Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Life Sci ; 242: 117185, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862453

RESUMO

Colorectal cancer (CRC) is a multifactorial syndrome that drives to uncontrollable cell division, genetic alterations, and functional alteration. In the present work, we evaluated the immunomodulatory properties of P-mapa, a compound extracted from Aspergillus oryzae fungus, versus Fluorouracil (5-FU) treatment in chemically induced CRC. CRC was induced by DMH in F344 rats. Animals of treated groups receive weekly 15 mg/Kg of 5-FU or 5 mg/Kg of P-mapa, over 10 weeks. Tissues were stained for aberrant crypt foci (ACF) counting and histopathology evaluation, immunostained for TLR4 pathways and quantified for TNFα Cytokine assay. DMH was efficient to induce hyperplastic lesions and ACF. Both treatments reduced significantly ACF formation and tumor aggressiveness. Immunohistochemistry for TLR4 signaling reveals that both treatments had no effect over the TLR4-NFκB signaling pathway. On the other hand, both succeed in increase interferon signaling, with activation of the TRIF-IRF3 pathway and consequently inducing IFNγ synthesis. The present results show the immunomodulatory properties of P-mapa in chemically induced CRC model. P-mapa induced a significant increase in Type-I IFNs synthesis and subsequently immune cell recruitment, resulting in an increase of IFNγ concentration in colorectal mucosa and its inhibitory effects over tumoral growth. In this scenario, P-mapa showed an interesting antitumoral effect by inhibiting tumor growth.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Focos de Criptas Aberrantes/patologia , Animais , Biopolímeros/uso terapêutico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ensaio de Imunoadsorção Enzimática , Fluoruracila/uso terapêutico , Masculino , Ratos , Ratos Endogâmicos F344 , Fator de Necrose Tumoral alfa/metabolismo
2.
Medicina (Kaunas) ; 55(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108965

RESUMO

Background and objectives: Cancer is the second leading cause of death globally, an alarming but expected increase. In comparison to other types of cancer, malignant bone tumors are unusual and their treatment is a real challenge. This paper's main purpose is the study of the potential application of composite scaffolds based on biopolymers and calcium phosphates with the inclusion of magnetic nanoparticles in combination therapy for malignant bone tumors. Materials and Methods: The first step was to investigate if X-rays could modify the scaffolds' properties. In vitro degradation of the scaffolds exposed to X-rays was analyzed, as well as their interaction with phosphate buffer solutions and cells. The second step was to load an anti-tumoral drug (doxorubicin) and to study in vitro drug release and its interaction with cells. The chemical structure of the scaffolds and their morphology were studied. Results: Analyses showed that X-ray irradiation did not influence the scaffolds' features. Doxorubicin release was gradual and its interaction with cells showed cytotoxic effects on cells after 72 h of direct contact. Conclusions: The obtained scaffolds could be considered in further studies regarding combination therapy for malignant bone tumors.


Assuntos
Biopolímeros/uso terapêutico , Neoplasias Ósseas/terapia , Fosfatos de Cálcio/uso terapêutico , Quimiorradioterapia/métodos , Tecidos Suporte , Biopolímeros/administração & dosagem , Fosfatos de Cálcio/administração & dosagem , Quimiorradioterapia/normas , Humanos , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/uso terapêutico
3.
Nat Commun ; 10(1): 2060, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089131

RESUMO

Uncontrollable bleeding is a major problem in surgical procedures and after major trauma. Existing hemostatic agents poorly control hemorrhaging from traumatic arterial and cardiac wounds because of their weak adhesion to wet and mobile tissues. Here we design a photo-reactive adhesive that mimics the extracellular matrix (ECM) composition. This biomacromolecule-based matrix hydrogel can undergo rapid gelling and fixation to adhere and seal bleeding arteries and cardiac walls after UV light irradiation. These repairs can withstand up to 290 mm Hg blood pressure, significantly higher than blood pressures in most clinical settings (systolic BP 60-160 mm Hg). Most importantly, the hydrogel can stop high-pressure bleeding from pig carotid arteries with 4~ 5 mm-long incision wounds and from pig hearts with 6 mm diameter cardiac penetration holes. Treated pigs survived after hemostatic treatments with this hydrogel, which is well-tolerated and appears to offer significant clinical advantage as a traumatic wound sealant.


Assuntos
Adesivos/uso terapêutico , Biopolímeros/uso terapêutico , Hemorragia/terapia , Hemostáticos/uso terapêutico , Hidrogéis/uso terapêutico , Adesivos/química , Adesivos/efeitos da radiação , Animais , Artérias/lesões , Artérias/cirurgia , Biopolímeros/química , Biopolímeros/efeitos da radiação , Linhagem Celular , Vasos Coronários/lesões , Vasos Coronários/cirurgia , Modelos Animais de Doenças , Matriz Extracelular/química , Hemorragia/etiologia , Hemostáticos/química , Hemostáticos/efeitos da radiação , Humanos , Hidrogéis/química , Hidrogéis/efeitos da radiação , Masculino , Polimerização/efeitos da radiação , Ferida Cirúrgica/complicações , Resultado do Tratamento , Raios Ultravioleta
4.
Prog Neurobiol ; 171: 125-150, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30077776

RESUMO

Injuries to the peripheral nervous system (PNS) cause neuropathies that lead to weakness and paralysis, poor or absent sensation, unpleasant and painful neuropathies, and impaired autonomic function. In this regard, implanted artificial nerve guidance conduits (NGCs) used to bridge an injured site may provide appropriate biochemical and biophysical guidance cues required to stimulate regeneration across a nerve gap and restore the function of PNS. Advanced conduit design and fabrication techniques have made it possible to fabricate autograft-like structures in the NGCs with incredible precision. To this end, strategies involving the use of biopolymers, cells, growth factors, and physical stimuli have been developed over the past decades and have led to the development of varying NGCs, from simple hollow tubes to complex conduits that incorporate one or more guidance cues. This paper briefly reviews the recent progress in the development of these NGCs for nerve regeneration, focusing on the design and fabrication of NGCs, as well as the influence of biopolymers, cells, growth factors, and physical stimuli. The advanced techniques used to fabricate NGCs that incorporate cells/growth factors are also discussed, along with their merits and flaws. Key issues and challenges with regard to the development of NGCs have been identified and discussed, and recommendations for future research have been included.


Assuntos
Regeneração Tecidual Guiada/métodos , Regeneração Nervosa/fisiologia , Doenças do Sistema Nervoso Periférico/terapia , Animais , Biopolímeros/uso terapêutico , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Estimulação Física , Projetos de Pesquisa
5.
Mol Biol Rep ; 45(6): 2857-2867, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30094529

RESUMO

Wound is a growing healthcare challenge affecting several million worldwide. Lifestyle disorders such as diabetes increases the risk of wound complications. Effective management of wound is often difficult due to the complexity in the healing process. Addition to the conventional wound care practices, the bioactive polymers are gaining increased importance in wound care. Biopolymers are naturally occurring biomolecules synthesized by microbes, plants and animals with highest degree of biocompatibility. The bioactive properties such as antimicrobial, immune-modulatory, cell proliferative and angiogenic of the polymers create a microenvironment favorable for the healing process. The versatile properties of the biopolymers such as cellulose, alginate, hyaluronic acid, collagen, chitosan etc have been exploited in the current wound care market. With the technological advances in material science, regenerative medicine, nanotechnology, and bioengineering; the functional and structural characteristics of biopolymers can be improved to suit the current wound care demands such as tissue repair, restoration of lost tissue integrity and scarless healing. In this review we highlight on the sources, mechanism of action and bioengineering approaches adapted for commercial exploitation.


Assuntos
Biopolímeros/uso terapêutico , Engenharia Tecidual/métodos , Cicatrização/efeitos dos fármacos , Alginatos/uso terapêutico , Animais , Celulose/uso terapêutico , Quitosana/uso terapêutico , Colágeno/uso terapêutico , Humanos , Ácido Hialurônico/uso terapêutico , Medicina Regenerativa/métodos , Pele/metabolismo , Transplante de Pele/métodos
6.
Rev Col Bras Cir ; 45(4): e1837, 2018 Aug 06.
Artigo em Português, Inglês | MEDLINE | ID: mdl-30088524

RESUMO

OBJECTIVE: to evaluate, through Doppler flowmetry, venography, histology and clinical evolution, the use of sugarcane biopolymer (BP) tubular grafts in the reconstruction of femoral veins in dogs. METHODS: we submitted eight adult dogs to femoral vein reconstruction, on the left with BP tubular graft and on the right with autologous vein. In the postoperative period, the animals underwent clinical evaluation and femoral vein Doppler flowmetry. After 360 days, we reoperated the dogs and submitted them to femoral vein phlebography with iodinated contrast. We removed the segments of the femoral veins containing the grafts and sent them for histopathological evaluation. RESULTS: the dogs did not present hemorrhage, hematoma, surgical wound infection or operated limb edema. One animal had superficial venous dilatation in the left inguinal region. Phlebography performed 360 days after the first surgery showed that three (37.5%) BP grafts and seven (87.5%) grafts from the control group (C) were patent. In the histopathological evaluation, we found an inflammatory reaction, with neutrophils and lymphocytes on the external surface of both groups. In the intimal layer of the grafts and in the outer layer in the two groups, we observed fibrosis. CONCLUSION: based on the results obtained with the experimental model used, BP presents potential to be used as a tubular graft for venous revascularization. However, new research must be performed to confirm its efficacy in the revascularization of medium and large diameter veins, which could allow its use in clinical practice.


Assuntos
Bioprótese , Implante de Prótese Vascular/métodos , Prótese Vascular , Veia Femoral/transplante , Enxerto Vascular/métodos , Animais , Biopolímeros/uso terapêutico , Implante de Prótese Vascular/instrumentação , Cães , Feminino , Veia Femoral/patologia , Fluxometria por Laser-Doppler , Masculino , Modelos Animais , Distribuição Aleatória , Procedimentos Cirúrgicos Reconstrutivos/métodos , Saccharum , Transplante Autólogo/métodos
8.
Adv Exp Med Biol ; 1059: 155-188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736573

RESUMO

Semi-interpenetrating polymer networks (semi-IPNs) and interpenetrating polymeric networks (IPNs) have emerged as innovative materials for biomedical and pharmaceutical applications. The interest in these structures is due to the possibility of combining the favorable properties of each polymeric component of the IPNs or semi-IPNs leading to a new system with properties that often differ from those of the two single components. In this respect, polysaccharides represent an opportunity in this field, combining a general biocompatibility and a good availability. Moreover, the functional groups along the polymer chains allow chemical derivatization, widening the possibilities in semi-IPNs and IPNs building up. At the same time, materials based on proteins are often used in this field, due to their similarity to the materials present in the human body. All these overall properties allow tailoring new materials, thus designing desired properties and preparing new hydrogels useful in the biomedical field. In the present chapter, we chose to describe systems prepared starting from the most important and studied hydrogel-forming polysaccharides: alginate, hyaluronic acid, chitosan, dextran, gellan, and scleroglucan. Besides, systems based on proteins, such as gelatin, collagen, and elastin, are also described. With this chapter, we aim describing the routes already traveled in this field, depicting the state of the art and hoping to raise interest in designing new promising strategies useful in biomedical and pharmaceutical applications.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Hidrogéis/química , Materiais Biocompatíveis/uso terapêutico , Fenômenos Biomecânicos , Biopolímeros/uso terapêutico , Configuração de Carboidratos , Química Física , Colágeno/química , Colágeno/uso terapêutico , Reagentes para Ligações Cruzadas/farmacologia , Desenho de Drogas , Elastina/química , Elastina/uso terapêutico , Gelatina/química , Gelatina/uso terapêutico , Humanos , Hidrogéis/uso terapêutico , Concentração de Íons de Hidrogênio , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Relação Estrutura-Atividade , Temperatura Ambiente , Tecidos Suporte
9.
Mil Med ; 183(suppl_1): 433-444, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635619

RESUMO

Complex extremity wounds in Wounded Warriors can become contaminated with microbes, which may cause clinical outcomes resulting in amputation, morbidity, or even fatality. Local delivery of multiple or broad-spectrum antibiotics allows practicing clinicians treatment solutions that may inhibit biofilm formation. Propagation of vancomycin-resistant Staphylococcus aureus is also a growing concern. The development of vancomycin-resistant S. aureus has become a critical challenge in nosocomial infection prevention in the USA, but to date has seen little occurrence in osteomyelitis. As an alternative, locally delivered ciprofloxacin and rifampin were investigated in a preclinical model for the prevention of biofilm in complex extremity wounds with implanted fixation device. In vitro assays demonstrated ciprofloxacin and rifampin possess an additive effect against Gram-negative Pseudomonas aeruginosa and were actively eluted from a chitosan sponge based local delivery system. In an in vivo orthopedic hardware-associated polymicrobial model (S. aureus and Escherichia coli) the combination was able to achieve complete clearance of both bacterial strains. E. coli was detected in bone of untreated animals, but did not form biofilm on wires. Results reveal the clinical potential of antibiotic-loaded chitosan sponges to inhibit infection through tailored antibiotic selection at desired concentrations with efficacy towards biofilm inhibition.


Assuntos
Biopolímeros/farmacologia , Quitosana/farmacologia , Ciprofloxacino/administração & dosagem , Rifampina/administração & dosagem , Análise de Variância , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Biopolímeros/uso terapêutico , Quitosana/uso terapêutico , Cromatografia Líquida de Alta Pressão/métodos , Ciprofloxacino/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana/métodos , Rifampina/uso terapêutico , Staphylococcus aureus/efeitos dos fármacos
10.
Phytomedicine ; 38: 57-65, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29425655

RESUMO

BACKGROUND: Millions of people in the world suffer from chronic wounds of different etiologies such as diabetic foot and leg ulcers, without solutions nowadays. Molecules obtained from plants offer an alternative to aid wound healing. Strong evidence about essential oils (EO) anti-inflammatory and antimicrobial properties is thoroughly described in literature and their chemical compositions are well characterized. More recently, EO effects in experimental wounds have begun to be analyzed. AIM: We aim to summarize the evidence of EO in experimental wounds, and the possibility of combining them with biopolymers commonly used in skin regeneration. METHODS: Electronic databases such as ScienceDirect, PubMed and Scopus were used to search scientific contributions until March 2017, using relevant keywords. In a first step, literature focusing on EO and/or mono- or sesqui-terpenoids effects in rodent wounds was identified and summarized. In all cases, chemical structures and EO composition were detailed, as well as references to in vitro activities previously determined, e.g. antibacterial, antioxidant or anti-inflammatory. In a second step, scientific literature devoted to combine EO and biopolymers with the focus set on wound healing innovations, was collected and analyzed. RESULTS: Treatments with EO from species of genders Lavandula, Croton, Blumea, Eucalyptus, Pinus, Cymbopogon, Eucalyptus, Cedrus, Abies, Rosmarinus, Origanum, Salvia and Plectranthus, have shown positive results in rodent wounds. All of these EO were mainly composed by monoterpenoids-thymol, 1,8-cineole, linalool-or monoterpenes, as limonene or pinenes. Experimental wounds in rodents have shown faster closure rate, better collagen deposition and/or enhanced fibroblasts proliferation. In blends with biopolymers, several EO combined with chitosan, alginate, gelatin or collagen, were processed to give active films or nanofibers, with antioxidant, anti-inflammatory or antimicrobial activities. Curiously, all of these works were carried out since 2010. CONCLUSIONS: There is significant evidence about the effectivity of EO as wound healers. The incorporation of EO into a polymer matrix that contributes to wound healing is still incipient. However, scientific based evidence of the EO incorporation in resorbable polymeric scaffolds was found and analyzed herein. In summary, EO-biopolymer dressings or scaffolds have become promising artifacts regarding wound treatments, especially in chronic wounds, where treating infection and inflammation are still important issues.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Biopolímeros/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Cicatrização/efeitos dos fármacos , Alginatos/química , Animais , Biopolímeros/química , Biopolímeros/uso terapêutico , Colágeno/metabolismo , Pé Diabético/etiologia , Pé Diabético/terapia , Modelos Animais de Doenças , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Terpenos/análise , Terpenos/farmacologia
12.
Int J Biol Macromol ; 107(Pt A): 247-253, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28867232

RESUMO

Nowadays, fabrication of composite materials based on biopolymers is a rising field due to potential for bone repair and tissue engineering application. Blending of different biopolymers and incorporation of inorganic particles in the blend can lead to new materials with improved physicochemical properties and biocompatibility. In this work 3D porous structures called scaffolds based on chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Scaffolds were cross-linked by EDC/NHS. Infrared spectra for the materials were made, the percentage of swelling, scaffolds porosity and density, mechanical parameters, thermal stability were studied. Moreover, the scaffolds were used as matrixes for the calcium phosphate in situ precipitation. SEM images were taken and EDX analysis was carried out for calcium and phosphorous content determination in the scaffold. In addition, the adhesion and proliferation of human osteosarcoma SaOS-2 cells was examined on obtained scaffolds. The results showed that the properties of 3D composites cross-linked by EDC/NHS were altered after the addition of 1, 2 and 5% hyaluronic acid. Mechanical parameters, thermal stability and porosity of scaffolds were improved. Moreover, calcium and phosphorous were found in each kind of scaffold. SEM images showed that the precipitation was homogeneously carried in the whole volume of samples. Attachment of SaOS-2 cells to all modified materials was better compared to unmodified control and proliferation of these cells was markedly increased on scaffolds with precipitated calcium phosphate. Obtained materials can provide the support useful in tissue engineering and regenerative medicine.


Assuntos
Quitosana/química , Colágeno/química , Ácido Hialurônico/química , Engenharia Tecidual , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Biopolímeros/química , Biopolímeros/uso terapêutico , Fosfatos de Cálcio/química , Quitosana/síntese química , Quitosana/uso terapêutico , Colágeno/síntese química , Colágeno/uso terapêutico , Humanos , Ácido Hialurônico/síntese química , Ácido Hialurônico/uso terapêutico , Tecidos Suporte/química
13.
Molecules ; 22(11)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144424

RESUMO

In an attempt to enhance chitosan biological activities, biopolymeric Schiff bases of chitosan and different salicylaldehydes and their palladium(II) and platinum(II) complexes were synthesized and tested. The chemical structures of these derivatives were characterized using ¹H-NMR, FTIR spectroscopy and XPRD. Thermal analysis was done through TGA/DTG-DTA. Electronic absorption spectra and surface morphologies were analyzed by SEM-EDAX. Chitosan and its derivatives were evaluated for their in vitro antimicrobial activity against two common bacterial and fungal plant pathogens Pseudomonas syringae pv. tomato and Fusarium graminearum, respectively, and for their antitumor activity against a human breast cancer cell line (MCF-7). It was found that, compared to the nonmodified chitosan, chitosan modified with Schiff bases and their complexes was highly toxic against the MCF-7 cell line and had antibacterial effects against P. syringea. However, the modified chitosan derivatives had less pronounced antifungal effects against F. graminearum compared to the nonmodified chitosan, suggesting different modes of action.


Assuntos
Aldeídos/química , Biopolímeros/química , Quitosana/química , Complexos de Coordenação/síntese química , Bases de Schiff/síntese química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Biopolímeros/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Paládio/química , Platina/química , Polimerização , Bases de Schiff/farmacologia
15.
Int Wound J ; 14(6): 1276-1289, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28799228

RESUMO

Chitin and chitosan are biopolymers with excellent bioactive properties, such as biodegradability, non-toxicity, biocompatibility, haemostatic activity and antimicrobial activity. A wide variety of biomedical applications for chitin and chitin derivatives have been reported, including wound-healing applications. They are reported to promote rapid dermal regeneration and accelerate wound healing. A number of dressing materials based on chitin and chitosan have been developed for the treatment of wounds. Chitin and chitosan with beneficial intrinsic properties and high potential for wound healing are attractive biopolymers for wound management. This review presents an overview of properties, biomedical applications and the role of these biopolymers in wound care.


Assuntos
Curativos Hidrocoloides , Biopolímeros/uso terapêutico , Quitina/uso terapêutico , Quitosana/uso terapêutico , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Ferimentos e Lesões/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Macromol Biosci ; 17(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28128890

RESUMO

A gold standard for esophagus reconstruction is not still available. The present work aims to design a polymer patch combining synthetic polylactide-co-polycaprolacton and chitosan biopolymers, tailoring patch properties to esophageal tissue characteristics by a temperature-induced precipitation method, to get multilayered patches (1L, 2L, and 3L). Characterization shows stable multilayered patches (1L and 2L) by selection of copolymer type, and their M w . In vitro investigation of the functional patch properties in simulated physiologic and pathologic conditions demonstrates that the chitosan layer (patch 3L) decreases patch stability and cell adhesion, while improves cell proliferation. Patches 2L and 3L comply with physiological esophageal pressure (3-5 kPa) and elongation (20%).


Assuntos
Biopolímeros/química , Esôfago/efeitos dos fármacos , Engenharia Tecidual , Tecidos Suporte/química , Implantes Absorvíveis , Animais , Biopolímeros/uso terapêutico , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Quitosana/uso terapêutico , Esôfago/crescimento & desenvolvimento , Humanos , Poliésteres/química , Poliésteres/uso terapêutico
17.
Int J Biol Macromol ; 98: 748-776, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28111295

RESUMO

Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Glicoproteínas/química , Polímeros/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/uso terapêutico , Biopolímeros/química , Biopolímeros/uso terapêutico , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/uso terapêutico , Quitosana/química , Quitosana/uso terapêutico , Glicoproteínas/síntese química , Glicoproteínas/uso terapêutico , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Poliésteres/química , Poliésteres/uso terapêutico , Polímeros/síntese química , Polímeros/uso terapêutico , Povidona/química , Povidona/uso terapêutico
18.
Crit Rev Biotechnol ; 37(4): 492-509, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27248312

RESUMO

The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.


Assuntos
Biopolímeros/química , Quitosana/química , Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Biopolímeros/uso terapêutico , Quitina/química , Quitosana/uso terapêutico , Humanos , Nanopartículas de Magnetita/uso terapêutico
19.
Curr Top Med Chem ; 17(13): 1507-1520, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28017156

RESUMO

Since last decade, sugar based biopolymers are recognized in nanomedicine as promising materials for cancer imaging and therapy. Their durable, biocompatible and adhesive properties enable the fine tuning of their molecular weights (MW) and their miscellaneous nature makes the molecules acquire various conformations. These in turn provide effective endocytosis by cancer cell membranes that have already been programmed for internalization of different kinds of sugars. Therefore, biocompatible sugar based nanoparticles (SBNPs) are suitable for both cell-selective delivery of drugs and imaging through the human body. Recently, well known sugar-based markers have displayed superior performance to overcome tumor metastasis. Thereby, targeting strategies for cancer cells have been broadened to sugar-based markers as noticed in various clinic phases. In these studies, biopolymers such as chitosan, hyaluronic acid, mannan, dextran, levan, pectin, cyclodextrin, chondroitin sulphate, alginates, amylose and heparin are chemically functionalized and structurally designed as new biocompatible nanoparticles (NPs). The future cancer treatment strategies will mainly comprise of these multifunctional sugar based nanoparticles which combine the therapeutic agents with imaging technologies with the aim of rapid monitoring response to therapies. While each individual imaging and treatment step requires a long time period in effective treatment of diseases, these multifunctional sugar based nanoparticles will have the advantage of rapid detection, right drug efficiency evaluation and immediate interfere opportunity to some important diseases, especially rapidly progressing cancers. In this article, we evaluated synthesis, characterization and applications of main sugar based biopolymers and discussed their great promise in nano-formulations for cancer imaging and therapy. However much should be done and optimized prior to clinical applications of these nano-formulations for an efficient drug treatment without overall toxicity for getting most effective clinical results.


Assuntos
Biopolímeros/química , Biopolímeros/uso terapêutico , Carboidratos/uso terapêutico , Nanomedicina/métodos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Carboidratos/síntese química , Carboidratos/química , Humanos , Nanomedicina/tendências
20.
Biomacromolecules ; 17(11): 3672-3682, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27744688

RESUMO

The modular construction of Layer-by-Layer biopolymer microcarriers facilitates a highly specific design of drug delivery systems. A supported lipid bilayer (SLB) contributes to biocompatibility and protection of sensitive active agents. The addition of a lipid anchor equipped with PEG (shielding from opsonins) and biotin (attachment of exchangeable outer functional molecules) enhances the microcarrier functionality even more. However, a homogeneously assembled supported lipid bilayer is a prerequisite for a specific binding of functional components. Our investigations show that a tightly packed SLB improves the efficiency of functional components attached to the microcarrier's surface, as illustrated with specific antibodies in cellular application. Only a low quantity of antibodies is needed to obtain improved cellular uptake rates independent from cell type as compared to an antibody-functionalized loosely packed lipid bilayer or directly assembled antibody onto the multilayer. A fast disassembly of the lipid bilayer within endolysosomes exposing the underlying drug delivering multilayer structure demonstrates the suitability of LbL-microcarriers as a multifunctional drug delivery system.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Sistemas de Liberação de Medicamentos , Bicamadas Lipídicas/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/uso terapêutico , Biopolímeros/uso terapêutico , Biotina/química , Biotina/uso terapêutico , Portadores de Fármacos/química , Humanos , Bicamadas Lipídicas/síntese química , Bicamadas Lipídicas/uso terapêutico , Lisossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA