Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.306
Filtrar
1.
Water Sci Technol ; 82(5): 851-860, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33031065

RESUMO

The microalgae treatment system is an economically and environmentally friendly option for wastewater treatment. However, the effects of heavy metal toxicity on microalgae cells can limit the use of microalgae in the treatment of industrial effluents rich in heavy metals. In this work, we studied the effect of Ni, Cu, Al, Hg and Pb, added as single-metal solutions to the microalgae culture medium, on the growth of 20 indigenous strains belonging to a wide variety of microalgae genera. Ni and Cu were the most toxic to the strains tested. A highly tolerant strain of the Phacus genera was selected. We determined the effect of multiple combinations of Ni, Al and Pb on the cell growth of the selected strain and on the removal capacity of each metal from the microalgae culture medium. Phacus was able to grow in the multi-metal solution (Ni, 5.00 mg/L; Al, 9.94 mg/L and Pb 1.00 mg/L) and to efficiently remove the metals, with removal capacities of 8.82 ±0.16 mg/g for Ni, 2.09 ± 0.05 mg/g for Pb and 16.90 ± 0.53 mg/g for Al. The reductions of Ni, Al and Pb concentrations were 66.67, 64.28 and 79.17% respectively.


Assuntos
Metais Pesados , Microalgas , Biodegradação Ambiental , Chumbo/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Águas Residuárias
2.
J Environ Qual ; 49(3): 640-653, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33016407

RESUMO

Parameter estimation is needed for process management, design, and reactor scaling when values from the literature vary tremendously or are unavailable. A Bayesian approach, implemented via Markov chain Monte Carlo (MCMC) simulations using SAS software, was used to estimate the kinetic parameters of toluene and trichloroethylene (TCE) biodegradation by the microorganism Pseudomonas putida F1 in batch cultures. The prediction capabilities of Bayesian estimation were illustrated by comparing predicted and observed data and reported in goodness-of-fit statistics. The sensitivity analysis showed that the parameters obtained using this approach were consistent under the designated toluene and TCE concentration range. Moreover, the impact of TCE on toluene degradation kinetics was numerically exhibited, verifying the fact that TCE was able to stimulate toluene degradation; hence, TCE's presence increased the apparent maximum toluene-specific rate. Various kinetic models were explored at different degrees of complexity. At a low TCE concentration range (e.g., <2 mg L-1 ), a simplified Michaelis-Menten model (i.e., substrate half-saturation parameters approximated the inhibition parameters) was adequate to describe the reaction kinetics. However, at a higher TCE range (e.g., 5 mg L-1 ), a full-scale Michaelis-Menten model was needed to discriminate among the inhibition parameters in the model. The results demonstrated that a Bayesian estimation method is particularly useful for determining complex bioreaction kinetic parameters in the presence of a small volume of experimental data.


Assuntos
Tricloroetileno , Teorema de Bayes , Biodegradação Ambiental , Cinética , Tolueno
3.
J Environ Qual ; 49(2): 346-357, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33016421

RESUMO

Nonylphenol (NP) is considered a major contaminant that must be removed to enable safe and environmentally friendly land application of sewage sludge. Phytoremediation is a technology in which plants are used to remove and/or stabilize organic and inorganic contaminants present in the soil, municipal wastewater, and sewage sludge. In this study, a 391-d large pot experiment was conducted to remove NP from sewage sludge by phytoremediation using Zea mays L. 'Yunshi-5', Lolium perenne L., and co-cropping of the two plants. The fate of NP in the soil under the sewage sludge was assessed at the same time. At the end of the experiment, the NP levels in sludge from the various treatments were as follows: control (38.60%) > L. perenne (31.27%) > Z. mays (16.25%) > co-cropping (15.28%). Degradation followed an availability-adjusted first-order kinetics with a decreasing order of half-lives as follows: control (88.2 d) > L. perenne (87.3 d) > co-cropping (66.2 d) > Z. mays (59.1 d). The results indicated that Z. mays and co-cropping could both degrade NP. The concentrations of NP in tissues of different plants differed significantly. The mean bioconcentration factors for Z. mays and L. perenne were 0.16 and 3.69, respectively. Direct removal of NP from sewage sludge by plant uptake was negligible, as was downward movement of NP in the system. Moreover, NP was not detected in soils in any treatments at harvest.


Assuntos
Esgotos , Poluentes do Solo/análise , Biodegradação Ambiental , Fenóis/análise
4.
Water Sci Technol ; 82(6): 1247-1259, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33055414

RESUMO

The transformation of residual biomass from bioremediation processes into new products is a worldwide trend driven by economic, environmental and social gain. The present study aimed to evaluate the potential for obtaining bioproducts of technological interest from the remaining periphytic biomass formed during a bioremediation process with an algal turf scrubber (ATS) system installed in a lake catchment. Different methodologies were used according to the target bioproduct. Analyses were performed by high performance liquid chromatography with diode array detector (HPLC/DAD), gas chromatography mass spectrometry (GC-MS), ultraviolet-visible spectroscopy (UV-VIS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results demonstrated that the periphytic biomass presented potential since protein (17.7%), carbohydrates (22.4%), total lipids (3.3%) with 3.6 mg mL-1 of fatty acids, antioxidants (144.5 µmol Trolox eq. g-1) and chlorophyll a, chlorophyll b and carotenoids (1,719.7 µg mL-1, 541.2 µg mL-1 and 317.7 µg mL-1, respectively) were obtained. Inorganic analysis presented a value of 42.3 ± 2.58% of total ash and metal presence was detected, indicating bioaccumulation. The properties found in periphyton strengthen the possibility of its application in different areas, ensuring bioremediation efficiency.


Assuntos
Clorofila A , Biodegradação Ambiental , Biomassa , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas
5.
Water Sci Technol ; 82(1): 39-55, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32910791

RESUMO

A bacterial strain capable of efficiently degrading pentabromobiphenyl ether (BDE-99) was isolated from activated sludge and named as NLPSJ-22. This strain was highly close to Pseudomonas asplenii with 100% similarity. The degradation products of BDE-99 were analyzed by gas chromatography mass spectrometry. The biochemical degradation pathways analysis indicated that BDE-99 gradually transformed to diphenyl ether by meta-, para- and ortho-debromination. It became phenol under the action of ring-opening cracking and finally entered the tricarboxylic acid cycle. The degradation of BDE-99 by strain NLPSJ-22 conformed to the first-order reaction kinetics. Rhamnolipid significantly improved the cell-surface hydrophobicity and the degradation of BDE-99. The highest degradation efficiency (96%) was achieved when diphenyl ether as co-metabolic substrate was added. In the bioaugmentation membrane bioreactor (MBR) system, BDE-99 was intensively degraded, and the reactor reached a steady state in about 35 days. The degradation rate of BDE-99 was over 80%, which was significantly higher than that of the control system. MiSeq sequencing results indicated that the genera of Rhodococcus, Bacillus, Pseudomonas, Burkholderia, and Sphingobium were the predominant bacterial communities responsible for BDE-99 biodegradation in the MBR. Pseudomonas increased significantly in the bioaugmented reactor with the relative abundance increasing from 5% to 24%.


Assuntos
Reatores Biológicos , Éteres Difenil Halogenados , Biodegradação Ambiental , Pseudomonas
6.
Water Sci Technol ; 82(1): 107-119, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32910796

RESUMO

Dissolved organic matter (DOM) has an important impact on the water treatment and reuse of petroleum refinery wastewater. In order to improve the treatment efficiency, it is necessary to understand the chemical composition of the DOM in the treatment processes. In this paper, the molecular composition of DOM in wastewater samples from a representative refinery were characterized. The transformation of various compounds along the wastewater treatment processes was investigated. A total of 61 heteroatomic class species were detected from the DOM extracts, in which CHO (molecules composed of carbon, hydrogen, and oxygen atoms) and CHOS (CHO molecules that also contained sulfur) class species were the most abundant and account for 78.43% in relative mass peak abundance. The solid phase extraction DOM from the dichloromethane unextractable fraction exhibited a more complex molecular composition and contained more oxygen atoms than in the dichloromethane extract. During wastewater treatment processes, the chemical oxygen demand (COD) and ammonia-nitrogen were reduced by more than 90%. Volatile organic compounds (VOCs) accounted for about 30% of the total COD, in which benzene and toluene were dominant. After biochemical treatment, the VOCs were effectively removed but the molecular diversity of the DOM was increased and new compounds were generated. Sulfur-containing class species were more recalcitrant to biodegradation, so the origin and transformation of these compounds should be the subject of further research.


Assuntos
Águas Residuárias , Purificação da Água , Biodegradação Ambiental , Carbono , Nitrogênio
7.
Nat Commun ; 11(1): 4547, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917880

RESUMO

Biodiversity loss can alter ecosystem functioning; however, it remains unclear how it alters decomposition-a critical component of biogeochemical cycles in the biosphere. Here, we provide a global-scale meta-analysis to quantify how changes in the diversity of organic matter derived from plants (i.e. litter) affect rates of decomposition. We find that the after-life effects of diversity were significant, and of substantial magnitude, in forests, grasslands, and wetlands. Changes in plant diversity could alter decomposition rates by as much as climate change is projected to alter them. Specifically, diversifying plant litter from mono- to mixed-species increases decomposition rate by 34.7% in forests worldwide, which is comparable in magnitude to the 13.6-26.4% increase in decomposition rates that is projected to occur over the next 50 years in response to climate warming. Thus, biodiversity changes cannot be solely viewed as a response to human influence, such as climate change, but could also be a non-negligible driver of future changes in biogeochemical cycles and climate feedbacks on Earth.


Assuntos
Biodiversidade , Aquecimento Global , Compostos Orgânicos/química , Plantas/química , Biodegradação Ambiental , Biomassa , Florestas , Pradaria , Áreas Alagadas
8.
Ecotoxicol Environ Saf ; 203: 110961, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888621

RESUMO

Cadmium (Cd), which seriously affects plant growth and crop production, is harmful to humans. Previous studies revealed ryegrass (Lolium multiflorum Lam.) exhibits Cd tolerance, and may be useful as a potential hyperaccumulator because of its wide distribution. In this study, the physiological and transcriptional responses of two ryegrass cultivars [i.e., high (LmHC) and low (LmLC) Cd tolerance] to Cd stress were investigated and compared. The Cd tolerance of LmHC was greater than that of LmLC at various Cd concentrations. The uptake of Evans blue dye revealed that Cd-induced root cell mortality was higher in LmLC than in LmHC after a 12-h Cd treatment. Furthermore, the content and influx rate of Cd in LmLC roots were greater than in LmHC roots under Cd stress conditions. The RNA sequencing and quantitative real-time PCR data indicated that the Cd transport regulatory genes (ABCG37, ABCB4, NRAMP4, and HMA5) were differentially expressed between the LmLC and LmHC roots. This expression-level diversity may contribute to the differences in the Cd accumulation and translocation between LmLC and LmHC. These findings may help clarify the physiological and molecular mechanisms underlying ryegrass responses to Cd toxicity. Additionally, ryegrass may be able to hyperaccumulate toxic heavy metals during the phytoremediation of contaminated soil.


Assuntos
Adaptação Biológica , Cádmio/metabolismo , Lolium/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/metabolismo , Transcrição Genética/efeitos dos fármacos , Adaptação Biológica/efeitos dos fármacos , Adaptação Biológica/genética , Biodegradação Ambiental , Cádmio/análise , Cádmio/toxicidade , Genes de Plantas , Lolium/química , Lolium/genética , Raízes de Plantas/química , Raízes de Plantas/genética , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
9.
Chemosphere ; 254: 126894, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957292

RESUMO

The anthropogenic release of trifluoroacetic acid (TFA) into the environmental media is not limited to photochemical oxidation of CFC alternatives and industrial emissions. Biological degradation of some fluorochemicals is expected to be a potential TFA source. For the first time, we assess if the potential precursors [6:2 fluorotelomer alcohol (6:2 FTOH), 4:2 fluorotelomer alcohol (4:2 FTOH), acrinathrin, trifluralin, and 2-(trifluoromethyl)acrylic acid (TFMAA)] can be biologically degraded to TFA. Results show that 6:2 FTOH was terminally transformed to 5:3 polyfluorinated acid (5:3 FTCA; 12.5 mol%), perfluorohexanoic acid (PFHxA; 2.0 mol%), perfluoropentanoic acid (PFPeA; 1.6 mol%), perfluorobutyric acid (PFBA; 1.7 mol%), and TFA (2.3 mol%) by day 32 in the landfill soil microbial culture system. 4:2 FTOH could remove multiple -CF2 groups by microorganisms and produce PFPeA (2.6 mol%), PFBA (17.4 mol%), TFA (7.8 mol%). We also quantified the degradation products of TFMAA as PFBA (1.3 mol%) and TFA (6.3 mol%). Furthermore, we basically analyzed the biodegradation contribution of short-chain FTOH as raw material residuals in commercial products to the TFA burden in the environmental media. We estimate global emission of 3.9-47.3 tonnes of TFA in the period from 1961 to 2019, and project 3.8-46.4 tonnes to be emitted from 2020 to 2040 via the pathway of 4:2 and 6:2 FTOH biodegradation (0.6-7.1 and 0.6-7.0 tonnes in China, respectively). Direct evidence of the experiments indicates that biodegradation of fluorochemicals is an overlooked source of TFA and there are still some unspecified mechanisms of TFA production pathways.


Assuntos
Fluorcarbonetos/química , Microbiologia do Solo , Poluentes do Solo/análise , Ácido Trifluoracético/análise , Biodegradação Ambiental , China , Modelos Teóricos , Solo/química
10.
Mar Pollut Bull ; 159: 111483, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32892918

RESUMO

In this study, the formation and fate of oil-related aggregates (ORAs) from chemically dispersed oil in seawater (SW) were investigated at different temperatures (5 °C, 13 °C, 20 °C). Experiments in natural SW alone, and in SW amended with typical marine snow constituents (phytoplankton and mineral particles), showed that the presence of algae stimulated the formation of large ORAs, while high SW temperature resulted in faster aggregate formation. The ORAs formed at 5 °C and 13 °C required mineral particles for sinking, while the aggregates also sank in the absence of mineral particles at 20°. Early in the experimental periods, oil compound accumulation in ORAs was faster than biodegradation, particularly in aggregates with algae, followed by rapid biodegradation. High abundances of bacteria associated with hydrocarbon biodegradation were determined in the ORAs, together with algae-associated bacteria, while clustering analyses showed separation between bacterial communities in experiments with oil alone and oil with algae/mineral particles.


Assuntos
Poluição por Petróleo/análise , Petróleo , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Hidrocarbonetos , Óleos , Água do Mar , Temperatura
11.
Mar Pollut Bull ; 159: 111489, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32892922

RESUMO

A bacterial consortium immobilized in magnetic floating biochar gel beads is proposed to remove high-molecular-weight polycyclic aromatic hydrocarbons. The microbial consortium performed better than single strains and consisted of four strains of marine bacteria for degrading pyrene (PYR), two strains for benzo(a)pyrene (BAP), and three strains for indeno(1,2,3-cd)pyrene (INP), which were isolated from oil-contaminated seawater. The immobilized cells could biodegrade 89.8%, 66.9% and 78.2% of PYR, BAP and INP, respectively, and had better tolerance to pH, temperature and salinity than free cells. The Andrews model was used to explore the biodegradation kinetics, and when the initial concentrations of PYR, BAP, and INP were 7.80, 3.05, and 3.41 mg/L, the specific biodegradation rates reached maximum values of 0.2507, 0.1286, and 0.1930 d-1, respectively. The immobilized microbial consortium had a high HMW-PAH removal ability and good floatability and magnetic properties and could be collected by an external magnetic field.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Campos Magnéticos , Fenômenos Magnéticos , Consórcios Microbianos
12.
Environ Monit Assess ; 192(10): 651, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32964290

RESUMO

Cadmium (Cd) pollution in plastic shed soils has become increasingly severe, posing a great threat to human health and social stability. Phytoremediation of cadmium pollution is an environmentally friendly and inexpensive remediation method. In this study, maize (Zea mays L.) was selected as the phytoremediation crop by a potted method, and the bioavailability of cadmium was investigated by adding exogenous elemental sulfur. The relationships among the sulfur content, maize growth, cadmium accumulation, and soil parameters were systematically studied. The results showed that, with the supplement of sulfur, the soil pH and activities of soil enzymes (urease, catalase, and sucrase) decreased gradually, and the available heavy metals (Cd, Cr, Zn, and Cu) in soil showed an upward trend. The optimal cadmium enrichment was achieved under T2 by increasing both the biomass of the maize plant and the cadmium concentration in roots and stems. However, T3 and T4 significantly inhibited the growth of maize roots and shoots, leading to a much lower plant biomass compared with that of CK (sulfur-free treatment) and T2. In addition, the cumulative cadmium was not increased because of the low accumulation of cadmium in some parts of the plant. Correlation analyses showed that the sulfur content was negatively correlated with soil pH and maize biomass (P < 0.01), and the cadmium content of whole maize was positively correlated with the dry weight of maize (P < 0.05) and the cadmium content in roots and stems (P < 0.01). In summary, to optimize cadmium phytoremediation of the plastic shed soil, an appropriate concentration of sulfur should be selected in practical applications to ensure that the biomass of the maize is maximized, and the cadmium concentration in different parts of the maize is increased or stabilized.


Assuntos
Cádmio/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Biomassa , Monitoramento Ambiental , Humanos , Raízes de Plantas/química , Plásticos , Solo , Enxofre , Zea mays
13.
Chemosphere ; 254: 126880, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957287

RESUMO

Electro-bioremediation is a promising technology for remediation of soil contaminated with persistent organic compounds such as polycyclic aromatic hydrocarbons (PAHs). During electro-bioremediation, electrical fields have been shown to increase pollutant degradation. However, it remains unclear whether there is an optimal strength for the electrical field applied that is conductive to the maximum role played by microbes. This study aimed to determine the optimal strength of electric field through the analysis of the effects of different voltages on the microbial community and activity. Four bench-scale experiments with voltages of 0, 1, 2 and 3 V cm-1 were conducted for 90 days in an aged PAH-contaminated soil. The spatiotemporal changes of the soil pH, moisture content and temperature, microbial biomass and community structure, and the degradation extent of PAHs were researched over 90 days. The results indicated that the total microbial biomass and degradation activity were highest at voltages of 2 V cm-1. The concentration of total phospholipid fatty acids, used to quantify soil microbial biomass, reached 65.7 nmol g-1 soil, and the mean degradation extent of PAHs was 44.0%. Similarly, the maximum biomass of actinomycetes, bacteria and fungus also occurred at the voltage of 2 V cm-1. The Gram-positive/Gram-negative and (cy17:0+cy 19:0)/(16:1ω7+18:1ω7) ratios also showed that the intensity of electric field and electrode reactions strongly influenced the microbial community structure. Therefore, to optimize the electro-bioremediation of PAH-contaminated soil, the strength of electric field needs to be selected carefully. This work provides reference for the development of novel electrokinetically enhanced bioremediation processes.


Assuntos
Biodegradação Ambiental , Microbiota , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias/metabolismo , Biomassa , Fungos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
14.
Ecotoxicol Environ Saf ; 203: 111047, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888598

RESUMO

Understanding azo dye degrading enzymes and the encoding of their functional genes is crucial for the elucidation of their molecular mechanisms. In this study, a thermophilic strain capable of degrading azo dye was isolated from the soil near a textile dye manufacturing factory. Based on its morphological, physiological and biochemical properties, as well as 16S rRNA gene sequence analysis, the strain was identified as Anoxybacillus sp. PDR2. The decolorization ratios of 100-600 mg/L Direct Black G (DBG) by strain PDR2 reached 82.12-98.39% within 48 h of dyes. Genome analysis revealed that strain PDR2 contains a circular chromosome of 3791144 bp with a G + C content of 42.48%. The genetic basis of azo dye degradation by strain PDR2 and its capacity to adapt to harsh environments, were further elucidated through bioinformatics analysis. RNA-Seq and qRT-PCR technology confirmed that NAD(P)H-flavin reductase, 2Fe-2S ferredoxin and NAD(P)-dependent ethanol dehydrogenase genes expressed by strain PDR2, were the key genes involved in DBG degradation. The combination of genome and transcriptome analysis was utilized to explore the key genes of strain PDR2 involved in azo dye biodegradation, with these findings providing a valuable theoretical basis for the practical treatment of azo dye wastewater.


Assuntos
Anoxybacillus/isolamento & purificação , Compostos Azo/análise , Corantes/análise , Genes Bacterianos , Microbiologia do Solo , Anoxybacillus/genética , Anoxybacillus/metabolismo , Compostos Azo/metabolismo , Biodegradação Ambiental , China , Corantes/metabolismo , Perfilação da Expressão Gênica , Genômica , RNA Ribossômico 16S/genética , Solo/química , Indústria Têxtil
15.
Chemosphere ; 258: 127337, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947656

RESUMO

The experiment was designed to evaluate the roles of Rhizophagus irregularis on chlorophyll fluorescence and chromium bioaccumulation in a grass species (Brachiaria mutica) by supplementing Cr+6 at different concentrations. Arbuscular Mycorrhizal Fungi (AMF) association facilitated lessening of chromium level in contaminated soil and enhanced chromium bioavailability in Brachiaria mutica. The mycorrhizal inoculated increased the chlorophyll (0.925 mg/g), carotenoid (0.127 mg/g), protein (2.883 mg/g), proline (0.889 mg/g) contents and activities of antioxidant enzymes like catalase, ascorbate peroxidase and glutathione peroxidase. The mycorrhizal inoculated plants also showed enhanced overall photosynthetic performance (PIϕ = 2.473) and enhanced PS-II to PS-I electron transport as evident from yield parameter (0.712) and TR0/RC (2.419) for 60 mg/kg Cr+6 treatment. The observations suggest that AMF association could defend the plants from chromium stress by elevating the number of antioxidants in plants. Rhizophagus irregularis was found to maintain a successful symbiotic relationship with Brachiaria mutica in chromium contaminated soil. The observations recommended that Rhizophagus irregularis in association with Brachiaria mutica would be an innovative approach for decontamination of Cr+6.


Assuntos
Biodegradação Ambiental , Brachiaria/metabolismo , Cromo/metabolismo , Poluentes do Solo/metabolismo , Antioxidantes/metabolismo , Bioacumulação , Clorofila/metabolismo , Cromo/análise , Glomeromycota/metabolismo , Micorrizas/metabolismo , Fotossíntese , Plantas/metabolismo , Poaceae/metabolismo , Solo , Poluentes do Solo/análise , Simbiose
16.
Chemosphere ; 258: 127429, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947667

RESUMO

Owing to the seriousness of the ecological risk and human hazard of inorganic wood preservatives, their effective removal was gradually recognized. This paper details different types of wood preservatives, their perniciousness, and their potential removal alternatives, while the wood treatment process is briefly described. Among decontamination methods, microbial remediation is considered as an environmentally friendly approach with enormous potentialities over the conventional treatments. In the current review, the mechanism of bioremediation is summed up and recent advances, challenges, and future perspectives of microbial remediation are discussed. The removal of heavy metals from treated wood requires a combination of various technologies to obtain higher performance. Meanwhile, the decontaminated wood generated through bioremediation can be effectively reused.


Assuntos
Substâncias Perigosas/análise , Madeira , Biodegradação Ambiental , Humanos , Metais Pesados
17.
Chemosphere ; 258: 127405, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947677

RESUMO

Chelation of lead (Pb) is an important factor in enhancing the Pb mobility thereby improving availability to promote phytoremediation of Pb from contaminated soil. The study was conducted to evaluate the effect of amendments in enhancing the phytoremediation of Pb in soil. For this purpose, soil was spiked to obtain desired Pb concentrations (0-1500 mg kg-1) and pots were filled. One month old and uniform seedlings of Pelargonium hortoum were transplanted into each pot. Five different amendments i.e. compost (0-10%), ammonium nitrate (0-10 mmol kg-1), TiO2NPs (0-100 mg kg-1), citric acid (0-10 mmol kg-1) and EDTA (0-5 mmol kg-1), were applied. Overall, ammonium nitrate, EDTA and citric acid application increased the Pb concentration, however, compost and TiO2NPs decreased the concentration in roots and shoots. At 1500 mg Pb kg-1, Pb concentration in shoots was increased by 0.9-, 0.6- & 0.8-folds and in roots by 1.8-, 1.3- & 1.7-folds upon EDTA, ammonium nitrate and citric acid application, respectively. TiO2NPs and compost application decreased Pb concentration by 29% & 35% in shoots and 25% & 51% in roots, respectively. At the highest level of Pb (1500 mg kg-1), plant biomass was increased by 26.6%, 19.5%, 17.9% and 18.4% upon application of compost, TiO2 NPs, ammonium nitrate and citric acid, respectively. However, EDTA reduced the plant dry biomass by 28.4%. The accumulated Pb content was recovered as Pb-nanoparticles, which were in anatase phase, size ranged between 98 and 276 nm. Among all the studied amendments, citric acid efficiently increased Pb phytoaccumulation without any toxicity.


Assuntos
Biodegradação Ambiental , Chumbo/análise , Poluentes do Solo/análise , Biomassa , Quelantes , Ácido Cítrico , Compostagem , Ácido Edético , Chumbo/metabolismo , Pelargonium , Raízes de Plantas , Solo , Poluentes do Solo/metabolismo
18.
Sci Total Environ ; 740: 140137, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927575

RESUMO

Phytoremediation is a promising inexpensive method of detoxifying arsenic (As) contaminated soils using plants and associated soil microorganisms. The potential of Pteris vittata to hyperaccumulate As contamination has been investigated widely. Since As(V) is efficiently taken up by P. vittata than As(III), As speciation by associated rhizobacteria could offer enormous possibility to enhance As phytoremediation. Specifically, increased rhizobacteria mediated As(III) to As(V) conversion appeared to be a crucial step in As mobilization and translocation. In this study, Pseudomonasvancouverensis strain m318 with the potential to improve As phytoremediation was inoculated to P. vittata in a field trial for three years to evaluate its long-term efficacy and stability for enhancing As phytoextraction. The biomass, As concentration, and As accumulation of ferns showed to be increased by inoculation treatment. Although this trend occasionally declined which may be accounted to lower As concentration in soil and amount of precipitation during experiments, the potential of inoculation was observed in increased enrichment coefficients. Further, the arsenite oxidase (aioA-like) genes in the rhizosphere were detected to evaluate the influence of inoculation on As phytoremediation. The findings of this study suggested the potential application of rhizosphere regulation to improve phytoremediation technologies for As contaminated soils. However, the conditions which set the efficacy of this method could be further optimized.


Assuntos
Arsênico/análise , Pteris , Poluentes do Solo/análise , Biodegradação Ambiental , Rizosfera
19.
Bull Environ Contam Toxicol ; 105(3): 481-489, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32914331

RESUMO

The purpose of this study is to enhance the biodegradability of atrazine with FH-1 and NJ-1 alone by selecting the mixing ratio, optimizing the culture medium and conditions. The results showed that FH-1 and NJ-1 have the best biodegradation effect on atrazine being mixed in a volume ratio of 3:2. In a single factor experiment, sucrose and NH4Cl provided carbon and nitrogen sources for the mixed bacteria. Subsequently, composition of fermentation medium was further optimized using Box-Behnken design of response surface methodology. Based on the results, growth of mixed bacteria and biodegradation of atrazine performed best effects with a biodegradation rate of 85.6% when sucrose and NH4Cl amounts were 35.30 g/L and 10.28 g/L. The optimal medium condition was 10% inoculum of mixed bacteria, with initial atrazine concentration of 50 mg/L, neutral or weakly alkaline pH value, 30°C. The biodegradation rate reached 97.4%, 11.8% higher than the unoptimized condition.


Assuntos
Atrazina/metabolismo , Biodegradação Ambiental , Herbicidas/metabolismo , Klebsiella/metabolismo , Arthrobacter/metabolismo , Atrazina/análise , Carbono/metabolismo , Herbicidas/análise , Nitrogênio/metabolismo , Microbiologia do Solo
20.
Ecotoxicol Environ Saf ; 205: 111333, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979802

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are a specific category of microbes that improve plant growth and promote greater tolerance to metal stress through their interactions with plant roots. We evaluated the effects of phytoremediation combining the cadmium accumulator Solanum nigrum L. and two Cd- and Pb-resistant bacteria isolates. To understand the interaction between PGPR and their host plant, we conducted greenhouse experiments with inoculation treatments at Nanjing Agricultural University (Jiangsu Province, China), in June 2018. Two Cd- and Pb-resistant PGPR with various growth-promoting properties were isolated from heavy metal-contaminated soil. 16S rRNA analyses indicated that the two isolates were Bacillus genus, and they were named QX8 and QX13. Pot experiments demonstrated that inoculation may improve the rhizosphere soil environment and promote absorption of Fe and P by plants. Inoculation with QX8 and QX13 also enhanced the dry weight of shoots (1.36- and 1.7-fold, respectively) and roots (1.42- and 1.96-fold) of plants growing in Cd- and Pb-contaminated soil, and significantly increased total Cd (1.28-1.81 fold) and Pb (1.08-1.55 fold) content in aerial organs, compared to non-inoculated controls. We also detected increases of 23% and 22% in the acid phosphatase activity of rhizosphere soils inoculated with QX8 and QX13, respectively. However, we did not detect significant differences between inoculated and non-inoculated treatments in Cd and Pb concentrations in plants and available Cd and Pb content in rhizosphere soils. We demonstrated that PGPR-assisted phytoremediation is a promising technique for remediating heavy metal-contaminated soils, with the potential to enhance phytoremediation efficiency and improve soil quality.


Assuntos
Cádmio/análise , Chumbo/análise , Rhizobiaceae/metabolismo , Microbiologia do Solo , Poluentes do Solo/análise , Solanum nigrum/efeitos dos fármacos , Biodegradação Ambiental , Cádmio/metabolismo , China , Chumbo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , RNA Ribossômico 16S , Rizosfera , Solo/química , Poluentes do Solo/metabolismo , Solanum nigrum/crescimento & desenvolvimento , Solanum nigrum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA