Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.906
Filtrar
1.
Mar Drugs ; 20(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35447892

RESUMO

Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010-2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.


Assuntos
Produtos Biológicos , Animais , Organismos Aquáticos/metabolismo , Materiais Biocompatíveis/metabolismo , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Equinodermos , Invertebrados/metabolismo , Biologia Marinha
2.
Mar Drugs ; 20(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35323460

RESUMO

When I started to work on marine natural products some thirty years ago I was attracted to this fascinating field of science by the exotic environment, the colourful shapes of (mostly) marine invertebrates and their complex ecological interactions [...].


Assuntos
Produtos Biológicos/química , Organismos Aquáticos/química , Biologia Marinha
3.
Mar Drugs ; 20(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35323470

RESUMO

A great effort to discover new therapeutic ingredients is often initiated through the discovery of the existence of novel marine natural products. Since substances produced by the marine environment might be structurally more complex and unique than terrestrial natural products, there have been cases of misassignments of their structures despite the availability of modern spectroscopic and computational chemistry techniques. When it comes to refutation to erroneously or tentatively proposed structures empirical preparations through organic chemical synthesis has the greatest contribution along with close and sophiscated inspection of spectroscopic data. Herein, we analyzed the total synthetic studies that have decisively achieved in revelation of errors, ambiguities, or incompleteness of the isolated structures of marine natural products covering the period from 2018 to 2021.


Assuntos
Produtos Biológicos/química , Técnicas de Química Sintética , Biologia Marinha , Estrutura Molecular , Análise Espectral
4.
Bioessays ; 44(5): e2100264, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35277875

RESUMO

For over 20 years, the Schmid Training Course (STC) has offered unique opportunities for marine biology students from European universities to learn about marine model organisms. While the topics of the course have continuously changed over the years with the advent of new research techniques and discoveries, the pedagogical approach has remained largely the same - a combination of lectures, lab practicals, and field excursions. Several life science researchers, who have taught in the STC for many years, sought to bring the course's pedagogical approach into the 21st century, and with the support of Erasmus+ Programme of the European Community funding, the Digital Marine project was developed. Digital Marine began in 2018 as an international partnership between the six research centers from which the STC instructors hail, and its main objective was to introduce a flipped, blended approach to learning and teaching with respect to established and emerging marine biological model systems. The Digital Marine platform, which covers 12 marine model organisms, is now publicly available.


Assuntos
Currículo , Biologia Marinha , Humanos , Aprendizagem , Pesquisadores , Estudantes
5.
Mar Pollut Bull ; 176: 113416, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35228034

RESUMO

The construction of world-class Bay makes the marine ecology in Guangdong-Hong Kong-Macao Great Bay Area in risk. Based on the DPSIR index framework, Lotka-Volterra symbiosis model is applied to calculate symbiosis degree between coastal socio-economic system and marine ecosystem in 9 coastal cities. It is found that the marine ecological pressure in this area have not been reversed in recent 20 years. Most cities are in the stage that socio-economic development and marine ecological damage coexist. In Shenzhen, Guangzhou, Dongguan and Zhongshan, the damaged marine ecology has begun to restrain the further expansion of economy and society. The massive population agglomeration in Hong Kong, Macao and other places has caused serious marine ecological stress. It is urgent to improve the marine ecological security by cultivating ecological industrial system and industrial clusters, establishing a land-sea ecological restoration, promoting joint-protection and co-governance across different administrative regions.


Assuntos
Ecossistema , Biologia Marinha , China , Cidades , Conservação dos Recursos Naturais , Hong Kong , Macau
6.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101918

RESUMO

Metabolites exuded by primary producers comprise a significant fraction of marine dissolved organic matter, a poorly characterized, heterogenous mixture that dictates microbial metabolism and biogeochemical cycling. We present a foundational untargeted molecular analysis of exudates released by coral reef primary producers using liquid chromatography-tandem mass spectrometry to examine compounds produced by two coral species and three types of algae (macroalgae, turfing microalgae, and crustose coralline algae [CCA]) from Mo'orea, French Polynesia. Of 10,568 distinct ion features recovered from reef and mesocosm waters, 1,667 were exuded by producers; the majority (86%) were organism specific, reflecting a clear divide between coral and algal exometabolomes. These data allowed us to examine two tenets of coral reef ecology at the molecular level. First, stoichiometric analyses show a significantly reduced nominal carbon oxidation state of algal exometabolites than coral exometabolites, illustrating one ecological mechanism by which algal phase shifts engender fundamental changes in the biogeochemistry of reef biomes. Second, coral and algal exometabolomes were differentially enriched in organic macronutrients, revealing a mechanism for reef nutrient-recycling. Coral exometabolomes were enriched in diverse sources of nitrogen and phosphorus, including tyrosine derivatives, oleoyl-taurines, and acyl carnitines. Exometabolites of CCA and turf algae were significantly enriched in nitrogen with distinct signals from polyketide macrolactams and alkaloids, respectively. Macroalgal exometabolomes were dominated by nonnitrogenous compounds, including diverse prenol lipids and steroids. This study provides molecular-level insights into biogeochemical cycling on coral reefs and illustrates how changing benthic cover on reefs influences reef water chemistry with implications for microbial metabolism.


Assuntos
Antozoários/metabolismo , Alga Marinha/metabolismo , Animais , Antozoários/genética , Antozoários/crescimento & desenvolvimento , Carbono/metabolismo , Recifes de Corais , Ecossistema , Biologia Marinha/métodos , Metabolômica/métodos , Nitrogênio/metabolismo , Nutrientes , Fósforo/metabolismo , Polinésia , Água do Mar/química , Alga Marinha/genética , Alga Marinha/crescimento & desenvolvimento
7.
BMC Plant Biol ; 22(1): 63, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120456

RESUMO

BACKGROUND: The polyphyletic group of seagrasses shows an evolutionary history from early monocotyledonous land plants to the marine environment. Seagrasses form important coastal ecosystems worldwide and large amounts of seagrass detritus washed on beaches might also be valuable bioeconomical resources. Despite this importance and potential, little is known about adaptation of these angiosperms to the marine environment and their cell walls. RESULTS: We investigated polysaccharide composition of nine seagrass species from the Mediterranean, Red Sea and eastern Indian Ocean. Sequential extraction revealed a similar seagrass cell wall polysaccharide composition to terrestrial angiosperms: arabinogalactans, pectins and different hemicelluloses, especially xylans and/or xyloglucans. However, the pectic fractions were characterized by the monosaccharide apiose, suggesting unusual apiogalacturonans are a common feature of seagrass cell walls. Detailed analyses of four representative species identified differences between organs and species in their constituent monosaccharide composition and lignin content and structure. Rhizomes were richer in glucosyl units compared to leaves and roots. Enhalus had high apiosyl and arabinosyl abundance, while two Australian species of Amphibolis and Posidonia, were characterized by high amounts of xylosyl residues. Interestingly, the latter two species contained appreciable amounts of lignin, especially in roots and rhizomes whereas Zostera and Enhalus were lignin-free. Lignin structure in Amphibolis was characterized by a higher syringyl content compared to that of Posidonia. CONCLUSIONS: Our investigations give a first comprehensive overview on cell wall composition across seagrass families, which will help understanding adaptation to a marine environment in the evolutionary context and evaluating the potential of seagrass in biorefinery incentives.


Assuntos
Adaptação Biológica/genética , Alismatales/química , Parede Celular/química , Folhas de Planta/química , Raízes de Plantas/química , Polissacarídeos/química , Zosteraceae/química , Alismatales/genética , Parede Celular/genética , Oceano Índico , Biologia Marinha , Mar Mediterrâneo , Folhas de Planta/genética , Raízes de Plantas/genética , Polissacarídeos/genética , Especificidade da Espécie , Zosteraceae/genética
9.
J Microbiol Biotechnol ; 32(1): 27-36, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34750287

RESUMO

Ever since bioplastics were globally introduced to a wide range of industries, the disposal of used products made with bioplastics has become an issue inseparable from their application. Unlike petroleum-based plastics, bioplastics can be completely decomposed into water and carbon dioxide by microorganisms in a relatively short time, which is an advantage. However, there is little information on the specific degraders and accelerating factors for biodegradation. To elucidate a new strain for biodegrading poly-3-hydroxybutyrate (PHB), we screened out one PHB-degrading bacterium, Microbulbifer sp. SOL03, which is the first reported strain from the Microbulbifer genus to show PHB degradation activity, although Microbulbifer species are known to be complex carbohydrate degraders found in high-salt environments. In this study, we evaluated its biodegradability using solid- and liquid-based methods in addition to examining the changes in physical properties throughout the biodegradation process. Furthermore, we established the optimal conditions for biodegradation with respect to temperature, salt concentration, and additional carbon and nitrogen sources; accordingly, a temperature of 37°C with the addition of 3% NaCl without additional carbon sources, was determined to be optimal. In summary, we found that Microbulbifer sp. SOL03 showed a PHB degradation yield of almost 97% after 10 days. To the best of our knowledge, this is the first study to investigate the potent bioplastic degradation activity of Microbulbifer sp., and we believe that it can contribute to the development of bioplastics from application to disposal.


Assuntos
Alteromonadaceae/metabolismo , Butiratos/metabolismo , Alteromonadaceae/genética , Biodegradação Ambiental , Carbono , Hidroxibutiratos , Biologia Marinha , Nitrogênio , Plásticos/metabolismo , Poliésteres , Água do Mar/microbiologia , Temperatura
10.
Biotechnol Adv ; 54: 107871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34801661

RESUMO

The marine environment is a huge reservoir of biodiversity and represents an excellent source of chemical compounds, some of which have large economical values. In the urgent quest for new pharmaceuticals, marine-based drug discovery has progressed significantly over the past several decades and we now benefit from a series of approved marine natural products (MNPs) to treat cancer and pain while an additional collection of promising leads are in clinical trials. However, the discovery and supply of MNPs has always been challenging given their low bioavailability and structural complexity. Their manufacture for pre-clinical and clinical development but also commercialization mainly relies upon marine source extraction and chemical synthesis, which are associated with high costs, unsustainability and severe environmental problems. In this review, we discuss how metabolic engineering now raises reasonable expectations for the implementation of microbial cell factories, which may provide a sustainable approach for MNP-based drug supply in the near future.


Assuntos
Produtos Biológicos , Biodiversidade , Produtos Biológicos/química , Biologia , Descoberta de Drogas , Biologia Marinha , Engenharia Metabólica
11.
Environ Sci Pollut Res Int ; 29(5): 7595-7603, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34476709

RESUMO

The present article introduces the concept of ecological assessment of reclamation projects. In addition, we built a framework that considers structure, function, and ecosystem services for the assessment of the impact of reclamation projects on marine ecology. Moreover, this study explored different technical methods for the ecological assessment of reclamation projects, with an emphasis on those that evaluate the impacts of reclamation on marine ecosystems structure. The present research provides technical support for the recognition and diagnosis of marine ecology problems that are the result of reclamation projects, introduces a guideline for the development of ecological restoration projects, assists in protecting coastal wetland ecosystems, promotes the scientific and reasonable management and control of reclamation, and helps in maintaining the regional marine ecological security pattern.


Assuntos
Ecossistema , Biologia Marinha , China , Conservação dos Recursos Naturais , Ecologia , Áreas Alagadas
12.
J Org Chem ; 87(2): 1043-1055, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34967649

RESUMO

Luquilloamides A-G (1-7) were isolated from a small environmental collection of a marine cyanobacterium found growing on eelgrass (Zostera sp.) near Luquillo, Puerto Rico. Structure elucidation of the luquilloamides was accomplished via detailed NMR and MS analyses, and absolute configurations were determined using a combination of advanced Mosher's method, J-based configuration analysis, semisynthetic fragment analysis derived from ozonolysis, methylation, Baeyer-Villiger oxidation, Mosher's esterification, specific rotations, and ECD data. Except for 2, the luquilloamides share a characteristic tert-butyl-containing polyketide fragment, ß-alanine, and a proposed highly modified polyketide extension. While compound 1 is a linear lipopeptide with two α-methyl branches and a vinyl chloride functionality in the polyketide portion, compounds 4, 6, and 7 possess a cyclohexanone structure with methylation on the α- or ß-positions of the polyketide as well as an acetyl group. Interestingly, the absolute configuration at C-5 and C-6 on the cyclohexanone unit in 7 is opposite to that of 4-6. Compound 3 was revealed to have a tert-butyl-containing polyketide, ß-alanine, and a PKS/NRPS-derived γ-isopropyl pyrrolinone. Compound 2 may be a hydrolysis product of 3. Of the seven new compounds, 1 showed the most potent cytotoxicity to human H-460 lung cancer cells.


Assuntos
Lipopeptídeos/farmacologia , Oscillatoria , Linhagem Celular Tumoral , Humanos , Biologia Marinha , Estrutura Molecular , Oscillatoria/química , Porto Rico
14.
Biomed Res Int ; 2021: 9734279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957309

RESUMO

Presently, the majority of breast tumors are estrogen receptor (ER) positive. Breast cancer (BC) is defined by uncontrolled cell proliferation (CP) in breast tissue. BCs are caused by the overexpression of genes that promote CP in breast cells. The discovery of effective inhibitors is an excellent chemopreventive method. Our in silico approach analysis offers a pharmacoinformatics methodology for identifying lead molecules targeting cochaperone HSP90 and the epidermal growth factor receptors (EGFR) and human epidermal growth factor receptor 2 (HER2)/neu receptor. BC has been associated with the high expression of these targets. The use of drug-likeness filters aided in determining the therapeutic properties of possible lead compounds. In this study, docking-based virtual screening (VS) was performed. Database of about 450 cancer marine compounds was used. The X-ray-assisted structure of ERα with 4-OHT (PDB code: 3ERT) was chosen for 4-OHT. A docking-based virtual screening was performed on the dataset supplied using the molecular operating environment (MOE) dock application. The binding energy (BE) and explanation of the protein inhibitor interaction (PII) are crucial findings for future both in terms of dry or wet lab research. The GBVI/WAS binding-free energy assessment (in kcal/mol) scores were used to grade the compounds. Compounds with a BE of less than -9.500 kcal/mol were deemed to be the most effective inhibitors. For further analysis, the top seven structurally diverse scaffolds were selected. Seven marine compounds exhibited the best docking score, which validates them to be potent anti-BC compounds. These compounds' bioactive potential and prospective drug-likeness profile make them promising leads for further experimental research.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Ligantes , Biologia Marinha , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor ErbB-2/metabolismo
15.
Sci Rep ; 11(1): 22517, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795331

RESUMO

The global daily gap-free chlorophyll-a (Chl-a) data derived using the data interpolating empirical orthogonal functions (DINEOF) technique from observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) in 2020 and the in situ measurements at the Tropical Ocean Atmosphere (TAO) moorings are used to characterize and quantify the biological variability modulated by the tropical instability wave (TIW). Our study aims to understand how ocean physical processes are linked to biological variability. In this study, we use the TAO in situ measurements and the coincident VIIRS Chl-a data to identify the mechanism that drives ocean biological variability corresponding to the TIW. Satellite observations show that the TIW-driven Chl-a variability stretched from 90°W to 160°E in the region. The enhanced Chl-a pattern propagated westward and moderately matched the cooler sea surface temperature (SST) patterns in the Equatorial Pacific Ocean. In fact, the Chl-a variation driven by the TIW is about ± 30% of mean Chl-a values. Furthermore, the time series of Chl-a at 140°W along the equator was found to be in phase with sea surface salinity (SSS) at 140°W along the equator at the TAO mooring since late May 2020. The cross-correlation coefficients with the maximum magnitude between Chl-a and SST, Chl-a and SSS, and Chl-a and dynamic height were -0.46, + 0.74, and -0.58, respectively, with the corresponding time lags of about 7 days, 1 day, and 8 days, respectively. The different spatial patterns of the cooler SST and enhanced Chl-a are attributed to the phase difference in Chl-a and SST. Indeed, a Chl-a peak normally coincided with a SSS peak and vice versa. This could be attributed to the consistency in the change in nutrient concentration with respect to the change of SSS. The vertical distributions of the temperature and salinity at 140°W along the equator reveal that the TIW leads to changes in both salinity and nutrient concentrations in the sea surface, and consequently drives the Chl-a variability from late May until the end of the year 2020.


Assuntos
Clorofila A/química , Oceanos e Mares , Fitoplâncton/fisiologia , Espectrofotometria Infravermelho/métodos , Monitoramento Ambiental , Biologia Marinha , Oceanografia , Oceano Pacífico , Salinidade , Estações do Ano , Temperatura , Fatores de Tempo
16.
Future Microbiol ; 16: 1289-1301, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34689597

RESUMO

COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/tratamento farmacológico , Oceanos e Mares , SARS-CoV-2/efeitos dos fármacos , Alcaloides/farmacologia , Anti-Inflamatórios , Antivirais/química , Depsipeptídeos , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/farmacologia , Humanos , Lectinas , Biologia Marinha , Simulação de Acoplamento Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Ficocianina/farmacologia , Compostos Fitoquímicos , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Polifenóis/farmacologia , Polissacarídeos/farmacologia , Alga Marinha , Sesquiterpenos/farmacologia
17.
Metallomics ; 13(12)2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34694406

RESUMO

Pseudoalteromonas (BB2-AT2) is a ubiquitous marine heterotroph, often associated with labile organic carbon sources in the ocean (e.g. phytoplankton blooms and sinking particles). Heterotrophs hydrolyze exported photosynthetic materials, components of the biological carbon pump, with the use of diverse metalloenzymes containing zinc (Zn), manganese (Mn), cobalt (Co), and nickel (Ni). Studies on the metal requirements and cytosolic utilization of metals for marine heterotrophs are scarce, despite their relevance to global carbon cycling. Here, we characterized the Zn, Mn, Co, and Ni metallome of BB2-AT2. We found that the Zn metallome is complex and cytosolic Zn is associated with numerous proteins for transcription (47.2% of the metallome, obtained from singular value decomposition of the metalloproteomic data), translation (33.5%), proteolysis (12.8%), and alkaline phosphatase activity (6.4%). Numerous proteolytic enzymes also appear to be putatively associated with Mn, and to a lesser extent, Co. Putative identification of the Ni-associated proteins, phosphoglucomutase and a protein in the cupin superfamily, provides new insights for Ni utilization in marine heterotrophs. BB2-AT2 relies on numerous transition metals for proteolytic and phosphatase activities, inferring an adaptative potential to metal limitation. Our field observations of increased alkaline phosphatase activity upon addition of Zn in field incubations suggest that such metal limitation operates in sinking particulate material collected from sediment traps. Taken together, this study improves our understanding of the Zn, Mn, Co, and Ni metallome of marine heterotrophic bacteria and provides novel and mechanistic frameworks for understanding the influence of nutrient limitation on biogeochemical cycling.


Assuntos
Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Manganês/metabolismo , Biologia Marinha , Metaloproteínas/metabolismo , Níquel/metabolismo , Proteoma , Pseudoalteromonas/metabolismo , Zinco/metabolismo , Proteólise
19.
Cladistics ; 37(5): 571-585, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34570934

RESUMO

Species distribution patterns are constrained by historical and ecological processes in space and time, but very often the species range sizes are geographical sampling biases resulting from unequal sampling effort. One of the most common definitions of endemism is based on the "congruence of distributional areas" criterion, when two or more species have the same distributional limits. By acknowledging that available data of marine meiobenthic species are prone to geographical sampling bias and that can affect the accuracy of the biogeographical signals, the present study combines analyses of inventory incompleteness and recognition of spatial congruence of Gastrotricha, Kinorhyncha, meiobenthic Annelida and Tardigrada in order to better understand the large-scale distribution of these organisms in coastal and shelf areas of the world. We used the marine bioregionalization framework for geographical operative units to quantify the inventory incompleteness effect (by modelling spatial predictions of species richness) and to recognize areas of endemism. Our models showed that the difference between observed and expected species richness in the Southern Hemisphere is much higher than in the Northern Hemisphere. Parsimony Analysis of Endemicity delimited 20 areas of endemism, most found in the Northern Hemisphere. Distribution patterns of meiobenthic species are shown to respond to events of geographical barriers and abiotic features, and their distribution is far from homogeneous throughout the world. Also, our data show that ecoregions with distinct biotas have at least some cohesion over evolutionary time. However, we found that inventory incompleteness may significantly affect the explanatory power of areas of endemism delimitation in both hemispheres. Yet, whereas future increases in sampling efforts are likely to change the spatial congruence ranges in the Southern Hemisphere, patterns for the Northern Hemisphere may prove to be relatively more resilient.


Assuntos
Geografia , Biologia Marinha , Viés de Seleção , Animais , Biodiversidade , Evolução Biológica , Ecossistema , Filogenia , Especificidade da Espécie
20.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20200366, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34538136

RESUMO

Growing evidence suggests that biodiversity mediates parasite prevalence. We have compiled the first global database on occurrences and prevalence of marine parasitism throughout the Phanerozoic and assess the relationship with biodiversity to test if there is support for amplification or dilution of parasitism at the macroevolutionary scale. Median prevalence values by era are 5% for the Paleozoic, 4% for the Mesozoic, and a significant increase to 10% for the Cenozoic. We calculated period-level shareholder quorum sub-sampled (SQS) estimates of mean sampled diversity, three-timer (3T) origination rates, and 3T extinction rates for the most abundant host clades in the Paleobiology Database to compare to both occurrences of parasitism and the more informative parasite prevalence values. Generalized linear models (GLMs) of parasite occurrences and SQS diversity measures support both the amplification (all taxa pooled, crinoids and blastoids, and molluscs) and dilution hypotheses (arthropods, cnidarians, and bivalves). GLMs of prevalence and SQS diversity measures support the amplification hypothesis (all taxa pooled and molluscs). Though likely scale-dependent, parasitism has increased through the Phanerozoic and clear patterns primarily support the amplification of parasitism with biodiversity in the history of life. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Assuntos
Biodiversidade , Evolução Biológica , Invertebrados/parasitologia , Parasitos/fisiologia , Vertebrados/parasitologia , Animais , Bases de Dados Factuais , Fósseis , Biologia Marinha , Paleontologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...