Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.189
Filtrar
1.
Braz J Biol ; 84: e283882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39383366

RESUMO

Ganoderma lingzhi is widely reported for its medicinal properties, presenting several bioactive substances with potential pharmaceutical and industrial application. This study aimed to evaluate the production of mycelial biomass, extracellular enzymes and antioxidant compounds by G. lingzhi under submerged fermentation. G. lingzhi was cultured in Polysaccharide (POL) and Melin-Norkrans (MNM) media for 7 days. The cellulases, xylanases, pectinases, laccases, and proteases activities were quantified in the culture broth, while the antioxidant potential was evaluated for the mycelial biomass. G. lingzhi showed higher biomass production in MNM. However, it exhibited similar microstructural characteristics in both culture media. In the POL there was greater activity of CMCase (0.229 U/mL), xylanase (0.780 U/mL), pectinase (0.447 U/mL) and proteases (16.13 U/mL). FPase did not differ (0.01 U/mL), and laccase was detected only in MNM (0.122 U/mL). The biomass water extract from MNM showed high levels of phenolic compounds (951.97 mg AGE/100 g). DPPH• inhibition (90.55%) and reducing power (0.456) were higher in MNM medium, while ABTS•+ inhibition (99.95%) and chelating ability (54.86%) were higher in POL. Thus, the MNM medium was more favorable to the production of mycelial biomass and phenolic compounds, while the POL medium favored the synthesis and excretion of hydrolytic enzymes.


Assuntos
Antioxidantes , Biomassa , Meios de Cultura , Fermentação , Ganoderma , Antioxidantes/metabolismo , Antioxidantes/análise , Ganoderma/enzimologia , Ganoderma/metabolismo , Micélio/crescimento & desenvolvimento
2.
Anal Chim Acta ; 1329: 343201, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39396285

RESUMO

BACKGROUND: Remediation of heavy metal-contaminated water using phytoremediation with accumulator aquatic plants is a promising low-cost emerging technology that adapts very well to the surrounding ecosystem. For the system to work efficiently, metal-saturated plants must be replaced, producing a potentially toxic amount of biomass that is usually stored dry to reduce its volume. The speciation of the high metal content in this biomass is crucial to define its final destination. This work explores the application of synchrotron-based EDIXS (Energy Dispersive Inelastic X-ray Scattering) to monitor the speciation of copper in regional aquatic plants from a laboratory-scale phytoremediation system. RESULTS: The phytofiltration system utilized Lemna minor L. and Salvinia biloba Raddi species grown under controlled conditions of light and nutrient availability. Both species are known hyperaccumulators of copper and are prevalent in lakes and rivers across South America. The validation of EDIXS was previously carried out by comparing the results of copper standard samples with those obtained by XANES. The findings revealed that both plant species retained copper in chemical complexes exhibiting octahedral coordination with a Cu valence of 2. Notably, differences emerged between the leaves and roots of Lemna minor L., suggesting a more pronounced adsorption of copper in its leaves, a trend that intensified with exposure. In opposite, for Salvinia the differences between leaves and roots suggests the presence of specific protective mechanisms to cope the copper exposure. Surprisingly, no significant dependence on copper concentration of the aqueous media was observed for either species. SIGNIFICANCE AND NOVELTY: These promising results endorse the viability of the proposed methodology in identifying the most effective fate of biomass generated in phytoremediation systems. EDIXS provides a valid tool for performing local copper speciation in aquatic plants with sufficient selectivity to identify subtle differences in various biological tissues. The simplicity of this methodology renders it a valuable tool for advancing our comprehension of metal speciation within waste biomass, thereby holding significant implications for the development of environmental remediation strategies.


Assuntos
Biodegradação Ambiental , Biomassa , Cobre , Cobre/química , Cobre/metabolismo , Cobre/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Araceae/metabolismo , Araceae/química , Filtração
3.
Environ Sci Pollut Res Int ; 31(49): 59592-59609, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39361204

RESUMO

Fungal biomass is as a cost-effective and sustainable biosorbent utilized in both active and inactive forms. This study investigated the efficacy of inactivated and dried biomass of Fusarium sp. in adsorbing Ni2+ and Pb2+ from aqueous solutions. The strain underwent sequential cultivation and was recovered by filtration. Then, the biomass was dried in an oven at 80 ± 2 °C and sieved using a 0.1-cm mesh. The biosorbent was thoroughly characterized, including BET surface area analysis, morphology examination (SEM), chemical composition (XRF and FT-IR), thermal behavior (TGA), and surface charge determination (pH-PZC and zeta potential). The biosorption mechanism was elucidated by fitting equilibrium models of kinetics, isotherm, and thermodynamic to the data. The biosorbent exhibited a neutral charge, a rough surface, a relatively modest surface area, appropriate functional groups for adsorption, and thermal stability above 200 °C. Optimal biosorption was achieved at 25 ± 2 °C, using 0.05 g of adsorbent per 50 mL of metallic ion solution at initial concentrations ranging from 0.5 to 2.0 mg L-1 and at pH 4.5 for Pb2+ and Ni2+. Biosorption equilibrium was achieved after 240 min for Ni2+ and 1440 min for Pb2+. The process was spontaneous, mainly through chemisorption, in monolayer for Ni2+ and multilayer for Pb2+, with efficiencies of over 85% for both metallic ion removal. These findings underscore the potential of inactive and dry Fusarium sp. biomass (IDFB) as a promising material for the biosorption of Ni2+ and Pb2+.


Assuntos
Biomassa , Fusarium , Chumbo , Níquel , Termodinâmica , Fusarium/metabolismo , Níquel/química , Cinética , Adsorção , Poluentes Químicos da Água/química
4.
Bioresour Technol ; 413: 131515, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39366513

RESUMO

While mycoprotein has gained traction as a human food source, its potential as a nutrient for animals remains largely unexplored. The mycoprotein-producing Rhizopus microsporus var. oligosporus, a fungus traditionally used for human food in Indonesia, is promising. It could revolutionise animal nutrition once it is Generally Recognized as Safe (GRAS) and is a biosafety level 1 (BSL1) organism. To enhance sustainably, we propose using sugar cane molasses (SM) and corn steep liquor (CSL) as nutrient sources. Also, we investigated the growth of R. microsporus var. oligosporus in five 14 L external-loop airlift bioreactors using CSL as the sole nutrient source. After 96 h of fermentation, at 25 °C and 0.5 vvm, the mycelium produced had an average biomass yield of 38.34 g L-1, with 70.18 % (m v-1) crude protein (mycoprotein). This bioprocess, which is scalable and economically viable, produces high amounts of mycoprotein for animal feed using CSL, a cost-effective agro-industrial by-product, providing a practical solution to the growing demand for animal protein.


Assuntos
Reatores Biológicos , Fermentação , Rhizopus , Saccharum , Rhizopus/metabolismo , Projetos Piloto , Proteínas Fúngicas/metabolismo , Melaço , Zea mays , Biomassa , Agricultura/métodos
5.
World J Microbiol Biotechnol ; 40(10): 314, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249571

RESUMO

This research propounds an innovative technology focused on sustainability to increase the biomass yield of Akkermansia muciniphila, the next-generation probiotic, using prebiotic sources to replace or reduce animal mucin levels. A series of experimental design approaches were developed aiming to optimize the growth of Akkermansiamuciniphila by incorporating extracts of green leafy vegetables and edible mushroom into the cultivation media. Experiments using kale extract (KE), Brassica oleracea L., associated with lyophilized mushroom extract (LME) of Pleurotus ostreatus were the most promising, highlighting the assays with 0.376% KE and 0.423% LME or 1.05% KE and 0.5% LME, in which 3.5 × 1010 CFU (Colony Forming Units) mL- 1 was achieved - higher than in experiments in optimized synthetic media. Such results enhance the potential of using KE and LME not only as mucin substitutes, but also as a source to increase Akkermansia muciniphila biomass yields and release short-chain fatty acids. The work is relevant to the food and pharmaceutical industries in the preparation of the probiotic ingredient.


Assuntos
Akkermansia , Biomassa , Meios de Cultura , Prebióticos , Probióticos , Verrucomicrobia , Akkermansia/crescimento & desenvolvimento , Meios de Cultura/química , Verrucomicrobia/crescimento & desenvolvimento , Verrucomicrobia/metabolismo , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Ácidos Graxos Voláteis/metabolismo , Extratos Vegetais/química , Brassica/crescimento & desenvolvimento , Brassica/microbiologia
6.
Molecules ; 29(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39339383

RESUMO

Ceiba aesculifolia is an important species in Mexico that generates significant amounts of biomass waste during its exploitation, which can be utilized to produce energy. This study presents the characterization of this waste based on chemical (proximal and elemental) and thermal analyses (TGA-DTG) at different heating rates (ß = 10-30 °C/min (283-303 K/min)) in the presence of nitrogen and in a temperature range of 25-900 °C. Kinetic parameters were calculated and analyzed as well. Activation energy (Ea) and the pre-exponential factor (A) were determined using the Friedman (132.03 kJ/mol, 8.11E + 10 s -1), FWO (121.65 kJ/mol, 4.30E + 09), KAS (118.14 kJ/mol, 2.41E + 09), and Kissinger (155.85 kJ/mol, 3.47E + 11) kinetic methods. Variation in the reaction order, n (0.3937-0.6141), was obtained by Avrami's theory. We also calculated the thermodynamic parameters (ΔH, ΔG, ΔS) for each kinetic method applied. The results for Ea, A, n, ΔH, ΔG, and ΔS show that this biomass waste is apt for use in pyrolysis. Moreover, the moisture (<10%), ash (<2%), volatile material (>80%), and HHV (>19%) contents of C. aesculifolia allowed us to predict acceptable performance in generating energy and fuels. Finally, infrared spectroscopy analysis (FT-IR) allowed us to identify important functional groups, including one that belongs to the family of the aliphatic hydrocarbons.


Assuntos
Pirólise , Termodinâmica , Cinética , Biomassa , Biocombustíveis/análise , Temperatura
7.
Braz J Biol ; 84: e284877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319930

RESUMO

The soil is a dynamic environment, influenced by abiotic and biotic factors, which can result in changes in plant development. This study aimed to assess the impact on vegetative growth of chia (Salvia hispanica L) inoculated with Trichoderma harzianum and on the rhizosphere microbiome. The experimentation was conducted in a greenhouse under controlled conditions growing chia plants in pots containing soil with a clayey texture. Different concentrations of T. harzianum (0; 2.5; 5.0; 10.0; 20.0 µL. g-1 of seed) were applied to the chia seeds before planting. Morphological parameters, including plant height (cm), number of branches, stem diameter (mm), number of days to flowering and shoot and root dry masses (g) were quantitatively assessed. After the cultivation period, soil samples from the rhizosphere region were collected for subsequent chemical and metagenomic analyses. These samples were also compared with the control soil, collected before installing the experiment. The results showed that increasing doses of T. harzianum promoted a significant increase in the diameter of the stem, number of branches, dry biomass of the root system and the number of days to flowering, without modifying the overall height of the plants. Soil metagenomics indicated that T. harzianum inoculation modified the microbial diversity of the rhizosphere environment, with more pronounced effects observed in samples treated with higher concentrations of the inoculant. Furthermore, there were changes in the chemical composition and enzymes related to soil quality in correlation with the concentrations of the applied inoculant. This study demonstrated that inoculating chia seeds with T. harzianum not only promotes specific morphogenetic characteristics of the plant, but it also has a significant impact on the microbial diversity and biochemical functionality of the soil, including an observed increase in the populations of T. harzianum and T. asperellum.


Assuntos
Metagenômica , Salvia , Microbiologia do Solo , Salvia/microbiologia , Rizosfera , Biomassa , Hypocreales/fisiologia , Raízes de Plantas/microbiologia
8.
Water Res ; 266: 122423, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39298903

RESUMO

Phytoremediation is an eco-friendly and affordable option for tackling wastewater pollutants. The study focused on how light-emitting diodes (LED) light exposure, measured by intensity and duration (photoperiod), along with cytokinin, impacts Azolla microphylla's simulated swine wastewater treatment performance and biomass production. Under optimal treatment conditions, high removals of COD (89.2 % to 90.8 %), N-NH4+ (72.6 % to 91.2 %), N-NO3- (84.4 % to 88.6 %), Cu (75.4 % to 86.4 %), sulfamethoxazole (77.0 % to 79.0 %), P-PO43- (54.1 % to 59.9 %) and DOC (67.4 % to 71.3 %) while Zn presented a more moderate reduction (2.0 % to 9.7 %). Biomass productivity reached up to 34.8 t ha-1 yr-1. Protein production accounted for 23 % to 27 % of dry weight, while lipids ranged from 20 % to 34 % of dry biomass. Carbohydrate content varied from 8 % to 28 % of fresh weight. Higher light intensities, with both high or low values of photoperiods, and low concentrations of cytokinin were identified as optimal conditions for removal of almost all pollutants. However, pollutant removal was impacted differently by LED light and cytokinin concentration. In treatment conditions with the shortest photoperiods (8 h), the lowest residual Cu and Zn concentrations, whereas with longer photoperiods (24 h), the lowest residual concentrations of N-NH4+ and P-PO43- concentrations were recorded. On the other hand, SMX was the only parameter in which cytokinin had a clear influence on its removal, with the lowest residual concentration observed under 8-hour photoperiods combined with the lowest tested cytokinin concentrations (0.3 mg L-1). For residual COD and N-NO3-, no discernible pattern was evident for any of the analyzed factors. Therefore, the study demonstrates the potential for treating simulated swine wastewater using Azolla microphylla, aligned with its ability to produce biomass rich in high-value compounds.


Assuntos
Biodegradação Ambiental , Biomassa , Citocininas , Águas Residuárias , Águas Residuárias/química , Animais , Suínos , Citocininas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Luz , Poluentes Químicos da Água , Gleiquênias/metabolismo , Gleiquênias/crescimento & desenvolvimento
9.
Environ Sci Pollut Res Int ; 31(49): 58973-58987, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39325130

RESUMO

In the present study, the microalga Arthrospira platensis DHR 20 was cultivated in vertical flat-plate photobioreactors (FPBRs) to bioremediate anaerobically digested cattle wastewater (ACWW) and used as a growth substrate. The final objective was to evaluate the properties of the oil extracted from this biomass to determine its potential for biodiesel production. The process was divided into five phases, varying the volume of the applied substrate: 1 L (Phase I), 5 L (Phase II), 10 L (Phase III), 15 L (Phase IV), and 20 L (Phase V). Dry biomass reached a maximum of 5.7 g L-1, and productivity peaked at 0.74 g L-1d-1. The highest rate of CO2 biofixation was 1213.5 mg L-1 day-1, showing good potential for purifying the air. The highest specific maximum growth rate (µmax) and the shortest doubling time (Dt) were found during Phase I. The removal of pollutants and nutrients during the experimental phases ranged from 65.8% to 87.1% for chemical oxygen demand (COD), 82.2% to 85.8% for total organic carbon (TOC), 91% to 99% for phosphate (PO43-), 62.5% to 93% for nitrate (NO3-), 90.4% to 99.7% for ammoniacal nitrogen (NH4+), and 86.5% to 98.5% for total nitrogen (TN). The highest lipid production recorded was 0.172 g L-1 day-1. The average cetane number recorded in Phase IV of 51 suggests that the fuel will ignite efficiently and consistently, providing smooth operation and potentially reducing pollutant emissions. The analysis of fatty acids revealed that the produced biodiesel has the potential to be used as an additive for other low-explosive biocombustibles, representing an innovative and sustainable approach that simultaneously offers bioremediation and carbon sequestration.


Assuntos
Biocombustíveis , Biomassa , Microalgas , Fotobiorreatores , Águas Residuárias , Animais , Bovinos
10.
Bioresour Technol ; 413: 131447, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39245066

RESUMO

Biorefineries have attracted significant attention from the scientific community and various industrial sectors due to their use of unconventional biomass sources to produce biofuels and other value-added compounds. Various agro-industrial residues can be applied in biorefinery systems, making them economically and environmentally attractive. However, the cost, efficiency, and profitability of the process are directly affected by the choice of biomass, pre-treatments, and desired products. In biorefineries, the simultaneous production of different products during processing is a valuable approach. Chemical, physical, biological, or combined treatments can generate numerous compounds of high commercial interest, such as phenolic compounds. These treatments, in addition to modifying the biomass structure, are essential for the process's viability. Over the years, complex treatments with high costs and environmental impacts have been simplified and improved, becoming more specific in generating high-value resources as secondary outputs to the main process (generally related to the release of sugars from lignocelluloses to produce second-generation ethanol). Innovative methods involving microorganisms and enzymes are the most promising in terms of efficiency and lower environmental impact. Biorefineries enable the use of varied raw materials, such as different agro-industrial residues, allowing for more efficient resource utilization and reducing dependence on non-renewable sources. In addition to producing low-carbon biofuels, biorefineries generate a variety of high-value by-products, such as packaging materials, pharmaceuticals, and nutritional ingredients. This not only increases the profitability of biorefineries but also contributes to a circular economy.


Assuntos
Biocombustíveis , Indústria Alimentícia , Resíduos Industriais , Biomassa , Biotecnologia/métodos , Conservação dos Recursos Naturais
11.
Sci Rep ; 14(1): 21401, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271926

RESUMO

Current climate projections for mid-latitude regions globally indicate an intensification of wind-driven coastal upwelling due to warming conditions. The dynamics of mid-latitude coastal upwelling are marked by environmental variability across temporal scales, which affect key physiological processes in marine calcifying organisms and can impact their large-scale distribution patterns. In this context, marine invertebrates often exhibit phenotypic plasticity, enabling them to adapt to environmental change. In this study, we examined the physiological performance (i.e., metabolism, Thermal Performance Curves, and biomass and calcification rates) of individuals of the intertidal mollusk Chiton granosus, a chiton found from northern Peru to Cape Horn (5° to 55°S). Our spatial study design indicated a pattern of contrasting conditions among locations. The Talcaruca site, characterized by persistent upwelling and serving as a biogeographic break, exhibited lower pH and carbonate saturation states, along with higher pCO2, compared to the sites located to the north and south of this location (Huasco and Los Molles, respectively). In agreement with the spatial pattern in carbonate system parameters, long-term temperature records showed lower temperatures that changed faster over synoptic scales (1-15 days) at Talcaruca, in contrast to the more stable conditions at the sites outside the break. Physiological performance traits from individuals from the Talcaruca population exhibited higher values and more significant variability, along with significantly broader and greater warming tolerance than chitons from the Huasco and Los Molles populations. Moreover, marked changes in local abundance patterns over three years suggested population-level responses to the challenging environmental conditions at the biogeographic break. Thus, C. granosus from the Talcaruca upwelling zone represents a local population with wide tolerance ranges that may be capable of withstanding future upwelling intensification on the Southern Eastern Pacific coast and likely serving as a source of propagules for less adapted populations.


Assuntos
Temperatura , Animais , Ecossistema , Biomassa , Peru , Água do Mar , Adaptação Fisiológica , Mudança Climática , Calcificação Fisiológica
12.
PLoS One ; 19(9): e0308847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39302957

RESUMO

We evaluated by comparing the performance of three pneumatically-driven bioreactors in the production of L-asparaginase (L-ASNase), an enzyme used to treat leukaemia and lymphoma. A two-step screening process was conducted to detect Cunninghamella spp. strains producing L-ASNase. Cunninghamella echinulata DSM1905 produced the highest levels of L-ASNase during screening assays. Subsequently, fermentations were performed in bubble column (BCR), airlift (ALR), and hybrid fixed-bed airlift (FB-ALR) bioreactors to determine the best upstream bioprocess. Mycelial biomass production was higher in BCR than in ALR and FB-ALR (p ≤ 0.0322). The activity of L-ASNase produced in FB-ALR, in which the fungus grew as a consistent biofilm, was significantly higher (p ≤ 0.022) than that from ALR, which was higher than that of BCR (p = 0.036). The specific activity of ALR and FB-ALR presented no differences (p = 0.073), but it was higher than that of BCR (p ≤ 0.032). In conclusion, C. echinulata DSM1905, grown under the biofilm phenotype, produced the highest levels of L-ASNase, and FB-ALR was the best upstream system for enzyme production.


Assuntos
Asparaginase , Biofilmes , Reatores Biológicos , Cunninghamella , Reatores Biológicos/microbiologia , Cunninghamella/metabolismo , Biofilmes/crescimento & desenvolvimento , Asparaginase/biossíntese , Asparaginase/metabolismo , Fermentação , Biomassa
13.
Environ Sci Pollut Res Int ; 31(43): 55280-55300, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39227535

RESUMO

The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.


Assuntos
Biomassa , Luffa , Trimetoprima , Poluentes Químicos da Água , Purificação da Água , Luffa/química , Adsorção , Poluentes Químicos da Água/química , Trimetoprima/química , Purificação da Água/métodos , Água/química , Cinética
14.
Sci Rep ; 14(1): 20539, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232009

RESUMO

The objective was to evaluate the biosolids as an alternative source of nutrients in the production of chrysanthemums by adding increasing doses to the cultivation substrate. The experimental design was in blocks with 6 treatments and 5 replications. The treatments consisted of the mixture (commercial substrate + biosolid) at the concentrations: 20%, 40%, 60% and 80% of biosolid + two controls (100% of biosolid and 100% of substrate). The experiment was conducted in a greenhouse for 90 days. Physiological parameters, number of flower buds, dry biomass and nutrient accumulation were evaluated. Physiological parameters were evaluated using the Infrared Gas Analyzer. The number of flower buds was evaluated by counting. Biomass was determined after drying the structures and then calculated the accumulation of nutrients. A total of 90 plants were evaluated. Concentrations of up to 40% of biosolid promoted a greater number of flower buds, dry biomass and nutrient accumulation. Concentrations above 60% lower number of buds, biomass increment and nutrient accumulation. It is concluded that the biosolid has potential as an alternative source of nutrients in the cultivation of chrysanthemums, indicating concentrations of up to 40% and the nutrient content of each batch generated must be verified.


Assuntos
Biomassa , Chrysanthemum , Flores , Nutrientes , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/metabolismo , Nutrientes/metabolismo , Nutrientes/análise , Flores/crescimento & desenvolvimento , Flores/metabolismo
15.
Braz J Biol ; 84: e286941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39230086

RESUMO

Seed priming with biostimulant for soybean is a promising practice contributing positively to the physiological quality and vigor of seedlings, but there are little studies regarding protocols of bioinputs, such as Ascophyllum nodosum L. seaweed extract. We aimed to evaluate the effect of doses of A. nodosum macroalgae in seed priming and its impact on germination and seedling vigor of soybean. Seeds were subjected to priming with A. nodosum extract (ANE) at doses of 0, 1, 2, 3, 4, and 5 mL kg seed-1 during 15 min. Priming with ANE did not influence the first count and seed germination. Soybean seedlings from priming with 5 mL kg-1 ANE showed higher growth and shoot and root dry biomass. We observed increase 18% for shoot dry matter with priming of 5 mL kg-1 ANE compared to untreated seeds. The responses were variable for the emergence speed index in function ANE and did not influence the photochemical processes in photosystem II. Seed priming with ANE contributed in higher chlorophyll index. ANE showed a biostimulant effect on soybean seedlings, providing better growth and biomass characteristics, being promising in seed priming, but further studies are suggested in order to increase information regarding its use protocol for soybean.


Assuntos
Ascophyllum , Germinação , Glycine max , Plântula , Sementes , Ascophyllum/química , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Germinação/fisiologia , Germinação/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Biomassa , Alga Marinha/fisiologia , Extratos Vegetais/farmacologia , Clorofila/análise
16.
An Acad Bras Cienc ; 96(suppl 1): e20230273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39292102

RESUMO

The high performance of biomass and metabolite biosynthesis by photosynthetic microorganisms is directly influenced by the cultivation system employed. Photobioreactors (PBRs) stand out as controlled and fundamental systems for increasing the production of biocompounds. However, the high costs associated with these systems hinder their viability. Thus, a more practical and economical approach is necessary. Accordingly, this study aimed to design and evaluate low-cost flat-panel photobioreactors on a laboratory scale for the cultivation of photosynthetic microorganisms, using economical materials and instruments. Additionally, internal optimization of the low-cost system was aimed to maximize growth and biomass production. The PBRs were designed and built with uniform dimensions, employing 4 mm translucent glass and agitation through compressors. The internally optimized system (PBR-OII) was equipped with perforated acrylic plates used as static mixers. To evaluate the performance of the low-cost PBR-OII, a comparison was made with the control photobioreactor (PBR-CI), of the same geometry but without internal optimization, using a culture of Synechocystis sp. CACIAM 05 culture. The results showed that the PBR-OII achieved maximum biomass yield and productivity of 6.82 mg/mL and 250 mg/L/day, respectively, values superior to the PBR-CI (1.87 mg/mL and 62 mg/L/day). Additionally, the chlorophyll concentration in the PBR-OII system was 28.89 ± 3.44 µg/mL, while in the control system, the maximum reached was 23.12 ± 1.85 µg/mL. Therefore, low-cost photobioreactors have demonstrated to be an essential tool for significantly increasing biomass production, supporting research, and reducing costs associated with the process, enabling their implementation on a laboratory scale.


Assuntos
Biomassa , Microalgas , Fotobiorreatores , Fotobiorreatores/microbiologia , Microalgas/crescimento & desenvolvimento , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo , Biotecnologia/instrumentação , Biotecnologia/métodos , Fotossíntese/fisiologia , Cianobactérias/crescimento & desenvolvimento , Desenho de Equipamento
17.
Lett Appl Microbiol ; 77(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39231807

RESUMO

Yeast immobilization in beer fermentation has recently regained attention, due to the expansion of the craft beer market and the diversification of styles and flavors. The aim of this study was to evaluate the physiological differences between immobilized and free yeast cells with a focus on flavor-active compounds formation. Three strains of Saccharomyces spp. (SY025, SY067, SY001) were evaluated in both free and immobilized (using a cellulose-based support, referred as ImoYeast) forms during static batch fermentations of 12 °P malt extract. Immobilized cells showed higher glycerol (SY025, 40%; SY067, 53%; SY001, 19%) and biomass (SY025, 67%; SY067, 78%; SY001, 56%) yields than free cells. Conversely, free cells presented higher ethanol yield (SY025, 9%; SY067, 9%; SY001, 13%). Flavor-active compounds production exhibited significant alterations between immobilized and free cells systems, for all strains tested. Finally, a central composite design with varying initial biomass (X0) and substrate (S0) concentrations was conducted using strain SY025, which can be helpful to modulate the formation of one or more flavor-active compounds. In conclusion, yeast immobilization in the evaluated support resulted in flavor alterations that can be exploited to produce different beer styles.


Assuntos
Cerveja , Células Imobilizadas , Fermentação , Aromatizantes , Saccharomyces , Cerveja/microbiologia , Cerveja/análise , Saccharomyces/metabolismo , Aromatizantes/metabolismo , Células Imobilizadas/metabolismo , Biomassa , Etanol/metabolismo , Glicerol/metabolismo , Saccharomyces cerevisiae/metabolismo
18.
Sci Total Environ ; 953: 176154, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39260503

RESUMO

Run-of-river (ROR) dams, often perceived as having minimal environmental impact, can induce significant hydrodynamic changes that alter aquatic ecosystems. We investigated the impacts of an ROR dam on the Madeira River, the largest Amazon tributary, focusing on phytoplankton communities, their ecological implications, and related environmental factors. Our study examined changes in biomass and environmental factors (using General Linear Mixed Models - GLMM), species composition (using PERMANOVA) before and after damming, in both the main channel and tributaries (N = 549 samples). We also identified indicator species associated with different damming phases and regions through an indicator value analysis. The results showed that, following dam construction, the phytoplankton community changed in both the main channel and tributaries, with a shift from lotic diatoms to lentic phytoflagellates. This transition was likely facilitated by altered hydrodynamics and possibly influenced by the decomposition of flooded vegetation in the dam's influence zone. The decomposition of this vegetation could explain both the observed increase in oxygen consumption and the subsequent rise in phytoflagellate biomass after damming. However, despite the overall increase in phytoplankton biomass, the values remained within oligotrophic to mesotrophic conditions, consistent with the low nutrient concentrations recorded. However, we caution that the dam-created hydrodynamic conditions are optimal for phytoplankton growth, potentially exacerbating nutrient-related issues in the future. We recommend proactive management strategies to prevent nutrient enrichment from activities such as agriculture and livestock in isolated Amazon areas affected by dams, thereby mitigating potential degradation of water quality linked to increased phytoplankton biomass.


Assuntos
Biomassa , Monitoramento Ambiental , Fitoplâncton , Rios , Rios/química , Brasil , Ecossistema
19.
PeerJ ; 12: e18201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346040

RESUMO

Background: Leucaena leucocephala is a useful multipurpose tree species for agroforestry systems, but traditional seeded cultivars often become weedy and invasive. A seedless hybrid cultivar, 'KX4-Hawaii', offers a potential solution to this problem. However, relevant agronomic information and information on the performance of 'KX4-Hawaii' under varying growth conditions is required. The goal of this research was to evaluate 'KX4-Hawaii' as a source of agricultural biomass in Barbados, a small island developing state with limited arable land. Methods: 'KX4-Hawaii' air layers were imported into Barbados to create stock trees. Air layering was used to create propagation material and a field study was established with a 'KX4-Hawaii' hedgerow planted as a field border. Three plant spacings (50, 75, and 100 cm) were evaluated and data on the growth and biomass yields of the trees were collected at 4-month intervals. Precipitation data were used to investigate climatic effects on 'KX4-Hawaii' productivity. Results: 'KX4-Hawaii' was successfully propagated via air layers and could be planted directly in the field with irrigation. All recorded growth and biomass yields were correlated with precipitation. However, the woody (lignified stems and branches) biomass was more responsive to precipitation than the green (leaves and green tender stems) biomass and made up a large fraction of the total biomass produced. 'KX4-Hawaii' was productive even under drought conditions and biomass yields per meter of hedgerow increased with closer spacings. Of the tested spacing treatments, 75 cm was optimum for a 4-month pruning interval under the conditions seen in Barbados as it produced similar yields to the 50 cm spacing treatment but would require less propagation material.


Assuntos
Biomassa , Fabaceae/crescimento & desenvolvimento , Barbados , Agricultura/métodos , Árvores/crescimento & desenvolvimento
20.
Environ Sci Pollut Res Int ; 31(45): 56482-56498, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39271609

RESUMO

This study aims to conduct an applied and innovative investigation to enhance the energy quality of wood residues through hydrothermal carbonization pretreatment. For this purpose, the treatment was carried out at three different temperatures: 180, 220, and 240 °C under autogenous pressure. The in natura material and the hydrochars were characterized, and thermogravimetric analyses were performed in an O2 atmosphere with heating rates of 2.5, 5, 10, and 20 °C min-1. The global activation energy for natura biomass combustion was determined to be 112.49 kJ.mol-1. On the other hand, the hydrothermal carbonization process promoted a reduction in this value for the 94.85 kJ.mol-1. The conversion function for the in natura biomass was characterized as 1 - α , order 1, while the hydrochars was 2(1-α) [-ln(1-α)] (1/2), Avrami-Erofe'ev I. Triple kinetic parameters were ascertained, and the conversion curves along with their respective derivatives were modeled, exhibiting minimal deviations between theoretical and experimental data. This facilitated the mathematical representation of the reaction processes and allowed for a comprehensive comparison of the results.


Assuntos
Termogravimetria , Cinética , Biomassa , Madeira/química , Carvão Vegetal/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA