Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69.548
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 35(9): 1686-1697, 2019 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-31559750

RESUMO

Translationally controlled tumor proteins (TCTP) and SNF1- related protein kinase (SnRK1) are conserved and widely present in eukaryotic cells. TCTP regulates cell division, plant growth and development, and mediates plant resistance against pathogen infection. SnRK1 participates in a range of physiological processes including sugar metabolism and resistance to abiotic and biotic stresses. Previous work in our laboratory demonstrated that wheat TCTP can respond to Puccinia triticina infection and induce host defense responses. In order to further investigate the mechanism of TaTCTP in wheat resistance to Puccinia triticina infection, we used TAP (tandem affinity purification) and mass spectrometry to screen the potential interactants of TaTCTP. A SNF1- related protein kinase (SnRK1) was identified as a potential interacting protein of TaTCTP. The results of yeast two-hybrid assay showed that TCTP could interact with SnRK1 in yeast, and the yeast carrying TCTP and SnRK1 could grow on SD/-Leu/-Trp/-His/-Ade (SD/-LWHA) medium. The fluorescence signal of the interaction between TCTP and SnRK1 was found to be distributed in the cytoplasm in the Bi-fluorescense complementation experiment. Co-IP experiments further showed that TCTP and SnRK1 could interact in plant cells. This study lays an important foundation for further studying the mechanism of TaTCTP in the interaction between wheat and Puccinia triticina, and it play a great influence on further improving the molecular mechanism of wheat resistant to Puccinia triticina.


Assuntos
Basidiomycota , Triticum , Humanos , Neoplasias , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases
2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 48(3): 296-302, 2019 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-31496162

RESUMO

OBJECTIVE: To investigate the effects of high dose vitamin C (VC) on proliferation of breast cancer cells and to explore its mechanisms. METHODS: Human breast cancer cells Bcap37 and MDA-MB-453 were treated with VC at low dose (0.01 mmol/L), medium dose (0.10 mmol/L) and high dose (2.00 mmol/L). Cell proliferation was determined with CCK-8 assay, protein expression was evaluated by Western blot, and the secretion of lactic acid in tumor cells was detected by colorimetric method. Bcap37 cells were inoculated in nude mice, and tumor baring nude mice were intraperitoneally injected with high VC(4 g/kg, VC group, n=5)or normal saline (control group, n=5) for 24 d. Tumor weight and body weight were calculated. RESULTS: In vitro experiments demonstrated that high dose VC significantly inhibited cell proliferation in Bcap37 and MDA-MB-453 cells (all P<0.01); the expressions of Glut1 and mTOR signaling pathway-related proteins were decreased (all P<0.05); and the secretion of lactic acid was also markedly reduced (all P<0.05). In vivo experiment showed that the tumor weight was decreased in mice treated with high-dose VC as compared with control group (P<0.05), but no difference in body weights between two groups was observed. CONCLUSIONS: High dose VC may inhibit proliferation of breast cancer cells both in vitro and in vivo through reducing glycolysis and protein synthesis.


Assuntos
Ácido Ascórbico , Neoplasias da Mama , Glicólise , Biossíntese de Proteínas , Animais , Ácido Ascórbico/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Biossíntese de Proteínas/efeitos dos fármacos
3.
BMC Plant Biol ; 19(1): 349, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399044

RESUMO

BACKGROUND: AFP is a negative regulator of ABA signaling that promotes ABI5 protein degradation and weakens regulation of ABA signaling by targeting upstream genes of ABI5, and TaABI5 gene was seed-specific, and accumulated during wheat grain maturation and dormancy acquisition, which played an important role in seed dormancy; TaAFP has a conserved domain with AFP, so TaAFP may also play an important role in seed dormancy in wheat. RESULTS: Two allelic variants of TaAFP were identified on chromosome 2BS in common wheat, and designated as TaAFP-B1a and TaAFP-B1b. Sequence analysis showed a 4-bp deletion in the 5'UTR region of TaAFP-B1b compared with TaAFP-B1a. Based on the 4-bp deletion, a co-dominant functional marker of TaAFP-B was developed and designated as AFPB. The genotype generating a 203-bp fragment (TaAFP-B1b) was more resistant to pre-harvest sprouting than the genotype producing a 207-bp fragment (TaAFP-B1a) in a test of 91 white-grained Chinese wheat cultivars and advanced lines. The average germination index(GI) values of TaAFP-B1a and that of TaAFP-B1b were 45.18 and 30.72%, respectively, indicating a significant difference (P < 0.001). Moreover, the 4-bp deletion located in the 5'UTR not only affected the transcription level of TaAFP-B but also affected the mRNA decay, reduced the translation level of GUS and tdTomatoER and GUS activity in wheat leaves of transient expression. The transcript expression and the mRNA half-life value of TaAFP-B1a in developing seeds and mature seeds were much higher than those of TaAFP-B1b. CONCLUSION: We identified a 4-bp InDel in the 5'UTR of TaAFP-B, which affected the mRNA transcription level, mRNA decay, translation levels of GUS and tdTomatoER, GUS activity, and was significantly associated with seed dormancy in common wheat. A functional marker was developed and validated based on this InDel.


Assuntos
Dormência de Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Regiões 5' não Traduzidas/genética , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Deleção de Sequência , Transdução de Sinais/genética , Triticum/crescimento & desenvolvimento
4.
Mol Biol (Mosk) ; 53(4): 561-573, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31397432

RESUMO

The protein synthesis in cells occurs in ribosomes, with the involvement of protein translational factors. One of these translational factors is the elongation factor P (EF-P). EF-P is a three-domain protein that binds between the P and E sites of the ribosome, near the P-tRNA, the peptidyl transferase center, and E-site codon of the mRNA. The majority of studies showed that the EF-P helps the ribosome to synthesize stalling amino acid motifs, such as polyprolines. In the first part of this review, we inspect the general evolutionary variety of the EF-P in different organisms, the problems of the regulation provided by the EF-P, and its role in the sustainability of the protein balance in the cell in different physiological states. Although the functions of the EF-P have been well studied, there are still some problems that remain to be solved. The data from recent studies contradict the previous theories. Consequently, in the second part, we discuss the recent data that suggest the involvement of the EF-P in each translocation event, not only in those related to poly-proline synthesis. This activity contradicts some aspects of the known pathway of the removal of the E-tRNA during the translocation event. In addition, in the third part of this review, we tried to partly shift the interest from the antistalling activity of domain I of the EF-P to the action of domain III, the functions of which has not been closely studied. We expand on the idea about the involvement of domain III of the EF-P in preventing the frameshift and debate the EF-P's evolutionary history.


Assuntos
Evolução Molecular , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , Animais , Humanos , Fatores de Alongamento de Peptídeos/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/metabolismo
5.
Adv Exp Med Biol ; 1157: 41-83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31342437

RESUMO

Nonsense-mediated mRNA decay (NMD) is a well characterized eukaryotic mRNA degradation pathway, responsible for the identification and degradation of transcripts harboring translation termination codons in premature contexts. Transcriptome-wide studies revealed that NMD is not only an mRNA surveillance pathway as initially thought, but is also a post-transcriptional regulatory mechanism of gene expression, as it fine-tunes the transcript levels of many wild-type genes. Hence, NMD contributes to the regulation of many essential biological processes, including pathophysiological mechanisms. In this chapter we discuss the importance of NMD and of its regulation to organism development and its link to the cellular stress responses, like the unfolded protein response (UPR) and the integrated stress response (ISR). Additionally, we describe how tumor cells have explored both NMD functions to promote tumorigenesis. Using published data and databases, we have also performed a network-based approach that further supports the link between NMD and these (patho) physiological processes.


Assuntos
Neoplasias , Degradação do RNAm Mediada por Códon sem Sentido , Humanos , Neoplasias/fisiopatologia , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Transcriptoma
6.
Adv Exp Med Biol ; 1157: 99-116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31342439

RESUMO

Short upstream open reading frames (uORFs) are cis-acting elements located within the 5'-leader sequence of transcripts and are defined by an initiation codon in-frame with a termination codon located upstream or downstream of its main ORF (mORF) initiation codon. Recent genome-wide ribosome profiling studies have confirmed the widespread presence of uORFs and have shown that many uORFs can initiate with non-AUG codons. uORFs can impact gene expression of the downstream mORF by triggering mRNA decay or by regulating translation. Thus, disruption or creation of uORFs can elicit the development of several genetic diseases. Here, we review the mechanisms by which AUG- and non-AUG uORFs regulate translation. We also show some examples of uORF deregulation in human genetic diseases, focusing mainly on cancer. The knowledge of how uORF deregulation drives the onset of a disease, points out the need to screen the 5'-leader sequences of the transcripts in search for potential disease-related variants. This information will be relevant for the implementation of new diagnostic and/or therapeutic tools.


Assuntos
Regulação da Expressão Gênica , Neoplasias , Fases de Leitura Aberta , Ribossomos , Códon , Humanos , Neoplasias/genética , Biossíntese de Proteínas , Estabilidade de RNA
7.
Adv Exp Med Biol ; 1157: 117-132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31342440

RESUMO

Throughout evolution, eukaryotic cells have devised different mechanisms to cope with stressful environments. When eukaryotic cells are exposed to stress stimuli, they activate adaptive pathways that allow them to restore cellular homeostasis. Most types of stress stimuli have been reported to induce a decrease in overall protein synthesis accompanied by induction of alternative mechanisms of mRNA translation initiation. Here, we present well-studied and recent examples of such stress responses and the alternative translation initiation mechanisms they induce, and discuss the consequences of such regulation for cell homeostasis and oncogenic transformation.


Assuntos
Neoplasias , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Estresse Fisiológico , Humanos , Neoplasias/genética , Biossíntese de Proteínas/genética , Processamento de Proteína Pós-Traducional , Proteômica , Estresse Fisiológico/genética
8.
Nat Commun ; 10(1): 2901, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263101

RESUMO

Dysregulation of histone modifications promotes carcinogenesis by altering transcription. Breast cancers frequently overexpress the histone methyltransferase EZH2, the catalytic subunit of Polycomb Repressor Complex 2 (PRC2). However, the role of EZH2 in this setting is unclear due to the context-dependent functions of PRC2 and the heterogeneity of breast cancer. Moreover, the mechanisms underlying PRC2 overexpression in cancer are obscure. Here, using multiple models of breast cancer driven by the oncogene ErbB2, we show that the tyrosine kinase c-Src links energy sufficiency with PRC2 overexpression via control of mRNA translation. By stimulating mitochondrial ATP production, c-Src suppresses energy stress, permitting sustained activation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which increases the translation of mRNAs encoding the PRC2 subunits Ezh2 and Suz12. We show that Ezh2 overexpression and activity are pivotal in ErbB2-mediated mammary tumourigenesis. These results reveal the hitherto unknown c-Src/mTORC1/PRC2 axis, which is essential for ErbB2-driven carcinogenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Epigênese Genética , Complexo Repressor Polycomb 2/genética , Receptor ErbB-2/metabolismo , Quinases da Família src/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Neoplasias da Mama/patologia , Carcinogênese , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Biossíntese de Proteínas , Receptor ErbB-2/genética , Quinases da Família src/genética
9.
Nat Commun ; 10(1): 2947, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270320

RESUMO

To expand the toolbox of imaging in living cells, we have engineered a single-chain variable fragment binding the linear HA epitope with high affinity and specificity in vivo. The resulting probe, called the HA frankenbody, can light up in multiple colors HA-tagged nuclear, cytoplasmic, membrane, and mitochondrial proteins in diverse cell types. The HA frankenbody also enables state-of-the-art single-molecule experiments in living cells, which we demonstrate by tracking single HA-tagged histones in U2OS cells and single mRNA translation dynamics in both U2OS cells and neurons. Together with the SunTag, we also track two mRNA species simultaneously to demonstrate comparative single-molecule studies of translation can now be done with genetically encoded tools alone. Finally, we use the HA frankenbody to precisely quantify the expression of HA-tagged proteins in developing zebrafish embryos. The versatility of the HA frankenbody makes it a powerful tool for imaging protein dynamics in vivo.


Assuntos
Epitopos/metabolismo , Sondas Moleculares/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Imagem Individual de Molécula , Animais , Linhagem Celular Tumoral , Embrião não Mamífero/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Neurônios/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Anticorpos de Cadeia Única/metabolismo , Coloração e Rotulagem , Peixe-Zebra/embriologia
10.
Nature ; 571(7764): 251-256, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292559

RESUMO

The ability of proteins and other macromolecules to interact with inorganic surfaces is essential to biological function. The proteins involved in these interactions are highly charged and often rich in carboxylic acid side chains1-5, but the structures of most protein-inorganic interfaces are unknown. We explored the possibility of systematically designing structured protein-mineral interfaces, guided by the example of ice-binding proteins, which present arrays of threonine residues (matched to the ice lattice) that order clathrate waters into an ice-like structure6. Here we design proteins displaying arrays of up to 54 carboxylate residues geometrically matched to the potassium ion (K+) sublattice on muscovite mica (001). At low K+ concentration, individual molecules bind independently to mica in the designed orientations, whereas at high K+ concentration, the designs form two-dimensional liquid-crystal phases, which accentuate the inherent structural bias in the muscovite lattice to produce protein arrays ordered over tens of millimetres. Incorporation of designed protein-protein interactions preserving the match between the proteins and the K+ lattice led to extended self-assembled structures on mica: designed end-to-end interactions produced micrometre-long single-protein-diameter wires and a designed trimeric interface yielded extensive honeycomb arrays. The nearest-neighbour distances in these hexagonal arrays could be set digitally between 7.5 and 15.9 nanometres with 2.1-nanometre selectivity by changing the number of repeat units in the monomer. These results demonstrate that protein-inorganic lattice interactions can be systematically programmed and set the stage for designing protein-inorganic hybrid materials.


Assuntos
Silicatos de Alumínio/química , Proteínas Imobilizadas/química , Biossíntese de Proteínas , Nanofios/química , Ligação Proteica
11.
Nat Commun ; 10(1): 2519, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175275

RESUMO

The ribosome, the largest RNA-containing macromolecular machinery in cells, requires metal ions not only to maintain its three-dimensional fold but also to perform protein synthesis. Despite the vast biochemical data regarding the importance of metal ions for efficient protein synthesis and the increasing number of ribosome structures solved by X-ray crystallography or cryo-electron microscopy, the assignment of metal ions within the ribosome remains elusive due to methodological limitations. Here we present extensive experimental data on the potassium composition and environment in two structures of functional ribosome complexes obtained by measurement of the potassium anomalous signal at the K-edge, derived from long-wavelength X-ray diffraction data. We elucidate the role of potassium ions in protein synthesis at the three-dimensional level, most notably, in the environment of the ribosome functional decoding and peptidyl transferase centers. Our data expand the fundamental knowledge of the mechanism of ribosome function and structural integrity.


Assuntos
Potássio/metabolismo , Ribossomos/ultraestrutura , Difração de Raios X , Cátions , Microscopia Crioeletrônica , Cristalização , Cristalografia por Raios X , Escherichia coli , Biossíntese de Proteínas , Conformação Proteica , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/metabolismo
12.
Nat Commun ; 10(1): 2375, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147543

RESUMO

Human antigen R (HuR) is a member of the Hu family of RNA-binding proteins and is involved in many physiological processes. Obesity, as a worldwide healthcare problem, has attracted more and more attention. To investigate the role of adipose HuR, we generate adipose-specific HuR knockout (HuRAKO) mice. As compared with control mice, HuRAKO mice show obesity when induced with a high-fat diet, along with insulin resistance, glucose intolerance, hypercholesterolemia and increased inflammation in adipose tissue. The obesity of HuRAKO mice is attributed to adipocyte hypertrophy in white adipose tissue due to decreased expression of adipose triglyceride lipase (ATGL). HuR positively regulates ATGL expression by promoting the mRNA stability and translation of ATGL. Consistently, the expression of HuR in adipose tissue is reduced in obese humans. This study suggests that adipose HuR may be a critical regulator of ATGL expression and lipolysis and thereby controls obesity and metabolic syndrome.


Assuntos
Tecido Adiposo Branco/metabolismo , Proteína Semelhante a ELAV 1/genética , Intolerância à Glucose/genética , Hipercolesterolemia/genética , Resistência à Insulina/genética , Lipase/genética , Obesidade/genética , Adipócitos/patologia , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/imunologia , Animais , Crescimento Celular , Dieta Hiperlipídica , Proteína Semelhante a ELAV 1/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Intolerância à Glucose/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Hipertrofia , Inflamação/imunologia , Lipase/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA/genética , Gordura Subcutânea/metabolismo
13.
Nat Commun ; 10(1): 2421, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160600

RESUMO

Translation efficiency can be affected by mRNA stability and secondary structures, including G-quadruplex structures (G4s). The highly conserved DEAH-box helicase DHX36/RHAU resolves G4s on DNA and RNA in vitro, however a systems-wide analysis of DHX36 targets and function is lacking. We map globally DHX36 binding to RNA in human cell lines and find it preferentially interacting with G-rich and G4-forming sequences on more than 4500 mRNAs. While DHX36 knockout (KO) results in a significant increase in target mRNA abundance, ribosome occupancy and protein output from these targets decrease, suggesting that they were rendered translationally incompetent. Considering that DHX36 targets, harboring G4s, preferentially localize in stress granules, and that DHX36 KO results in increased SG formation and protein kinase R (PKR/EIF2AK2) phosphorylation, we speculate that DHX36 is involved in resolution of rG4 induced cellular stress.


Assuntos
RNA Helicases DEAD-box/metabolismo , Quadruplex G , RNA Mensageiro/metabolismo , Regiões não Traduzidas , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Fosforilação , Biossíntese de Proteínas , Ribossomos/metabolismo , Estresse Fisiológico , eIF-2 Quinase/metabolismo
14.
Nat Commun ; 10(1): 2542, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186416

RESUMO

Somatic ribosomal protein mutations have recently been described in cancer, yet their impact on cellular transcription and translation remains poorly understood. Here, we integrate mRNA sequencing, ribosome footprinting, polysomal RNA sequencing and mass spectrometry datasets from a mouse lymphoid cell model to characterize the T-cell acute lymphoblastic leukemia (T-ALL) associated ribosomal RPL10 R98S mutation. Surprisingly, RPL10 R98S induces changes in protein levels primarily through transcriptional rather than translation efficiency changes. Phosphoserine phosphatase (PSPH), encoding a key serine biosynthesis enzyme, was the only gene with elevated transcription and translation leading to protein overexpression. PSPH upregulation is a general phenomenon in T-ALL patient samples, associated with elevated serine and glycine levels in xenograft mice. Reduction of PSPH expression suppresses proliferation of T-ALL cell lines and their capacity to expand in mice. We identify ribosomal mutation driven induction of serine biosynthesis and provide evidence supporting dependence of T-ALL cells on PSPH.


Assuntos
Glicina/metabolismo , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Serina/metabolismo , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Camundongos , Monoéster Fosfórico Hidrolases , Polirribossomos/genética , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Análise de Sequência de RNA
16.
Genome Biol ; 20(1): 119, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174582

RESUMO

BACKGROUND: The uneven use of synonymous codons in the transcriptome regulates the efficiency and fidelity of protein translation rates. Yet, the importance of this codon bias in regulating cell state-specific expression programmes is currently debated. Here, we ask whether different codon usage controls gene expression programmes in self-renewing and differentiating embryonic stem cells. RESULTS: Using ribosome and transcriptome profiling, we identify distinct codon signatures during human embryonic stem cell differentiation. We find that cell state-specific codon bias is determined by the guanine-cytosine (GC) content of differentially expressed genes. By measuring the codon frequencies at the ribosome active sites interacting with transfer RNAs (tRNA), we further discover that self-renewing cells optimize translation of codons that depend on the inosine tRNA modification in the anticodon wobble position. Accordingly, inosine levels are highest in human pluripotent embryonic stem cells. This effect is conserved in mice and is independent of the differentiation stimulus. CONCLUSIONS: We show that GC content influences cell state-specific mRNA levels, and we reveal how translational mechanisms based on tRNA modifications change codon usage in embryonic stem cells.


Assuntos
Códon , Células-Tronco Embrionárias/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Animais , Composição de Bases , Autorrenovação Celular , Humanos
17.
J Agric Food Chem ; 67(32): 8950-8957, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31189310

RESUMO

To determine how nutritional restriction compromised milk synthesis, sows were fed 100% (control) or 76% (restricted) of the recommended feed allowance from postpartum day (PD)-1 to PD-28. In comparison to the control, more body reserves loss, increased plasma triglyceride and high-density lipoprotein cholesterol levels, and decreased plasma methionine concentrations were observed in the restricted group at PD-21. The increased plasma malondialdehyde level, decreased plasma histidine and taurine concentrations, and decreased glutathione peroxidase activity were observed at PD-28 when backfat loss further increased in the restricted group. In mammary glands, vacuolar H+-adenosine triphosphatase (v-ATPase), as the upstream of the mechanistic target of rapamycin (mTOR) signaling, showed decreased activity, while phosphorylation of mTOR, S6 kinase, and eukaryotic translation initiation factor 4E-binding protein 1 and ß-casein abundance all decreased following feed restriction. Altogether, long-term nutrition restriction could induce progressively aggravated oxidative stress and compromise mammary protein synthesis through repression of v-ATPase/mTORC1 signaling.


Assuntos
Glândulas Mamárias Animais/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estresse Oxidativo , Biossíntese de Proteínas , Suínos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Células Epiteliais/metabolismo , Feminino , Glândulas Mamárias Animais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Leite/metabolismo , Fosforilação , Período Pós-Parto/metabolismo , Gravidez , Transdução de Sinais , Suínos/genética , ATPases Vacuolares Próton-Translocadoras/genética
18.
Vet J ; 249: 33-40, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31239162

RESUMO

Feline iris melanoma, the most common feline intraocular tumour, has a reported metastatic rate of 19-63%. However, there is a lack of knowledge about its molecular biology. Previous studies have reported that feline iris melanomas do not harbour mutations comparable to common mutations found in their human counterpart. Nevertheless, there are differences in the gene expression patterns. The aim of this study was to investigate the protein expression of B-RAF oncogene serine/threonine kinase (BRAF), G protein subunit alpha q (GNAQ) and 11 (GNA11), KIT proto-oncogene receptor tyrosine kinase (KIT), and Ras association family member 1 (RASSF1) in feline iris melanomas. Fifty-seven formalin-fixed paraffin embedded (FFPE) iris melanomas and 25 FFPE eyes without ocular abnormalities were stained with antibodies against the respective proteins using immunofluorescence. Averaged pixel intensities/µm2 and percentage of stained area from total tissue area were measured and the results were compared. Compared to the control group, iris melanomas showed overexpression of BRAF, GNAQ, GNA11 and KIT. The higher expression of BRAF, GNAQ, GNA11 and KIT in feline iris melanomas suggest that these proteins may play a key role in the development of feline iris melanomas and KIT may present a possible target for future therapies in cats with feline iris melanomas.


Assuntos
Doenças do Gato/metabolismo , Neoplasias da Íris/veterinária , Melanoma/veterinária , Animais , Gatos , Feminino , Imunofluorescência/veterinária , Subunidades alfa de Proteínas de Ligação ao GTP/biossíntese , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/biossíntese , Neoplasias da Íris/metabolismo , Melanoma/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas B-raf/biossíntese , Proteínas Proto-Oncogênicas c-kit/biossíntese , Proteínas Supressoras de Tumor/biossíntese
19.
Nat Commun ; 10(1): 2858, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253794

RESUMO

In bacterial tRNAs, 5-carboxymethoxyuridine (cmo5U) and its derivatives at the first position of the anticodon facilitate non-Watson-Crick base pairing with guanosine and pyrimidines at the third positions of codons, thereby expanding decoding capabilities. However, their biogenesis and physiological roles remained to be investigated. Using reverse genetics and comparative genomics, we identify two factors responsible for 5-hydroxyuridine (ho5U) formation, which is the first step of the cmo5U synthesis: TrhP (formerly known as YegQ), a peptidase U32 family protein, is involved in prephenate-dependent ho5U formation; and TrhO (formerly known as YceA), a rhodanese family protein, catalyzes oxygen-dependent ho5U formation and bypasses cmo5U biogenesis in a subset of tRNAs under aerobic conditions. E. coli strains lacking both trhP and trhO exhibit a temperature-sensitive phenotype, and decode codons ending in G (GCG and UCG) less efficiently than the wild-type strain. These findings confirm that tRNA hydroxylation ensures efficient decoding during protein synthesis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Biossíntese de Proteínas/fisiologia , RNA de Transferência/metabolismo , Proteínas de Escherichia coli/genética , Evolução Molecular , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Filogenia , RNA Bacteriano
20.
Nat Commun ; 10(1): 2640, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201334

RESUMO

One of the responses to stress by eukaryotic cells is the down-regulation of protein synthesis by phosphorylation of translation initiation factor eIF2. Phosphorylation results in low availability of the eIF2 ternary complex (eIF2-GTP-tRNAi) by affecting the interaction of eIF2 with its GTP-GDP exchange factor eIF2B. We have determined the cryo-EM structure of yeast eIF2B in complex with phosphorylated eIF2 at an overall resolution of 4.2 Å. Two eIF2 molecules bind opposite sides of an eIF2B hetero-decamer through eIF2α-D1, which contains the phosphorylated Ser51. eIF2α-D1 is mainly inserted between the N-terminal helix bundle domains of δ and α subunits of eIF2B. Phosphorylation of Ser51 enhances binding to eIF2B through direct interactions of phosphate groups with residues in eIF2Bα and indirectly by inducing contacts of eIF2α helix 58-63 with eIF2Bδ leading to a competition with Met-tRNAi.


Assuntos
Fator de Iniciação 2B em Eucariotos/ultraestrutura , Fator de Iniciação 2 em Eucariotos/ultraestrutura , Biossíntese de Proteínas/fisiologia , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Microscopia Crioeletrônica , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/metabolismo , Guanosina Difosfato/metabolismo , Modelos Moleculares , Fosforilação/fisiologia , Ligação Proteica/fisiologia , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Metionina/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA