Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.501
Filtrar
1.
Microb Cell Fact ; 18(1): 101, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159886

RESUMO

BACKGROUND: Many fermented foods and beverages are produced through the action of complex microbial communities. Synthetic biology approaches offer the ability to genetically engineer these communities to improve the properties of these fermented foods. Soy sauce is a fermented condiment with a vast global market. Engineering members of the microbial communities responsible for soy sauce fermentation may therefore lead to the development of improved products. One important property is the colour of soy sauce, with recent evidence pointing to a consumer preference for more lightly-coloured soy sauce products for particular dishes. RESULTS: Here we show that a bacterial member of the natural soy sauce fermentation microbial community, Bacillus, can be engineered to reduce the 'browning' reaction during soy sauce production. We show that two approaches result in 'de-browning': engineered consumption of xylose, an important precursor in the browning reaction, and engineered degradation of melanoidins, the major brown pigments in soy sauce. Lastly, we show that these two strategies work synergistically using co-cultures to result in enhanced de-browning. CONCLUSIONS: Our results demonstrate the potential of using synthetic biology and metabolic engineering methods for fine-tuning the process of soy sauce fermentation and indeed for many other natural food and beverage fermentations for improved products.


Assuntos
Bacillus subtilis/metabolismo , Fermentação , Engenharia Metabólica/métodos , Polímeros/metabolismo , Alimentos de Soja , Soja/microbiologia , Xilose/metabolismo , Bacillus subtilis/genética , Técnicas de Cocultura , Microbiologia Industrial , Microbiota , Biologia Sintética , Xilose/genética
2.
Nat Methods ; 16(7): 574, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31249410
3.
J Microbiol Biotechnol ; 29(6): 845-855, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31216840

RESUMO

Synthetic biology builds programmed biological systems for a wide range of purposes such as improving human health, remedying the environment, and boosting the production of valuable chemical substances. In recent years, the rapid development of synthetic biology has enabled synthetic bacterium-based diagnoses and therapeutics superior to traditional methodologies by engaging bacterial sensing of and response to environmental signals inherent in these complex biological systems. Biosynthetic systems have opened a new avenue of disease diagnosis and treatment. In this review, we introduce designed synthetic bacterial systems acting as living therapeutics in the diagnosis and treatment of several diseases. We also discuss the safety and robustness of genetically modified synthetic bacteria inside the human body.


Assuntos
Bactérias/genética , Terapia Biológica , Biologia Sintética , Animais , Técnicas Biossensoriais , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/terapia , Sistemas de Liberação de Medicamentos , Engenharia Genética , Humanos , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/prevenção & controle , Doenças Metabólicas/terapia , Neoplasias/diagnóstico , Neoplasias/terapia
4.
Nat Commun ; 10(1): 2615, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197154

RESUMO

Balanced expression of multiple genes is central for establishing new biosynthetic pathways or multiprotein cellular complexes. Methods for efficient combinatorial assembly of regulatory sequences (promoters) and protein coding sequences are therefore highly wanted. Here, we report a high-throughput cloning method, called COMPASS for COMbinatorial Pathway ASSembly, for the balanced expression of multiple genes in Saccharomyces cerevisiae. COMPASS employs orthogonal, plant-derived artificial transcription factors (ATFs) and homologous recombination-based cloning for the generation of thousands of individual DNA constructs in parallel. The method relies on a positive selection of correctly assembled pathway variants from both, in vivo and in vitro cloning procedures. To decrease the turnaround time in genomic engineering, COMPASS is equipped with multi-locus CRISPR/Cas9-mediated modification capacity. We demonstrate the application of COMPASS by generating cell libraries producing ß-carotene and co-producing ß-ionone and biosensor-responsive naringenin. COMPASS will have many applications in synthetic biology projects that require gene expression balancing.


Assuntos
Vias Biossintéticas/genética , Engenharia Metabólica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Técnicas Biossensoriais/métodos , Sistemas CRISPR-Cas/genética , Clonagem Molecular/métodos , Flavanonas/biossíntese , Recombinação Homóloga/genética , Norisoprenoides/biossíntese , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biologia Sintética/métodos , Fatores de Transcrição/genética , beta Caroteno/biossíntese
5.
J Microbiol Biotechnol ; 29(5): 667-686, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31091862

RESUMO

Streptomyces are attractive microbial cell factories that have industrial capability to produce a wide array of bioactive secondary metabolites. However, the genetic potential of the Streptomyces species has not been fully utilized because most of their secondary metabolite biosynthetic gene clusters (SM-BGCs) are silent under laboratory culture conditions. In an effort to activate SM-BGCs encoded in Streptomyces genomes, synthetic biology has emerged as a robust strategy to understand, design, and engineer the biosynthetic capability of Streptomyces secondary metabolites. In this regard, diverse synthetic biology tools have been developed for Streptomyces species with technical advances in DNA synthesis, sequencing, and editing. Here, we review recent progress in the development of synthetic biology tools for the production of novel secondary metabolites in Streptomyces, including genomic elements and genome engineering tools for Streptomyces, the heterologous gene expression strategy of designed biosynthetic gene clusters in the Streptomyces chassis strain, and future directions to expand diversity of novel secondary metabolites.


Assuntos
Metabolismo Secundário , Streptomyces/genética , Streptomyces/metabolismo , Biologia Sintética/métodos , Produtos Biológicos/metabolismo , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Genoma Bacteriano , Família Multigênica , Metabolismo Secundário/genética
6.
World J Microbiol Biotechnol ; 35(6): 79, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31134410

RESUMO

The methylotrophic yeast Pichia pastoris is widely used in recombinant expression of eukaryotic proteins owing to the ability of post-translational modification, tightly regulated promoters, and high cell density fermentation. However, episomal plasmids for heterologous gene expression and the CRISPR/Cas9 system for genome editing have not been well developed in P. pastoris. In the present study, a panel of episomal plasmids containing various autonomously replicating sequences (ARSs) were constructed and their performance in transformation efficiency, copy numbers, and propagation stability were systematically compared. Among the five ARSs with different origins, panARS isolated from Kluyveromyces lactis was determined to have the best performance and used to develop an efficient CRISPR/Cas9 based genome editing system. Compared with a previously reported system using the endogenous and most commonly used ARS (PARS1), the CRISPR/Cas9 genome editing efficiency was increased for more than tenfold. Owing to the higher plasmid stability with panARS, efficient CRISPR/Cas9-mediated genome editing with a type III promoter (i.e. SER promoter) to drive the expression of the single guide RNA (sgRNA) was achieved for the first time. The constructed episomal plasmids and developed CRISPR/Cas9 system will be important synthetic biology tools for both fundamental studies and industrial applications of P. pastoris.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Engenharia Genética/métodos , Pichia/genética , Plasmídeos/genética , Transformação Genética , Replicação do DNA , Escherichia coli/genética , Dosagem de Genes , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Vetores Genéticos , Instabilidade Genômica , Microbiologia Industrial , Kluyveromyces/genética , Regiões Promotoras Genéticas , RNA Guia , Biologia Sintética
7.
Nat Commun ; 10(1): 2013, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043592

RESUMO

Tight control over protein degradation is a fundamental requirement for cells to respond rapidly to various stimuli and adapt to a fluctuating environment. Here we develop a versatile, easy-to-handle library of destabilizing tags (degrons) for the precise regulation of protein expression profiles in mammalian cells by modulating target protein half-lives in a predictable manner. Using the well-established tetracycline gene-regulation system as a model, we show that the dynamics of protein expression can be tuned by fusing appropriate degron tags to gene regulators. Next, we apply this degron library to tune a synthetic pulse-generating circuit in mammalian cells. With this toolbox we establish a set of pulse generators with tailored pulse lengths and magnitudes of protein expression. This methodology will prove useful in the functional roles of essential proteins, fine-tuning of gene-expression systems, and enabling a higher complexity in the design of synthetic biological systems in mammalian cells.


Assuntos
Sequência de Aminoácidos/genética , Regulação da Expressão Gênica , Engenharia de Proteínas/métodos , Proteólise , Biotecnologia/métodos , Células HEK293 , Meia-Vida , Células HeLa , Humanos , Microscopia Intravital/métodos , Células-Tronco Mesenquimais , Microscopia de Fluorescência , Biologia Sintética/métodos
8.
Nat Commun ; 10(1): 2142, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086174

RESUMO

Metabolic engineers endeavor to create a bio-based manufacturing industry using microbes to produce fuels, chemicals, and medicines. Plant natural products (PNPs) are historically challenging to produce and are ubiquitous in medicines, flavors, and fragrances. Engineering PNP pathways into new hosts requires finding or modifying a suitable host to accommodate the pathway, planning and implementing a biosynthetic route to the compound, and discovering or engineering enzymes for missing steps. In this review, we describe recent developments in metabolic engineering at the level of host, pathway, and enzyme, and discuss how the field is approaching ever more complex biosynthetic opportunities.


Assuntos
Produtos Biológicos/metabolismo , Engenharia Metabólica/métodos , Microrganismos Geneticamente Modificados/metabolismo , Plantas/metabolismo , Vias Biossintéticas/genética , Enzimas/genética , Enzimas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Engenharia Metabólica/tendências , Microrganismos Geneticamente Modificados/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biologia Sintética/métodos , Biologia Sintética/tendências
9.
J Microbiol ; 57(8): 637-643, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31079333

RESUMO

Bacteria sense and respond to the environment, communicate, and continuously interact with their surroundings, including host bodies. For more than a century, engineers have been trying to harness the natural ability of bacteria as live biotherapeutics for the treatment of diseases. Recent advances in synthetic biology facilitate the enlargement of the repertoire of genetic parts, tools, and devices that serve as a framework for biotherapy. This review describes bacterial species developed for specific diseases shown in in vitro studies and clinical stages. Here, we focus on drug delivery by programing bacteria and discuss the challenges for safety and improvement.


Assuntos
Bactérias/genética , Sistemas de Liberação de Medicamentos , Engenharia Genética/métodos , Biologia Sintética/métodos , Humanos
10.
Nat Chem Biol ; 15(6): 589-597, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086330

RESUMO

To maximize a desired product, metabolic engineers typically express enzymes to high, constant levels. Yet, permanent pathway activation can have undesirable consequences including competition with essential pathways and accumulation of toxic intermediates. Faced with similar challenges, natural metabolic systems compartmentalize enzymes into organelles or post-translationally induce activity under certain conditions. Here we report that optogenetic control can be used to extend compartmentalization and dynamic control to engineered metabolisms in yeast. We describe a suite of optogenetic tools to trigger assembly and disassembly of metabolically active enzyme clusters. Using the deoxyviolacein biosynthesis pathway as a model system, we find that light-switchable clustering can enhance product formation six-fold and product specificity 18-fold by decreasing the concentration of intermediate metabolites and reducing flux through competing pathways. Inducible compartmentalization of enzymes into synthetic organelles can thus be used to control engineered metabolic pathways, limit intermediates and favor the formation of desired products.


Assuntos
Luz , Engenharia Metabólica , Redes e Vias Metabólicas/efeitos da radiação , Optogenética/métodos , Organelas/metabolismo , Organelas/efeitos da radiação , Biologia Sintética , Indóis/metabolismo , Organelas/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Synechocystis/efeitos da radiação
11.
Microb Cell Fact ; 18(1): 96, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142347

RESUMO

BACKGROUND: Promoter evolution by synthetic promoter library (SPL) is a powerful approach to development of functional synthetic promoters to synthetic biology. However, it requires much tedious and time-consuming screenings because of the plethora of different variants in SPL. Actually, a large proportion of mutants in the SPL are significantly lower in strength, which contributes only to fabrication of a promoter library with a continuum of strength. Thus, to effectively obtain the evolved synthetic promoter exhibiting higher strength, it is essential to develop novel strategies to construct mutant library targeting the pivotal region rather than the arbitrary region of the template promoter. In this study, a strategy termed stepwise evolution targeting the spacer of core promoter (SETarSCoP) was established in Bacillus subtilis to effectively evolve the strength of bacterial promoter. RESULTS: The native promoter, PsrfA, from B. subtilis, which exhibits higher strength than the strong promoter P43, was set as the parental template. According to the comparison of conservation of the spacer sequences between - 35 box and - 10 box among a set of strong and weak native promoter, it revealed that 7-bp sequence immediately upstream of the - 10 box featured in the regulation of promoter strength. Based on the conservative feature, two rounds of consecutive evolution were performed targeting the hot region of PsrfA. In the first round, a primary promoter mutation library (pPML) was constructed by mutagenesis targeting the 3-bp sequence immediately upstream of the - 10 box of the PsrfA. Subsequently, four evolved mutants from pPML were selected to construction of four secondary promoter mutation libraries (sPMLs) based on mutagenesis of the 4-bp sequence upstream of the first-round target. After the consecutive two-step evolution, the mutant PBH4 was identified and verified to be a highly evolved synthetic promoter. The strength of PBH4 was higher than PsrfA by approximately 3 times. Moreover, PBH4 also exhibited broad suitability for different cargo proteins, such as ß-glucuronidase and nattokinase. The proof-of-principle test showed that SETarSCoP successfully evolved both constitutive and inducible promoters. CONCLUSION: Comparing with the commonly used SPL strategy, SETarSCoP facilitates the evolution process to obtain strength-evolved synthetic bacterial promoter through fabrication and screening of small-scale mutation libraries. This strategy will be a promising method to evolve diverse bacterial promoters to expand the toolbox for synthetic biology.


Assuntos
Bacillus subtilis/genética , Evolução Molecular Direcionada/métodos , Regiões Promotoras Genéticas , Biblioteca Gênica , Mutagênese/genética , Mutação , Biologia Sintética/métodos
12.
Nat Commun ; 10(1): 1697, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979906

RESUMO

Cell-free transcription-translation systems have great potential for biosensing, yet the range of detectable chemicals is limited. Here we provide a workflow to expand the range of molecules detectable by cell-free biosensors through combining synthetic metabolic cascades with transcription factor-based networks. These hybrid cell-free biosensors have a fast response time, strong signal response, and a high dynamic range. In addition, they are capable of functioning in a variety of complex media, including commercial beverages and human urine, in which they can be used to detect clinically relevant concentrations of small molecules. This work provides a foundation to engineer modular cell-free biosensors tailored for many applications.


Assuntos
Bebidas/análise , Técnicas Biossensoriais , Sistema Livre de Células , Urinálise/instrumentação , Campylobacter jejuni , Cocaína/urina , Escherichia coli/metabolismo , Hipuratos/urina , Humanos , Engenharia Metabólica , Rhodococcus , Biologia Sintética , Transdutores
13.
PLoS Comput Biol ; 15(4): e1006888, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30995217

RESUMO

In response to a need for improved treatments, a number of promising novel targeted cancer therapies are being developed that exploit human synthetic lethal interactions. This is facilitating personalised medicine strategies in cancers where specific tumour suppressors have become inactivated. Mainly due to the constraints of the experimental procedures, relatively few human synthetic lethal interactions have been identified. Here we describe SLant (Synthetic Lethal analysis via Network topology), a computational systems approach to predicting human synthetic lethal interactions that works by identifying and exploiting conserved patterns in protein interaction network topology both within and across species. SLant out-performs previous attempts to classify human SSL interactions and experimental validation of the models predictions suggests it may provide useful guidance for future SSL screenings and ultimately aid targeted cancer therapy development.


Assuntos
Mapas de Interação de Proteínas/genética , Mutações Sintéticas Letais , Algoritmos , Animais , Inteligência Artificial , Biologia Computacional , Descoberta de Drogas , Ontologia Genética , Genes Essenciais , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Família Multigênica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Mapas de Interação de Proteínas/efeitos dos fármacos , Biologia Sintética , Mutações Sintéticas Letais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Gene ; 704: 49-58, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30935921

RESUMO

Synthetic biology with genetically engineered (GE) cyanobacteria has the potential to produce valuable products such as biofuels. However, it is also essential to assess the potential risks of synthetic biology technology before it can be widely used. In order to address key concerns posed by the application of synthetic biology to microorganisms, studies were designed to monitor the horizontal transfer of engineered genes from GE cyanobacteria Thermosynechococcus elongatus BP1 to Escherichia coli through co-incubation. The results of these experiments demonstrated that the genetically engineered DNA construct containing alcohol producing genes and kanamycin resistance can be horizontally transferred from GE T. elongatus BP1 to wild-type E. coli following two days of liquid co-culturing. The rapid and facile transfer of foreign genes, which include antibiotic resistance, between bacterial communities signifies the need to continue to deepen our understanding of the process of horizontal gene transfer, chromosomal integration as well as further biosafety-oriented research efforts. In the era of synthetic biology, the natural microbial process for sharing genetic material will also significantly impact risk assessments, containment approaches and further policy development.


Assuntos
Cianobactérias/genética , Escherichia coli/genética , Transferência Genética Horizontal , Clonagem Molecular , Cianobactérias/classificação , DNA Bacteriano/genética , Engenharia Genética/métodos , Técnicas Microbiológicas , Organismos Geneticamente Modificados , Synechococcus/genética , Biologia Sintética , Transformação Bacteriana/genética
15.
Int J Mol Sci ; 20(8)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010123

RESUMO

In the past two decades, tRNA molecules and their corresponding aminoacyl-tRNA synthetases (aaRS) have been extensively used in synthetic biology to genetically encode post-translationally modified and unnatural amino acids. In this review, we briefly examine one fundamental requirement for the successful application of tRNA/aaRS pairs for expanding the genetic code. This requirement is known as "orthogonality"-the ability of a tRNA and its corresponding aaRS to interact exclusively with each other and avoid cross-reactions with additional types of tRNAs and aaRSs in a given organism.


Assuntos
Aminoacil-tRNA Sintetases/genética , Código Genético , RNA de Transferência/genética , Aminoacil-tRNA Sintetases/química , Engenharia Genética , RNA de Transferência/química , Biologia Sintética
16.
Arch Microbiol ; 201(6): 855-862, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30929030

RESUMO

Synthetic biology, the design and synthesis of synthetic biological systems from DNA to whole cells, has provided us with the ultimate tools for space exploration and colonisation. Herein, we explore some of the most significant advances and future prospects in the field of synthetic biology, in the context of astrobiology and terraforming.


Assuntos
Exobiologia/tendências , Biologia Sintética/tendências , DNA/síntese química , DNA/genética , Exobiologia/métodos , Voo Espacial , Biologia Sintética/métodos
17.
Chemistry ; 25(33): 7798-7814, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30889296

RESUMO

Synthesizing proteins inside liposomes and other microcompartments is a well-established practice. However, the origin of this research is not from the distant past, dating back to 1999-2004, when the first successful attempts were published. Protein synthesis inside artificial compartments is now under strong expansion in the context of synthetic biology (in bottom-up approaches), and, in particular, it strongly contributes to the construction of artificial cell-like systems. These systems, often called "synthetic cells", can be used to model cellular processes, including membrane-centered ones. They are very innovative models that complement traditional studies and promise future applications. This review does not discuss all current directions in synthetic cell research; in particular, it does not include all kinds of artificial compartments. Instead, it is uniquely dedicated to the analysis of historical and technical developments of protein synthesis inside liposomes, highlighting a selected list of open questions. One of the goals is to note the importance of mastering liposome technology together with cell-free systems for the successful realization of this specific type of synthetic cell. With this aim, four currently employed protocols are compared and discussed, with a major emphasis on the droplet transfer method, which is attractive due to its simplicity and encapsulation efficiency.


Assuntos
Células Artificiais/química , Lipossomos/química , Proteínas/síntese química , Expressão Gênica , Bicamadas Lipídicas/química , Lipossomos/metabolismo , Biossíntese de Proteínas/genética , Proteínas/genética , Biologia Sintética
18.
Nat Rev Cancer ; 19(4): 187-195, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30837696

RESUMO

Engineered immune-cell-based cancer therapies have demonstrated robust efficacy in B cell malignancies, but challenges such as the lack of ideal targetable tumour antigens, tumour-mediated immunosuppression and severe toxicity still hinder their therapeutic efficacy and broad applicability. Synthetic biology can be used to overcome these challenges and create more robust, effective adaptive therapies that enable the specific targeting of cancer cells while sparing healthy cells. In this Progress article, we review recently developed gene circuit therapies for cancer using immune cells, nucleic acids and bacteria as chassis. We conclude by discussing outstanding challenges and future directions for realizing these gene circuit therapies in the clinic.


Assuntos
Neoplasias/genética , Neoplasias/terapia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linfócitos B/patologia , Engenharia Celular/métodos , Redes Reguladoras de Genes , Humanos , Imunoterapia/métodos , Neoplasias/imunologia , Ácidos Nucleicos/genética , Biologia Sintética/métodos
19.
Microb Cell Fact ; 18(1): 52, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30857530

RESUMO

BACKGROUND: Strains with increased alkali tolerance have a broad application in industrial, especially for bioremediation, biodegradation, biocontrol and production of bio-based chemicals. A novel synthetic chromosome recombination and modification by LoxP-mediated evolution (SCRaMbLE) system has been introduced in the synthetic yeast genome (Sc 2.0), which enables generation of a yeast library with massive structural variations and potentially drives phenotypic evolution. The structural variations including deletion, inversion and duplication have been detected within synthetic yeast chromosomes. RESULTS: Haploid yeast strains harboring either one (synV) or two (synV and synX) synthetic chromosomes were subjected to SCRaMbLE. Seven of evolved strains with increased alkali tolerance at pH 8.0 were generated through multiple independent SCRaMbLE experiments. Various of structural variations were detected in evolved yeast strains by PCRTag analysis and whole genome sequencing including two complex structural variations. One possessed an inversion of 20,743 base pairs within which YEL060C (PRB1) was deleted simultaneously, while another contained a duplication region of 9091 base pairs in length with a deletion aside. Moreover, a common deletion region with length of 11,448 base pairs was mapped in four of the alkali-tolerant strains. We further validated that the deletion of YER161C (SPT2) within the deleted region could increase alkali tolerance in Saccharomyces cerevisiae. CONCLUSIONS: SCRaMbLE system provides a simple and efficient way to generate evolved yeast strains with enhanced alkali tolerance. Deletion of YER161C (SPT2) mapped by SCRaMbLE can improve alkali tolerance in S. cerevisiae. This study enriches our understanding of alkali tolerance in yeast and provides a standard workflow for the application of SCRaMbLE system to generate various phenotypes that may be interesting for industry and extend understanding of phenotype-genotype relationship.


Assuntos
Álcalis/metabolismo , Cromossomos Artificiais de Levedura/genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica , Engenharia Genética , Fenótipo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Biologia Sintética
20.
Microb Cell Fact ; 18(1): 46, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30857533

RESUMO

Metabolic engineering allows for the rewiring of basic metabolism to overproduce both native and non-native metabolites. Among these biomolecules, nutraceuticals have received considerable interest due to their health-promoting or disease-preventing properties. Likewise, microbial engineering efforts to produce these value-added nutraceuticals overcome traditional limitations of low yield from extractions and complex chemical syntheses. This review covers current strategies of metabolic engineering employed for the production of a few key nutraceuticals with selecting polyunsaturated fatty acids, polyphenolic compounds, carotenoids and non-proteinogenic amino acids as exemplary molecules. We focus on the use of both mono-culture and co-culture strategies to produce these molecules of interest. In each of these cases, metabolic engineering efforts are enabling rapid production of these molecules.


Assuntos
Suplementos Nutricionais , Engenharia Metabólica , Produtos Biológicos , Escherichia coli/genética , Escherichia coli/metabolismo , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA