RESUMO
Lignin-carbohydrate complexes (LCC) that exhibit both structural advantages of lignin and carbohydrates are promising amphiphilic biopolymers, but the extraction is challenged by its liable chemical bond cleavage between lignin and carbohydrates. This work proposed a facile chemical route to integrating the production of water-insoluble (WIS LCC) and water-soluble LCC (WS LCC) into the emerging deep eutectic solvent (DES) biorefinery at mild conditions. The tailored mechanochemical fractionation process of ball milling assisted aqueous alkaline DES could extract 24.2 % LCC in total, with the co-production of a highly hydrolysable cellulose fraction (98.7 % glucose conversion). The resulting LCC exhibited considerably high contents of ß-O-4, phenyl glycoside, and ferulic acid linkage bonds. When 100 g starting straw was subjected to this technique route, 9.1 g WIS LCC, 15.1 g WS LCC and 45.5 g glucose were cascaded produced. It was proposed that the selective disruption of hydrogen bonding entangled network and the quasi-state dissolution of the whole biomass allowed the subsequent cascade fractionation of WIS LCC, WS LCC and highly hydrolysable cellulose through solution property adjustment. This work showed a promising approach for LCC production with high yield without compromising cellulose conversion potential, which has been challenging in the current lignocellulose biorefinery.
Assuntos
Lignina , Oryza , Lignina/química , Celulose/química , Oryza/química , Hidrólise , Carboidratos/química , Glucose/química , Água , Biomassa , Solventes/químicaRESUMO
Vitamin B12(Vit B12) is an essential micronutrient for body growth, and abnormal levels of Vit B12 in the human body are closely associated with the prediction of certain diseases. Hence, a rapid, sensitive, and environment-friendly approach for Vit B12 detection was set up. Herein, the Bird's nest carbon dots (B-CDs) are synthesized by using a bird's nest and distilled water as precursors. One-step hydrothermal synthesis has created B-CDs without toxic ingredients or surface chemical modifications. The prepared B-CDs exhibited outstanding characteristics including excellent water solubility, brilliant fluorescence performance great biocompatibility, and fine stability in a broad pH range of 3.0-11.0 and high ionic strength solution. The experiment revealed that the fluorescence of the reaction system showed a regular decrease after the interaction of B-CDs with Vit B12. Additionally, there was an excellent linear relationship between the F/F0 of B-CDs and the concentration of Vit B12. The linear range was 0 â¼ 100 µM, R2 was 0.9929, and the detection limit was 0.24 µM. Finally, the proposed method successfully detected Vit B12 in human serum samples with recoveries of 96.2 %-100.3 %, showing broad clinical prospects.
Assuntos
Pontos Quânticos , Humanos , Carbono , Vitamina B 12 , Biomassa , Corantes Fluorescentes , Espectrometria de Fluorescência/métodos , ÁguaRESUMO
Impact of land use intensification on soil microbial communities across a territory remains poorly documented. Yet, it has to be deciphered to validate the results obtained at local and global scales by integrating the variations of environmental conditions and agricultural systems at a territorial scale. We investigated the impact of different land uses (from forest to agricultural systems) and associated soil management practices on soil molecular microbial biomass and diversity across a territory of 3300 km2 in Burgundy (France). Microbial biomass and diversity were determined by quantifying and high-throughput sequencing of soil DNA from 300 soils, respectively. Geostatistics were applied to map the soil macro-ecological patterns and variance partitioning analysis was used to rank the influence of soil physicochemical characteristics, land uses and associated practices on soil microbial communities. Geographical patterns differed between microbial biomass and diversity, emphasizing that distinct environmental drivers shaped these parameters. Soil microbial biomass was mainly driven by the soil organic carbon content and was significantly altered by agricultural land uses, with a loss of about 71 % from natural to agricultural ecosystems. The best predictors of bacterial and fungal richness were soil texture and pH, respectively. Microbial diversity was less sensitive than microbial biomass to land use intensification, and fungal richness appeared more impacted than bacteria. Co-occurrence network analysis of the interactions among microbial communities showed a decline of about 95 % of network complexity with land use intensification, which counterbalanced the weak response of microbial diversity. Grouping of the 147 cropland plots in four clusters according to their agricultural practices confirmed that microbial parameters exhibited different responses to soil management intensification, especially soil tillage and crop protection. Our results altogether allow evaluating the different levels of microbial parameters' vulnerability to land use intensity at a territorial scale.
Assuntos
Microbiota , Solo , Solo/química , Biomassa , Microbiologia do Solo , Carbono , Bactérias/genéticaRESUMO
In alpine grasslands, increased N deposition is increasing the dominance of grasses relative to other functional types according to our previous study Shen et al. (2022). However, the mechanisms that drive this compositional change are not fully understood. We measured the effects of 4-6 years' N addition to simulate N deposition at rates of 0 (CK), 8 (N1), 24 (N2), 40 (N3), 56 (N4), and 72 (N5) kg N ha-1 year-1 on dominant representatives of four functional types, Leymus secalinus (grass), Carex capillifolia (sedge), Potentilla multifidi (non-leguminous forb), and Medicago ruthenica (legume), in the alpine grassland on the Qinghai-Tibetan Plateau (QTP). In-situ experiment showed that N addition increased aboveground biomass in L. secalinus but had negative or neutral effects on aboveground biomass in the other species. Consistent with this finding, N addition increased net photosynthesis, chlorophyll content, and rubisco activity in L. secalinus with less positive effects on the other species. Nitrogen addition increased leaf N content in L. secalinus and C. capillifolia and reduced leaf non-structural carbohydrate content in all four species. In L. secalinus, the highest N addition rate (N5) reduced MDA content, a marker of oxidative stress, by enhancing antioxidant enzyme activity. Overall, our findings suggested that physiological factors can contribute to increased competitiveness of grass relative to sedge, forb and legume species under high N application levels. The rapid growth of this grass species reduces resource availability to non-grass species, increasing its dominance in the alpine meadow.
Assuntos
Pradaria , Poaceae , Poaceae/fisiologia , Solo/química , Biomassa , Verduras , MedicagoRESUMO
Long-term observations have shown that structure and function of grasslands have changed due to climate change over the past decades. However, little is known about how grasslands respond to climate change along the precipitation gradient, and potential mechanisms remain elusive. Here, we utilize a long-term experiment in typical steppe to explore universal and differential mechanisms of community and functional groups assembly along the precipitation gradient. Our results indicated that the sensitivity of community and functional groups assembly to climate change was related to local precipitation. The strength of the positive effects of climate change on aboveground biomass, species richness, and their relationship of community decreased modestly with local precipitation. The mechanism behind this was the change in plant community composition of the precipitation-induced, annuals that was more responsive to climate change decreased as increased local precipitation. Furthermore, current and past climate both drove community and functional group assembly, and the role of past climate diminished with increasing local precipitation. Among them, climate fluctuation, average climate and current climate were the most critical climate indicators affecting community and functional groups assembly in low, medium and high precipitation sites, respectively. In conclusion, climatic change do not always exert identical effects on grasslands along the precipitation gradient. This could be critical importance for improving our ability to predict future changes in grassland ecosystems.
Assuntos
Ecossistema , Pradaria , Chuva , Plantas , Biomassa , Mudança ClimáticaRESUMO
Crops have been well studied at abruptly elevated CO2 (e[CO2]). In fact, atmospheric CO2 concentration is rising gradually, but its ecological effect is little known. Thus, rice growth and yield were investigated under gradual e[CO2] (GE) and abrupt e[CO2] (AE) using open-top chambers. Gradual e[CO2] involved an ambient CO2 (a[CO2]) + 40 µmol mol-1 per year in 2016 until a[CO2] + 200 µmol mol-1 in 2020, while AE maintained a[CO2] + 200 µmol mol-1 from 2016 to 2020. We found that steady-state photosynthetic rates responded similarly and increased significantly under GE and AE, however, photosynthetic induction time in dynamic photosynthesis was reduced by AE. Gradual e[CO2] had little effect on biomass before the grain filling stage, while AE significantly stimulated biomass because of the stronger tillering ability and faster photosynthetic induction rate. Neither e[CO2] increased biomass at maturity, however, a significant increase in panicle density was observed under AE. Surprisingly, rice yield was not promoted by both e[CO2], possibly resulting from the reduced carbon assimilation caused by accelerated phenology from grain filling to maturity. These results promote a new understanding of the CO2 fertilization effect with small and slow increases in CO2 concentration, closer to what happens in nature. This may partly challenge the classic view of elevated CO2 fertilization effects from AE.
Assuntos
Oryza , Dióxido de Carbono/farmacologia , Fotossíntese , Grão Comestível , Produtos Agrícolas , Biomassa , Folhas de PlantaRESUMO
Forests significantly influence the dynamics of microbial biomass and soil nutrients in neighboring agricultural lands. Little information is available on how forest types affect the physicochemical and microbial dynamics of soil in surrounding agroecosystems. The present study evaluated the influence of forest types on soil physicochemical and biological characteristics of forest and associated agricultural systems in the Himalaya. The study was conducted in three forests Banj-oak (OF), Chir-pine (PF), and Nepalese-alder (AF)) and adjacent agricultural lands (OA, oak-adjacent), (PA, pine-adjacent), and (AA, alder-adjacent). Soil samples were collected from three depths (0-10, 10-20, and 20-30 cm). Using two-way ANOVA, soil variables were tested for their effects, including interactions among land-use types and depths. PCA was used to investigate the relationship between land-use types, soil depths, and soil physicochemical and biological characteristics. ANOVA results showed that soil porosity (Po), organic carbon (Corg), total nitrogen (Ntl), bioavailable phosphorous (Pavl), microbial biomass carbon (Cmic), and nitrogen (Nmic) significantly varied (p < 0.05) across land-use types, soil depths, and land-use types × soil depths (p < 0.001) and followed: AF > AA> OF>OA > PF > PA. The soil moisture (Mo), Corg, Ntl, Pavl, Cmic, and Nmic declined with soil depths: 0-10 > 10-20 > 20-30, although variations between lower-surface depths (10-20 and 20-30 cm) were not significant. PCA analysis showed that soil Corg, Po, and pH were the primary regulators of microbial biomass across land-use types and soil depths. Compared to PF, AF and OF have a greater positive influence on soil nutrients and microbial biomass of adjacent agroecosystems. In conclusion, forest vegetation type influences soil microbial biomass by buffering soil substrate (e.g., Corg, Ntl, pH) in forest and adjacent agricultural lands. The findings may help in developing strategies for sustainable agriculture adjacent to forest ecosystems, by maintaining long-term soil quality in the central Himalaya.
Assuntos
Pinus , Solo , Ecossistema , Microbiologia do Solo , Florestas , Biomassa , Carbono/análise , Nitrogênio/análiseRESUMO
The influence of nitrogen deficiency on microalgae-bacteria co-culture has been studied mostly with nitrogen-fixing bacteria. Photosynthetic bacteria (PSB), which are non-nitrogen-fixing bacteria, the impact of N deficiency on its co-culture with microalgae is unknown. In this study, Chlorella pyrenoidosa and Rhodobacter sphaeroides co-culture was cultivated photoheterotrophically with acetate. The impact of N starvation and different P supply levels on oil production were examined. When phosphorus was sufficient, N starvation increased the fatty acid methyl ester (FAME) content from 21.7 % to 28.2 %, and also increased the FAME yield (g CODFAME/g CODAcetate) from 0.17 to 0.22. However, the biomass and FAME productivities decreased. Sufficient phosphorus was also essential for a high growth rate and FAME productivity. Deficiencies in either N or P led to a decrease in the proportion of unsaturated FAMEs. iTRAQ analysis indicated N starvation promoted oil accumulation by driving the carbon flow to fatty acid synthesis in microalgae from co-culture. This study improves the understanding of biomass and lipid production via microalgae-PSB co-culture in photoheterotrophic cultivation. The mechanism of interaction between microalgae and bacteria needs further study.
Assuntos
Chlorella , Microalgas , Bactérias Fixadoras de Nitrogênio , Rhodobacter sphaeroides , Técnicas de Cocultura , Ácidos Graxos , Fósforo , Biomassa , Nitrogênio , Nutrientes , AcetatosRESUMO
Fireworks (FW) could significantly worsen air quality in short term during celebrations. Due to similar tracers with biomass burning (BB), the fast and precise qualification of FW and BB is still challenging. In this study, online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM2.5 and specific chemical species by positive matrix factorization (PMF) during the Chinese New Year in Hong Kong in February 2013. With combined information, fresh/aged FW (abundant 140K2NO3+ and 213K3SO4+ formed from 113K2Cl+ discharged by fresh FW) can be extracted from the fresh/aged BB sources, in addition to the Second Aerosol, Vehicles + Road Dust, and Sea Salt factors. The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region. The fresh BB/FW contributed 39.2% and 19.6% to PM2.5 during the Lunar Chinese New Year case. However, the contributions of aged FW/BB enhanced in the last two episodes due to the aging process, evidenced by high contributions from secondary aerosols. Generally, the fresh BB/FW showed more significant contributions to nitrate (35.1% and 15.0%, respectively) compared with sulfate (25.1% and 5.9%, respectively) and OC (14.8% and 11.1%, respectively) on average. In comparison, the aged FW contributed more to sulfate (13.4%). Overall, combining online bulk and single-particle measurement data can combine both instruments' advantages and provide a new perspective for applying source apportionment of aerosols using PMF.
Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Monitoramento Ambiental , Material Particulado/análise , Sulfatos , Emissões de Veículos/análiseRESUMO
Herein, a ratiometric fluorescent probe was developed for sensitive detection of salicylic acid (SA) in rice using silk-derived carbon quantum dots @ Curcumin @ iron-based metal organic framework (SCQDs@Cur@Fe-MOFs). Fe-MOFs with porous structure not only provided holes for SCQDs to evade self-aggregation of SCQDs, but Fe2+ ions from MOFs was ingeniously employed to capture active sites of Cur, solving the problem of lacking sufficient specificity of Cur to SA while converting weak response signal to amplified "turn on" mode. Upon exposed to SA, the probe interacted with SA to form Cur-Fe2+-SA ternary complex, which inhibited the internal filtration effect between Cur and SCQDs, and triggered a cascade of response signaling. With this strategy, the proposed probe achieved sensitive determination of salicylic acid in rice with detection limit as low as 0.14 µmol/L. This study provides unique insight into constructing economical and eco-friendly fluorescent sensor for SA detection with superior performance.
Assuntos
Oryza , Pontos Quânticos , Corantes Fluorescentes/química , Biomassa , Ácido Salicílico , Ferro , Pontos Quânticos/química , Carbono/química , Limite de DetecçãoRESUMO
Polysaccharides from garlic waste leaf and skin biomass have been isolated using a sequential extraction protocol and characterised using constituent sugar composition and linkage analysis, spectroscopy, chromatography and dilute solution viscometry. The results revealed that the isolated polysaccharides were predominantly pectins. The predominant monosaccharide in all samples was galacturonic acid (>61 %), followed by galactose and rhamnose. The pectins extracted from skin biomass were mainly homogalacturonan (83-91 %), whereas those extracted from leaf biomass comprised both homogalacturonan (62-65 %) and rhamnogalacturonan-I (35-38 %). The degree of methyl esterification of uronic acids in all samples was 44-56 %. The peak molecular weight of the main polysaccharide population in each sample was â¼ 350 x103 g/mol, with leaf extracts and the skin acidic extract containing a second, lower molecular weight peak. Overall, waste garlic biomass is a potential resource for commercial pectin extraction for use in food or pharmaceutical industries.
Assuntos
Alho , Biomassa , Pectinas/química , Polissacarídeos/química , Galactose/químicaRESUMO
Emissions from biomass burning challenge efforts to curb air pollution in cities downwind of fire-prone regions, as they contribute large amounts of brown carbon (BrC) and black carbon (BC) particles. We investigated the patterns of BrC and BC concentrations using Aethalometer data (at λ = 370 and 880 nm, respectively) spanning four years at a site impacted by the outflow of smoke. The data required to be post processed for the shadowing effect since, without correction, concentrations would be between 29% and 35% underestimated. The BrC concentrations were consistently higher than the BC concentrations, indicating the prevalence of aerosols from biomass burning. The results were supported by the Ångström coefficient (Å370/880), with values predominantly larger than 1 (mean ± standard deviation: 1.25 ± 0.31). Å370/880 values below 1 were more prevalent during the wet season, which suggests a contribution from fossil fuel combustion. We observed sharp BrC and BC seasonal signals, with mean minimum concentrations of 0.40 µg/m3 and 0.36 µg/m3, respectively, in the wet season, and mean maximum concentrations of 2.05 µg/m3 and 1.53 µg/m3 in the dry season. The largest concentrations were observed when northerly air masses moved over regions with a high density of fire spots. Local burning of residential solid waste and industrial combustion caused extreme BrC and BC concentrations under favourable wind directions. Although neither pollutant is included in any ambient air quality standards, our results suggest that transboundary smoke may hamper efforts to meet the World Health Organization guidelines for fine particles.
Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Fumaça , Carbono/análise , Brasil , Meteorologia , Monitoramento Ambiental/métodos , Fuligem/análise , Aerossóis/análise , BiomassaRESUMO
In this work, several binding gels were successfully prepared in Diffusive Gradient in Thin-film (DGT) that targeted the inclusion of novel biomass-derived materials for the determination of the labile fraction of mercury (Hg) in water. First, five biomass-derived materials were tested and the descending order as a function of the average percentage of Hg removal in solution was feathers > biochar > cork > canola meal > rice husk. The best two materials were treated and pulverized into powder to be embedded in a hydrogel; and so, feathers were pyrolyzed preserving the sulfur contained in their keratin structure (FBC), and biochar (BC) was modified and pyrolyzed with sublimated sulfur (SBC) to increase the Hg sorption sites in its structure. Analysis by Energy Dispersive X-ray fluorescence (EDXRF) spectrometry confirmed that the different pyrolysis procedures increased sulfur absorption successfully. The efficiency of the new gels (BC, SBC and FBC) in agarose was evaluated by comparative Hg uptake tests, showing a larger efficacy in the following order: SBC > BC > FBC. To assess the suitability of their application in freshwater environments, novel DGT devices were also evaluated to determine their diffusion coefficients (D). This test was conducted under controlled laboratory conditions, with particular focus on the potential competence of trace elements (Mn, Cu, Zn, Ni, Pb, Cd and As), which are commonly present in natural waters affected by mining. A stronger linear relationship between the Hg uptake by binding layers and the deployment time were obtained for the DGT devices with SBC (R2 = 0.948) vs. BC (R2 = 0.885). Therefore, the D obtained for Hg were 8.94 × 10-6 cm2 s-1 for DGT-SBC and 5.12 × 10-6 cm2 s-1 for DGT-BC devices at 25 °C, both within the same order of magnitude reported by previous studies. The good performance obtained by DGT-SBC devices is a promising result and indicates the potential for valorization of waste materials in the DGT technique.
Assuntos
Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Água/análise , Biomassa , Difusão , Géis , Enxofre/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análiseRESUMO
To achieve excellent germplasm resource screening and ensure the quality control of herbal tea raw material, it is important to establish a cost-effective, rapid, and on site quantitative detection method for their bioactive constituents. We developed a smartphone-operated sensor for electrochemical detection of chlorogenic acid (CGA) using hierarchically porous carbon (DSiFPC), synthesized through a soft-hard dual template strategy with tannin acid as a carbon source, silica colloid as a hard template, and Pluronic F127 as a soft template. The DSiFPC modified glassy carbon electrode sensor showed excellent electrocatalytic ability towards CGA, with a wide linear range of 0.03-1 µM and a low limit of detection of 6.2 nM. It was successfully applied for detecting CGA in dried flowers of Lonicera japonica. Furthermore, a portable sensor utilizing a DSiFPC modified screen-printed electrode was employed for on site detection of CGA in fresh Eucommia ulmoides leaves, yielding satisfactory recoveries.
Assuntos
Ácido Clorogênico , Smartphone , Biomassa , Análise Custo-Benefício , Porosidade , CarbonoRESUMO
Flooding time and external nitrogen (N) input have been projected to be the main threats to marsh ecosystems in the scenario of more intense flooding events and N deposition. How flooding and N addition experienced at different growth stages interact in determining phenotypic change remains scarce. We established a controlled experiment (3 flooding time treatments x 5 N addition levels) using two herbaceous marsh species (Phragmites australis and Bolboschoenus planiculmis) to assess the responses of six key traits to environmental changes and the indication of plant performance. Early flooding reduced plant height and aboveground biomass of P. australis and below/aboveground biomass ratio of B. planiculmis and increased below/aboveground biomass ratio of P. australis and root biomass of B. planiculmis, whereas late flooding reduced root biomass of P. australis and ramet number and aboveground biomass of B. planiculmis. The combination of flooding and high N (16 and 32 g N m-2) exerted negative effects on ramet number of both plant species. The interaction of early flooding and low-medium N (8 and 16 g N m-2) inhibited clonal/belowground biomass ratio of both plant species. The combination of early flooding and low N (0, 4 and 8 g N m-2) promoted root biomass and below/aboveground biomass ratio of P. australis. Ramet number, plant height, and root biomass explained 80-90 % of aboveground biomass variation of both plant species, and the contribution of ramet number was greater than that of the other two traits. These results highlight that the influence of flooding time and external N input on the performance of marsh plants depends on species identity. Meanwhile, the ramet number-plant height-root biomass (RHR) strategy is supposed to be the adaptation strategy of wetland clonal plants to environmental changes, and clonal reproductive traits should be incorporated into vegetation dynamics models for marsh plants.
Assuntos
Cyperaceae , Poaceae , Áreas Alagadas , Ecossistema , Nitrogênio , Plantas , BiomassaRESUMO
Several innovative strategies of design and operation, such as biogas recirculation, centrate pH manipulation and liquid nanoparticle addition, were tested to assess their potential to improve CO2 mass transfer during photosynthetic purification of biogas in a microalgae-bacteria pond connected to a biogas scrubbing column. Biogas recirculation in the column was not effective since the biogas and cultivation broth had reached chemical equilibrium under the operational conditions and configuration without biogas recirculation. Feeding the centrate at pH 10 (with and without ammonium desorption) directly to the absorption column substantially improved CO2 removal efficiency (from 58 to 91 %) achieving a biomethane complying with European standards. The supplementation of liquid nanoparticles considerably increased biomass concentration in the pond (from 1.2 to 3.5 g/L), revealing an enhanced photosynthetic activity. However, this promising approach requires additional research to elucidate the best conditions to boost CO2 absorption and guarantee a biomethane fulfilling most international standards.
Assuntos
Biocombustíveis , Microalgas , Dióxido de Carbono/análise , Fotossíntese , BiomassaRESUMO
Current study had made a significant progress in microalgal wastewater treatment through the implementation of an economically viable polyethylene terephthalate (PET) membrane derived from plastic bottle waste. The membrane exhibited an exceptional pure water flux of 156.5 ± 0.25 L/m2h and a wastewater flux of 15.37 ± 0.02 L/m2h. Moreover, the membrane demonstrated remarkable efficiency in selectively removing a wide range of residual parameters, achieving rejection rates up to 99%. The reutilization of treated wastewater to grow microalgae had resulted in a marginal decrease in microalgal density, from 10.01 ± 0.48 to 9.26 ± 0.66 g/g. However, this decline was overshadowed by a notable enhancement in lipid production with level rising from 181.35 ± 0.42 to 225.01 ± 0.11 mg/g. These findings signified the membrane's capacity to preserve nutrients availability within the wastewater; thus, positively influencing the lipid synthesis and accumulation within microalgal cells. Moreover, the membrane's comprehensive analysis of cross-sectional and surface topographies revealed the presence of macropores with a highly interconnected framework, significantly amplifying the available surface area for fluid flow. This exceptional structural attribute had substantially contributed to the membrane's efficacy by facilitating superior filtration and separation process. Additionally, the identified functional groups within the membrane aligned consistently with those commonly found in PET polymer, confirming the membrane's compatibility and efficacy in microalgal wastewater treatment.
Assuntos
Microalgas , Águas Residuárias , Polietilenotereftalatos , Ultrafiltração , Estudos Transversais , Biomassa , LipídeosRESUMO
Atmospheric fine particulate matter (PM2.5) is associated with cardiorespiratory morbidity and mortality due to its ability to generate reactive oxygen species (ROS). Ambient PM2.5 samples were collected during heating and nonheating seasons in Xi'an, China, and the ROS-generation potential of PM2.5 was quantified using the dithiothreitol (DTT) assay. Additionally, positive matrix factorization combined with multilayer perceptron was employed to apportion sources contributing to the oxidation potential of PM2.5. Both the mass concentration of PM2.5 and the volume-based DTT activity (DTTv) were higher during the heating season than during the nonheating season. The primary contributors to DTTv were combustion (biomass and coal) sources during the heating season (>52 %), whereas secondary formation dominated DTT activity during the nonheating season (35.7 %). In addition, the secondary reaction process promoted the generation of intrinsic oxidation potential (OP) of sources. Among all the sources investigated (traffic source, industrial emission, mineral dust, biomass burning, secondary formation and coal combustion), the inherent oxidation potential of biomass burning was the highest, whereas that of mineral dust was the lowest. Our study indicates that anthropogenic sources, especially biomass burning, should be prioritized in PM2.5 toxicity control strategies.
Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Metanol , Espécies Reativas de Oxigênio/análise , Biomassa , Monitoramento Ambiental , Material Particulado/análise , China , Estações do Ano , Ditiotreitol , Carvão Mineral/análise , Poeira/análise , Minerais/análise , Emissões de Veículos/análiseRESUMO
Macrophytes with different growth forms exhibit diverse functional traits and ecological functions. In natural sub-deep lakes, there are often large differences in water quality between nearshore areas with macrophytes and open water areas. However, it remains unclear whether this phenomenon can be attributed to differences in plant growth forms. Therefore, we conducted continuous monitoring for four years, both before and after the implementation of an ecological restoration project, to explore whether the change in plant growth forms caused differences in water quality between the nearshore and open water areas. The results showed that implementing ecological restoration projects proved highly effective in improving the local environment, including water physicochemical properties and biological components, in the implementation area. First, the ecological restoration project greatly altered the plant community structure in the nearshore area before and after restoration. After restoration, there was a significant increase in the biomass and distribution area of noncanopy-forming plants (including erect and rosette-forming plants), while the opposite effect was observed for canopy-forming plants. Second, the transition of macrophyte community growth forms enhanced the stability of both macrophyte communities and water physicochemical parameters. Furthermore, the reduction in canopy-forming plants facilitated a more efficient water body exchange, resulting in greater homogeneity in water quality between the nearshore and open water areas. Overall, the presence of canopy-forming plants can hinder water body exchange due to large canopy formations on the water surface. In light of these findings, it is recommended that ecological restoration projects in natural lakes should consider the functional group composition of macrophytes.
Assuntos
Lagos , Qualidade da Água , Biomassa , Desenvolvimento Vegetal , Plantas , EcossistemaRESUMO
Cultivation of the seaweed, Gracilariopsis lemaneiformis, supports environmental bioremediation and the aquaculture economy in coastal ecosystems, and microorganisms play important roles during the cultivation process. In this study, we aimed to understand the response of bacterial communities through a full cultivation cycle of G. lemaneiformis. We analyzed the bacterial communities using 16S rRNA gene amplicon sequencing and defined the environmental factors of 144 water samples from the Nan'ao Island, South China Sea. Community diversity, keystone species and ecological networks of bacterial communities shifted markedly in the cultivation zone largely due to changes in the environmental factors, seaweed biomass and cultivation stages. The bacterial communities at the seaweed zone have lower species richness, more seaweed-associated taxa and simpler but more stable co-occurrence networks compared to the control zone. Persistent microbial groups such as Aquimarina, Formosa, Glaciecola and Marinobacter exhibited a strong association with seaweed during the growth and maturity stages. We describe a conceptual model to summarize the changes in the bacterial community composition, its diversity and the ecological networks in seaweed cultivation zone. Overall, this study provides new perspectives on the dynamic interaction of seaweed cultivation, bacterial communities and environment factors and their potential ecosystem services as observed in the example of the G. lemaneiformis cultivation ecosystem.