on rhizosphere and phytoextraction remains to be elucidated. We comparatively investigated rhizobacteria, soil properties, and phytoextraction efficiency of monoculture and intercropping of Moso bamboo and Sedum plumbizincicola in Cu/Zn/Cd-contaminated soil. Compared with monocultures, intercropping increased the bacterial α-diversity indices (Shannon, Chao1) and the number of biomarkers. Intercropping reduced the contents of soil organic matter (SOM), available nutrients, and Cd and Cu in rhizosphere soils, and reduced the Cd and Zn contents in tissues of sedum. By contrast, Cd and Zn contents in tissues of bamboo increased, and the increase of organic acid in root exudates from intercropping could facilitate the HM absorption. The total amount of Cu, Zn, and Cd removed from the soil in intercropping system was 1.2, 1.9, and 1.8 times than those in monoculture bamboo, respectively. The abundances of Proteobacteria, Acidobacteria, Verrucomicrobia and Actinobacteria were higher in intercropping, playing an important role in soil nutrient cycles and HM remediation. These bacterial communities were closely correlated (P < 0.01) with SOM, available nitrogen, available phosphorus, and HMs. The results suggested this intercropping pattern can increase HM removal efficiency from polluted soils.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Metais Pesados/análise , Rizosfera , Solo , Poluentes do Solo/análise
13.
J Hazard Mater ; 416: 125928, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34489083

RESUMO

Plastic wastes are becoming the most common form of marine debris and present a growing global pollution problem. Here, we used a screening approach on hundreds of plastic waste-associated samples and discovered a marine bacterial community capable of efficiently colonizing and degrading both poly(ethylene terephthalate) (PET) and polyethylene (PE). Using absolute quantitative 16S rRNA sequencing and cultivation methods, we obtained corresponding abundance and purified cultures of three bacterial strains that mediated plastic degradation. We further performed numerous techniques to characterize the efficient degradation of PET and PE by the reconstituted bacterial community containing these three bacteria. Additionally, we used liquid chromatography-mass spectrometry to further demonstrate the degradation of PET and PE films by the reconstituted bacterial community. We conducted transcriptomic methods to investigate the plastic degradation process and potential degradation mechanisms mediated by our reconstituted bacterial community. Lastly, we overexpressed PE degradation enzymes based on transcriptomic results and verified their significant degradation effects on the PE films. Overall, our study establishes a stable marine bacterial community that efficiently degrades PET and PE and provides insights into plastic degradation pathways and their associated biological and mechanistic processes-paving the way for developing microbial products against plastic wastes.


Assuntos
Polietilenotereftalatos , Polietileno , Bactérias/genética , Biodegradação Ambiental , Etilenos , Ácidos Ftálicos , Plásticos , RNA Ribossômico 16S/genética
14.
J Hazard Mater ; 416: 125919, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492851

RESUMO

The salinity of the upper parts of seashores can become higher than seawater due to evaporation between tidal inundations. Such hypersaline ecosystems, where the salinity can reach up to eight-fold higher than that of seawater (30-35 g/L), can be contaminated by oil spills. Here we investigate whether such an increase has inhibitory effects on oil biodegradation. Seawater was evaporated to a concentrated brine and added to fresh seawater to generate high salinity microcosms. Artificially weathered Hibernia crude oil was added, and biodegradation was followed for 76 days. First-order rate constants (k) for the biodegradation of GC-detectable hydrocarbons showed that the hydrocarbonoclastic activity was substantially inhibited at high salt - k decreased by ~75% at 90 g/L salts and ~90% at 160 g/L salts. This inhibition was greatest for the alkanes, although it extended to all classes of compounds measured, with the smallest effect on four-ring aromatics (e.g., chrysenes). Genera of well-known aerobic hydrocarbonoclastic bacteria were only identified at 30 g/L salts in the presence of oil, and only a few halophilic Archaea showed a slight enrichment at higher salt concentrations. These results indicate that biodegradation of spilled oil will likely be slowed in supratidal ecosystems and suggest that occasional irrigation of oiled supratidal zones could be a useful supporting strategy to remediation processes.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Ecossistema , Hidrocarbonetos , Água do Mar
15.
J Hazard Mater ; 416: 125942, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492869

RESUMO

A novel Ralstonia Bcul-1 strain was isolated from soil samples that was closest to Ralstonia pickettii. Broad-spectrum resistance was identified to a group of heavy metal ions and tolerance to concentrations of Cd2+ up to 400 mg L-1. Low concentrations of heavy metal ions did not have distinctive impact on heavy metal resistance genes and appeared to induce greater expression. Under exposure to Cd2+, cell wall components were significantly enhanced, and some proteins were also simultaneously expressed allowing the bacteria to adapt to the high Cd2+ living environment. The maximum removal rate of Cd2+ by the Ralstonia Bcul-1 strain was 78.97% in the culture medium supplemented with 100 mg L-1 Cd2+. Ralstonia Bcul-1 was able to survive and grow in a low nutrient and cadmium contaminated (0.42 mg kg-1) vegetable soil, and the cadmium removal rate was up to 65.76% in 9th growth. Ralstonia Bcul-1 mixed with biochar could maintain sustainable growth of this strain in the soil up to 75 d and the adsorption efficiency of cadmium increased by 16.23-40.80% as compared to biochar application alone. Results from this work suggests that Ralstonia Bcul-1 is an ideal candidate for bioremediation of nutrient deficient heavy metal contaminated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/toxicidade , Metais Pesados/toxicidade , Ralstonia , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
16.
J Hazard Mater ; 416: 125952, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492871

RESUMO

Plant growth and heavy metal (HM) accumulation is affected by heavy metal bioavailability and nutrient content in soil aggregates during endophyte-assisted phytoremediation. In this study, we evaluated the influence of endophytes inoculation on P. acinosa HM accumulation and soil aggregate physicochemical properties and explored the correlation among them. Endophyte inoculation increased the plant growth and Cd accumulation by 7.95-25.13% and 3.27-19.22%, respectively and the soil aggregate was redistributed with a decrease of 1.88-5.41% of the clay fraction. The available nitrogen, phosphorus and potassium, and organic matter in macro-aggregate and micro-aggregate were significantly improved with endophyte inoculation. In addition, compared to the no inoculation group, endophytes inoculation enhanced the bioavailability of Cd in macro-aggregates by 4.92-15.00% and in micro-aggregate by 0-9.37%. Both multiple linear regression analysis and the structural equation modeling (SEM) analysis showed that the Cd accumulation in P. acinosa was mainly depended on the Cd bioavailability in macro-aggregates and micro-aggregates. In general, this study helped to improve our understanding of soil aggregate HM bioavailability and nutrient content distribution characteristics under endophyte inoculation, which could further explain the mechanisms of endophytes in plant growth promoting and HM accumulation improving.


Assuntos
Phytolacca , Poluentes do Solo , Biodegradação Ambiental , Cádmio , Endófitos , Nutrientes , Solo , Poluentes do Solo/análise
17.
J Hazard Mater ; 416: 125968, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492879

RESUMO

Aromatic hydrocarbons (AHCs) are one of the major environmental pollutants introduced from both natural and anthropogenic sources. Many AHCs are well known for their toxic, carcinogenic, and mutagenic impact on human health and ecological systems. Biodegradation is an eco-friendly and cost-effective option as microorganisms (e.g., bacteria, fungi, and algae) can efficiently breakdown or transform such pollutants into less harmful and simple metabolites (e.g., carbon dioxide (aerobic), methane (anaerobic), water, and inorganic salts). This paper is organized to offer a state-of-the-art review on the biodegradation of AHCs (monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs)) and associated mechanisms. The recent progress in biological treatment using suspended and attached growth bioreactors for the biodegradation of AHCs is also discussed. In addition, various substrate growth and inhibition models are introduced along with the key factors governing their biodegradation kinetics. The growth and inhibition models have helped gain a better understanding of substrate inhibition in biodegradation. Techno-economic analysis (TEA) and life cycle assessment (LCA) aspects are also described to assess the technical, economical, and environmental impacts of the biological treatment system.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Bactérias , Biodegradação Ambiental , Reatores Biológicos , Poluentes Ambientais/análise , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
18.
J Hazard Mater ; 416: 126122, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492916

RESUMO

Biosurfactant-based dispersants (BBDs) may be more effective, cost-efficient and environmentally friendly than dispersants currently used for oil spill response. An improved understanding of BBD performance is needed to advance their development and commercial use. In this study, the ability of four BBDs, i.e. sufactins, trehalose lipids, rhamnolipids and exmulsins, alone and as various combinations to disperse Arabian light crude oil and weathered Alaska North Slope crude oil was compared to a widely used commercial oil dispersant (Corexit 9500A). Surfactin and trehalose lipids, which have balanced surface activity/emulsification ability, showed dispersion efficacy comparable to Corexit 9500A. Rhamnolipids (primarily a surface-active agent) and exmulsins (primarily an emulsifier) when used alone had significantly lower efficacy. However, blends of these surfactants had excellent dispersion performance because of synergistic effects. Balanced surface activity and emulsification ability may be key to formulate effective BBDs. Of the BBDs evaluated, surfactins with an effective dispersant-to-oil ratio as low as 1:62.3 and trehalose lipids with high oil affinity, biodegradation rate, and low toxicity characteristics show the most promise for commercial development.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Petróleo/toxicidade , Poluição por Petróleo/análise , Tensoativos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
J Hazard Mater ; 416: 126202, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492965

RESUMO

The present study was conducted to compare the efficiency of different microbial mixed-cultures consists of fifteen oil-degrading microorganisms with different combinations. The investigation was targeted toward the removal of 500 mg/l pyrene and 1% w/v tetracosane, as single compounds or mixture. Sequential Fungal-Bacterial Mixed-Culture (SMC) in which bacteria added one week after fungi, recorded 60.76% and 73.48% degradation for pyrene and tetracosane; about 10% more than Traditional Fungal-Bacterial Mixed-Culture (TMC). Co-degradation of pollutants resulted in 24.65% more pyrene degradation and 6.41% less tetracosane degradation. The non-specified external enzymes of fungi are responsible for initial attacks on hydrocarbons. Delayed addition of bacteria and co-contamination would result in higher growth of fungi which increases pyrene degradation. The addition of Rhamnolipid potently increased the extent of pyrene and tetracosane degradation by approximately 16% and 23% and showed twice better performance than Tween-80 in 20 times less concentration. The results indicated the importance of having sufficient knowledge on the characteristics of the contaminated site and its contaminants as well as oil-degrading species. Gaining this knowledge and using it properly, such as the later addition of bacteria (new method of mixed-cultures inoculation) to the contaminated culture, can serve as a promising approach.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Alcanos , Bactérias , Biodegradação Ambiental , Fungos , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos , Microbiologia do Solo , Poluentes do Solo/análise
20.
J Hazard Mater ; 416: 126239, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492990

RESUMO

Polystyrene (PS), a major plastic waste, is difficult to biodegrade due to its unique chemical structure that comprises phenyl moieties attached to long linear alkanes. In this study, we investigated the biodegradation of PS by mesophilic bacterial cultures obtained from various soils in common environments. Two new strains, Pseudomonas lini JNU01 and Acinetobacter johnsonii JNU01, were specifically enriched in non-carbonaceous nutrient medium, with PS as the only source of carbon. Their growth after culturing in basal media increased more than 3-fold in the presence of PS. Fourier transform infrared spectroscopy analysis, used to confirm the formation of hydroxyl groups and potentially additional chemical bond groups, showed an increase in the amount of oxidized PS samples. Moreover, field emission scanning electron microcopy analysis confirmed PS biodegradation by biofilms of the screened microbes. Water contact angle measurement additionally offered insights into the increased hydrophilic characteristics of PS films. Bioinformatics and transcriptional analysis of A. johnsonii JNU01 revealed alkane-1-monooxygenase (AlkB) to be involved in PS biodegradation, which was confirmed by the hydroxylation of PS using recombinant AlkB. These results provide significant insights into the discovery of novel functions of Pseudomonas sp. and Acinetobacter sp., as well as their potential as PS decomposers.


Assuntos
Poliestirenos , Solo , Acinetobacter , Bactérias , Biodegradação Ambiental , Pseudomonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...