Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.817
Filtrar
1.
Rev. bioét. derecho ; (47): 5-15, nov. 2019. ilus
Artigo em Inglês | IBECS | ID: ibc-184862

RESUMO

DNA read and write technologies have accelerated biotechnology at an unprecedented pace. This enhanced capacity to engineer living beings has accelerated not only scientific research, but also the translation into novel therapies. New approved medicinal products include the correction of the diseased genome and synthetic enhancement to fight diseases. These practices are widely supported socially and scientifically. Applications beyond therapy have also be attempted. In 2018, researcher He Jiankui reported on the edition of human germline during the Second International Summit on Human Genome Editing. On the other hand, during the last years, there have also been attempts at somatic genetic enhancement without the provision of detailed outcomes. Reading and writing DNA empowers us to change our world, even ourselves. The social benefits may be enormous. We need to accelerate the debate, including the stakeholders, to foster a responsible use of these technologies and maximize the positive impact on society


Las tecnologías de lectura y escritura de ADN han acelerado la biotecnología a un ritmo sin precedentes. Esta capacidad mejora para diseñar seres vivos no solo ha acelerado la investigación científica, sino también la translación a terapias novedosas. Nuevos medicamentos aprobados incluyen la corrección del genoma enfermo y la mejora sintética para combatir las enfermedades. Estas prácticas son ampliamente apoyadas social y científicamente. También se han intentado aplicaciones más allá de la terapia. En 2018, el investigador He Jiankui informó sobre la edición de la línea germinal humana durante la Segunda Cumbre Internacional sobre la Edición del Genoma Humano. Por otro lado, en los últimos años también se han producido intentos de mejora genética somática. Leer y escribir ADN nos permite cambiar nuestro planeta, incluso cambiarnos a nosotros mismos. Los beneficios sociales


Les tecnologies de lectura i escriptura d'ADN han accelerat la biotecnologia a un ritme sense precedents. Aquesta capacitat millorada per dissenyar éssers vius no només ha accelerat la recerca científica, sinó també la translació a teràpies noves. Nous medicaments aprovats inclouen la correcció del genoma malalt i la millora sintètica per a combatre les malalties. Aquestes pràctiques són àmpliament recolzades social i científicament. També s'han intentat aplicacions més enllà de la teràpia. El 2018, l'investigador He Jiankui va informar sobre l'edició de la línia germinal humana durant la Segona Cimera Internacional sobre l'Edició del Genoma Humà. D'altra banda, en els últims anys també s'han produït intents de millora genètica somàtica. Llegir i escriure ADN ens permet canviar el nostre planeta, fins i tot canviar-nos a nosaltres mateixos. Els beneficis socials poden ser enormes. Necessitem accelerar el debat, incloent-hi les parts interessades a fi de fomentar un ús responsable d'aquestes tecnologies i maximitzar-ne l'impacte positiu en la societat


Assuntos
Humanos , Edição de Genes , Pesquisa Médica Translacional , Biologia Sintética/ética , Biotecnologia/ética , Biotecnologia/instrumentação , Biotecnologia/legislação & jurisprudência , Avaliação da Tecnologia Biomédica/legislação & jurisprudência
2.
Crit Rev Biotechnol ; 39(7): 884-903, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31382780

RESUMO

Since several decades ago, the application of pervaporation (PV) technology has been mainly aimed at the separation of different types of water-organic, organic-water and organic-organic mixtures, reaching its large-scale application in industry for the dehydration of organics. Today, the versatility and high selectivity toward specific compounds have led its consideration to other types of application such as the assisted chemical and bio-chemical reactions. The focus of this review is to provide a compelling overview on the recent developments of PV combined with chemical and bio-chemical reactions. After a general introduction of PV and its theoretical background, particular emphasis is given to the results obtained in the field for different reactions considered, identifying the key features and weak points of PV in such particular applications. Furthermore, future trends and perspectives are also addressed according to the latest literature reports.


Assuntos
Biotecnologia/métodos , Membranas Artificiais , Biotecnologia/instrumentação , Compostos Orgânicos/química , Polímeros/química , Volatilização , Água/química
3.
Int J Biol Macromol ; 135: 821-828, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31158419

RESUMO

The main goal of this investigation was setting up a growth strategy to separate H2 evolution from P3HB synthesis in order to increase cumulative P3HB in Rhodopseudomonas cells. The accumulation of poly-3-hydroxybutyrate (P3HB) was investigated culturing Rhodopseudomonas sp. S16-VOGS3 with three carbon substrates either as acetate, butyrate or lactate and with two nitrogen sources either as ammonium or glutamate. The investigation was carried out under several stress conditions caused by single or double nutrient deficiency. The content of P3HB in cell dry weight (CDW) was 21.8% with lactate; 24.6% with acetate and 27.6% with butyrate under sulfur deficient conditions. The P3HB content increased significantly culturing Rhodopseudomonas sp. S16-VOGS3 with butyrate following three phases of growth: phase-1, nutrient sufficient conditions; phase-2, nitrogen-deficiency and phase-3, sulfur-deficient conditions. Under this last phase, the highest P3HB content was achieved (34.4% of CDW). A combined production of P3HB and molecular H2 was obtained when Rhodopseudomonas sp. S16-VOGS3 was cultured with either acetate or butyrate under nitrogen sufficiency (glutamate) or nitrogen deficiency.


Assuntos
Biotecnologia/métodos , Meios de Cultura/química , Hidrogênio/metabolismo , Hidroxibutiratos/metabolismo , Fotobiorreatores/microbiologia , Poliésteres/metabolismo , Rodopseudomonas/crescimento & desenvolvimento , Rodopseudomonas/metabolismo , Biotecnologia/instrumentação , Ácidos Carboxílicos/metabolismo , Enxofre/metabolismo
4.
Environ Sci Pollut Res Int ; 26(18): 18520-18532, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31049862

RESUMO

The present work investigated the potential of the green alga Chlorella vulgaris to produce high-quality biofuel under culture stress conditions. The cultivation was carried out in a 1000 l open plate tank system, which provides biomass yields comparable to open pond systems, but with less area needed. Algal biomass and lipid content were measured repeatedly. We compared the two solvent systems n-hexane and hexane/isopropanol (HIP) for extraction efficiency of lipids and applied three different extraction methods Soxhlet, soaking, and soaking followed by Soxhlet (soak-Sox). The combination of the HIP solvent and the soak-Sox provided the highest lipid yield (15.8 ± 0.174). Volumetric biomass and lipid productivity were 0.201 g l-1 day-1 and 31.71 mg l-1 day-1, respectively, whereas areal biomass and lipid productivity were 25.73 g m-2 day-1 and 4.066 g m-2 day-1, respectively. The fatty acid profile by means of gas chromatography resulted in seven fatty acids from C12 to C18. The most abundant fatty acid methyl esters (FAMES) were palmitic (C16:0), oleic (C18:1), and stearic (C18:0) acids. Lipid synthesis enhanced by optimizing the Kuhl growth medium with replacing nitrate by urea (50% N compared to the original recipe) increased salt content (10 g/l NaCl), ferrous sulfate (0.5 g/l), and sodium acetate addition (1 g/l). With regard to density, kinematic viscosity, gravity, pour point, flash point, and cetane number, the Chlorella-biodiesel comply with ASTM and EN standards thus pointing at the high potential of lipids synthesized by Chlorella as a feedstock for biodiesel production.


Assuntos
Biocombustíveis/análise , Biotecnologia/métodos , Chlorella vulgaris/crescimento & desenvolvimento , Ácidos Graxos/análise , Microalgas/crescimento & desenvolvimento , Biomassa , Biotecnologia/instrumentação , Chlorella vulgaris/metabolismo , Meios de Cultura/química , Microalgas/metabolismo
5.
Biotechnol J ; 14(8): e1800724, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31106963

RESUMO

Oxygenase-containing cyanobacteria constitute promising whole-cell biocatalysts for oxyfunctionalization reactions. Photosynthetic water oxidation thereby delivers the required cosubstrates, that is activated reduction equivalents and O2 , sustainably. A recombinant Synechocystis sp. PCC 6803 strain showing unprecedentedly high photosynthesis-driven oxyfunctionalization activities is developed, and its technical applicability is evaluated. The cells functionally synthesize a heterologous cytochrome P450 monooxygenase enabling cyclohexane hydroxylation. The biocatalyst-specific reaction rate is found to be light-dependent, reaching 26.3 ± 0.6 U gCDW -1 (U = µmol min-1 and cell dry weight [CDW]) at a light intensity of 150 µmolphotons m-2 s-1 . In situ substrate supply via a two-liquid phase system increases the initial specific activity to 39.2 ± 0.7 U gCDW -1 and stabilizes the biotransformation by preventing cell toxification. This results in a tenfold increased specific product yield of 4.5 gcyclohexanol gCDW -1 as compared to the single aqueous phase system. Subsequently, the biotransformation is scaled from a shake flask to a 3 L stirred-tank photobioreactor setup. In situ O2 generation via photosynthetic water oxidation allows a nonaerated process operation, thus circumventing substrate evaporation as the most critical factor limiting the process performance and stability. This study for the first time exemplifies the technical applicability of cyanobacteria for aeration-independent light-driven oxyfunctionalization reactions involving highly toxic and volatile substrates.


Assuntos
Cicloexanos/metabolismo , Cicloexanóis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Biotecnologia/instrumentação , Biotecnologia/métodos , Biotransformação , Meios de Cultura/química , Cicloexanos/toxicidade , Hidroxilação , Luz , Microrganismos Geneticamente Modificados , Oxigenases de Função Mista/metabolismo , Oxigênio/metabolismo , Fotobiorreatores , Synechocystis/efeitos dos fármacos , Synechocystis/genética
7.
J Agric Food Chem ; 67(22): 6248-6256, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31090409

RESUMO

A lignin amphoteric surfactant and betaine could enhance the enzymatic hydrolysis of lignocellulose and recover cellulase. The effects of lignosulfonate quaternary ammonium salt (SLQA) and dodecyl dimethyl betaine (BS12) on enzymatic hydrolysis digestibility, ethanol yield, yeast cell viability, and other properties of high-solid enzymatic hydrolysis and fermentation of a corncob residue were studied in this research. The results suggested that SLQA and 1 g/L BS12 effectively improved the ethanol yield through enhancing enzymatic hydrolysis. SLQA had no significant effect on the yeast cell membrane and glucose fermentation. However, 5 g/L BS12 reduced the ethanol yield as a result of the fact that 5 g/L BS12 damaged the yeast cell membrane and inhibited the conversion of glucose to ethanol. Our research also suggested that 1 g/L BS12 enhanced the ethanol yield of corncob residue fermentation, which was attributed to the fact that lignin in the corncob adsorbed BS12 and decreased its concentration in solution to a safe level for the yeast.


Assuntos
Biotecnologia/métodos , Celulose/metabolismo , Etanol/química , Etanol/metabolismo , Lignina/metabolismo , Resíduos/análise , Leveduras/metabolismo , Zea mays/microbiologia , Biocatálise , Biotecnologia/instrumentação , Celulase/química , Fermentação , Glucose/metabolismo , Hidrólise , Lignina/química , Tensoativos/química , Zea mays/metabolismo
8.
Environ Sci Pollut Res Int ; 26(16): 16378-16387, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30982192

RESUMO

Denitrifying bioelectrochemical system provided an alternative technology for nitrogen removal, even power recovery from wastewater, and its nitrogen removal performance and intermediate accumulation were affected by the extracellular electron transfer modes and rate-limiting steps in denitrifying biocathodes. In the current study, the extracellular electron transfer modes and rate-limiting steps for nitrate reduction and nitrite reduction of denitrifying biocathode were investigated through cyclic voltammetry. When the cathode potential swept from 0.003 to - 0.897 V (vs. Ag/AgCl), denitrifiers were indispensable for electrochemical denitrification. Three peak potentials were found in the cyclic voltammogram of denitrifying biocathode, where E1 (- 0.471 to - 0.465 V) and E2 (- 0.412 to - 0.428 V) represented respectively nitrate reduction and nitrite oxidation while E3 (- 0.822 to - 0.826 V) represented nitrite reduction. Nitrate reduction involved the direct electron transfer mode while nitrite reduction involved the mediated electron transfer mode. Intracellular catalytic reaction was the rate-limiting step for nitrate reduction, independent on the electrochemical activity of denitrifying biocathode and the nitrate supply. The nitrate supply posed an effect on the rate-limiting step for nitrite reduction. The mediator transfer was the rate-limiting step for nitrite reduction in the absence of nitrate. But both mediator transfer and intracellular catalytic reaction became the rate-limiting steps for nitrite reduction in the presence of sufficient nitrate.


Assuntos
Desnitrificação , Técnicas Eletroquímicas/métodos , Eletrodos , Biotecnologia/instrumentação , Técnicas Eletroquímicas/instrumentação , Transporte de Elétrons , Desenho de Equipamento , Nitratos/química , Nitratos/metabolismo , Nitritos/química , Nitritos/metabolismo , Oxirredução
9.
Environ Sci Pollut Res Int ; 26(16): 16115-16124, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972671

RESUMO

The present study reports the use of Citrus limetta (CL) residue for cultivating Chlorella sp. mixotrophically to augment production of biodiesel. The cultivation of Chlorella sp. using CL as media was carried out by employing a fed-batch technique in open tray (open tray+CL) and in software (BioXpert V2)-attached automated photobioreactor (PBR+CL) systems. Data showed the limit of nitrogen substituent and satisfactory organic source of carbon (OSC) in CL, causing > 2-fold higher lipid content in cells, cultivated in both the systems than in control. For the cells grown in both the systems, ≥ 3-fold enhancement in lipid productivity was observed than in control. The total fatty acid methyl ester (FAME) concentrations from lipids extracted from cells grew in PBR+CL and in open tray+CL techniques were calculated as 50.59% and 38.31%, respectively. The PBR+CL system showed improved outcomes for lipid content, lipid and biomass productivity, FAME characteristics and physical property parameters of biodiesel than those obtained from the open tray+CL system. The physical property parameters of biodiesel produced from algal cells grown in PBR+CL were comparable to existing fuel standards. The results have shown lower cold filter plugging point (- 6.57 °C), higher cetane number (58.04) and average oxidative stability (3.60 h). Collectively, this investigation unveils the novel deployment of CL as a cost-effective feedstock for commercialisation of biodiesel production.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Chlorella/crescimento & desenvolvimento , Citrus , Resíduos Industriais , Técnicas de Cultura Celular por Lotes , Biocombustíveis/análise , Biomassa , Biotecnologia/instrumentação , Carbono/metabolismo , Chlorella/metabolismo , Esterificação , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Metabolismo dos Lipídeos , Lipídeos/análise , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Nitrogênio/metabolismo , Fotobiorreatores
10.
Environ Sci Pollut Res Int ; 26(16): 16195-16209, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972683

RESUMO

CO2, SO2, and NO are the main components of flue gas and can cause serious environmental issues. Utilization of these compounds in oleaginous microalgae cultivation not only could reduce air pollution but could also produce feedstock for biodiesel production. However, the continuous input of SO2 and NO inhibits microalgal growth. In this study, the toxicity of simulated flue gas (15% CO2, 0.03% SO2, and 0.03% NO, balanced with N2) was reduced through automatic pH feedback control. Integrated lipid production and CO2 fixation with the removal of SO2 and NO was achieved. Using this technique, a lipid content of 38.0% DW was achieved in Chlorella pyrenoidosa XQ-20044. The lipid composition and fatty acid profile indicated that lipid production by C. pyrenoidosa XQ-20044 cultured with flue gas is suitable as a biodiesel feedstock; 81.2% of the total lipids were neutral lipids and 99.5% of the total fatty acids were C16 and C18. The ratio of saturated fatty acids to monounsaturated fatty acids in the microalgal lipid content was 74.5%. In addition, CO2, SO2, and NO from the simulated flue gas were fixed and converted to biomass and lipids with a removal efficiency of 95.9%, 100%, and 84.2%, respectively. Furthermore, the utilization efficiencies of CO2, SO2, and NO were equal to or very close to their removal efficiencies. These results provide a novel strategy for combining biodiesel production with biofixation of flue gas.


Assuntos
Biotecnologia/métodos , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Lipídeos/biossíntese , Poluentes Atmosféricos/química , Poluentes Atmosféricos/isolamento & purificação , Poluentes Atmosféricos/toxicidade , Biocombustíveis , Biomassa , Biotecnologia/instrumentação , Dióxido de Carbono/isolamento & purificação , Dióxido de Carbono/toxicidade , Chlorella/crescimento & desenvolvimento , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Óxido Nítrico/isolamento & purificação , Óxido Nítrico/toxicidade , Dióxido de Enxofre/isolamento & purificação , Dióxido de Enxofre/toxicidade
11.
Biotechnol J ; 14(8): e1800580, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30945445

RESUMO

The challenges of transition toward the postpetroleum world shed light on the biocatalysis as the most sustainable way for the valorization of biobased raw materials. However, its industrial exploitation strongly relies on integration with innovative technologies such as microscale processing. Microflow devices remarkably accelerate biocatalyst screening and engineering, as well as evaluation of process parameters, and intensify biocatalytic processes in multiphase systems. The inherent feature of microfluidic devices to operate in a continuous mode brings additional interest for their use in chemoenzymatic cascade systems and in connection with the downstream processing units. Further steps toward automation and analytics integration, as well as computer-assisted process development, will significantly affect the industrial implementation of biocatalysis and fulfill the promises of the bioeconomy. This review provides an overview of recent examples on implementation of microfluidic devices into various stages of biocatalytic process development comprising ultrahigh-throughput biocatalyst screening, highly efficient biocatalytic process design including specific immobilization techniques for long-term biocatalyst use, integration with other (bio)chemical steps, and/or downstream processing.


Assuntos
Biocatálise , Biotecnologia/métodos , Dispositivos Lab-On-A-Chip , Biotecnologia/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Engenharia de Proteínas/instrumentação , Engenharia de Proteínas/métodos
12.
Nat Biotechnol ; 37(4): 382-388, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30940942

RESUMO

Rapid advances in soft electronics, microfabrication technologies, miniaturization and electronic skins are facilitating the development of wearable sensor devices that are highly conformable and intimately associated with human skin. These devices-referred to as 'smart skins'-offer new opportunities in the research study of human biology, in physiological tracking for fitness and wellness applications, and in the examination and treatment of medical conditions. Over the past 12 months, electronic skins have been developed that are self-healing, intrinsically stretchable, designed into an artificial afferent nerve, and even self-powered. Greater collaboration between engineers, biologists, informaticians and clinicians will be required for smart skins to realize their full potential and attain wide adoption in a diverse range of real-world settings.


Assuntos
Dispositivos Eletrônicos Vestíveis/tendências , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/tendências , Biotecnologia/instrumentação , Biotecnologia/tendências , Dermatite Irritante/etiologia , Humanos , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/tendências , Processamento de Sinais Assistido por Computador , Pele/anatomia & histologia , Fenômenos Fisiológicos da Pele , Dispositivos Eletrônicos Vestíveis/efeitos adversos , Dispositivos Eletrônicos Vestíveis/estatística & dados numéricos
13.
J Chromatogr A ; 1597: 100-108, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30922716

RESUMO

Platform manufacturing processes are widely adopted to simplify and standardize the development and manufacturing of monoclonal antibodies (mAbs). However, there are mAbs that do not conform to a platform design due to instability or other protein properties leading to a negative impact on product quality or process performance (non-platform mAb). Non-platform mAbs typically require prolonged development times and significant deviations from the platform process to address these issues due to the need to sequentially optimize individual process steps. In this study, we describe an IgG2 mAb (mAb A) that is susceptible to aggregation and reversible self-association (RSA) under platform conditions. In lieu of a sequential optimization approach, we evaluated the solution stability of mAb A across the platform operating space (solution stability screen). This screening design was used to identify interacting parameters that affected the non-platform mAb stability. A subsequent response surface design was found to predict an acceptable operating space that minimized aggregate formation and RSA across the entire process. This information guided the selection of optimal parameters best suited to avoid destabilizing conditions for each process step. Substantial time savings was achieved by focusing development around these factors including protein concentration, buffer pH, salt concentration, and excipient type. In addition, this work enabled the optimization of a cation exchange chromatography step that removed aggregate without yield losses due to the presence of reversible aggregation. The final optimized process derived from this study resulted in an increase in yield of ˜30% over the original process while maintaining the same level of aggregate clearance to match product quality. Solution stability screening is readily adapted to high throughput technologies to minimize material requirements and accelerate analytical data availability. Implementation of high throughput approaches will further expedite process development and enable enhanced selection of candidate drugs by including process development objectives.


Assuntos
Anticorpos Monoclonais/química , Biotecnologia/métodos , Cromatografia , Anticorpos Monoclonais/isolamento & purificação , Biotecnologia/instrumentação , Cátions/química , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Cloreto de Sódio
14.
Ultrason Sonochem ; 54: 39-47, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30827902

RESUMO

In this study, the influences of ultrasonic treatments with different working modes (fixed frequency and sweeping frequency) and various frequencies on the bacterial growth and metabolism yield of Saccharomyces cerevisiae (S. cerevisiae) were investigated by employing an in situ ultrasonic irradiation slot coupled with a flask fermentation equipment. The results revealed that the in situ ultrasonic treatment could promote the bacterial growth and metabolism yield, and the effect of fixed frequency ultrasound (FF) was higher than sweeping frequency ultrasound (SF). The content of metabolite in the fermentation broth increased with FF and decreased after SF treatments. On the other hand, when the frequency of FF was more than 33 kHz, the growth of S. cerevisiae became weaken, and the mortality rate of S. cerevisiae increased in fermentation broth. At FF of 23 kHz and 48 h fermentation-time, ethanol content increased by 19.33%, and the content of ß-phenylethanol and other volatile metabolites such as esters also increased. In conclusion, FF could significantly improve the growth of S. cerevisiae, and the FF of 23 kHz showed the optimum impact on fermentation process of S. cerevisiae.


Assuntos
Biotecnologia/instrumentação , Fermentação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Ondas Ultrassônicas , Álcool Feniletílico/metabolismo
15.
Biotechnol J ; 14(8): e1800646, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30810288

RESUMO

Continuous virus inactivation (VI) remains one of the missing pieces while the biopharma industry moves toward continuous manufacturing. The challenges of adapting VI to the continuous operation are two-fold: 1) achieving fluid homogeneity and 2) a narrow residence time distribution (RTD) for fluid incubation. To address these challenges, a dynamic active in-line mixer and a packed-bed continuous virus inactivation reactor (CVIR) are implemented, which act as a narrow RTD incubation chamber. The developed concept is applied using solvent/detergent (S/D) treatment for inactivation of two commonly used model viruses. The in-line mixer is characterized and enables mixing of the viscous S/D chemicals to ±1.0% of the target concentration in a small dead volume. The reactor's RTD is characterized and additional control experiments confirm that the VI is due to the S/D action and not induced by system components. The CVIR setup achieves steady state rapidly before two reactor volumes and the logarithmic reduction values of the continuous inactivation process are identical to those obtained by the traditional batch operation. The packed-bed reactor for continuous VI unites fully continuous processing with very low-pressure drop and scalability.


Assuntos
Biotecnologia/instrumentação , Biotecnologia/métodos , Solventes , Inativação de Vírus , Animais , Vírus da Diarreia Viral Bovina/patogenicidade , Desenho de Equipamento , Cinética , Vírus da Leucemia Murina/patogenicidade
16.
J Biosci Bioeng ; 128(1): 98-102, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30745064

RESUMO

Biodiesel production depends to a great extent on the use of cheap raw materials, since biodiesel itself is a mass product, not a high-value product. New processing methods, such as micro-flow continuous processing combined with enzymatic catalysis, open doors to the latter. As reported here, the window of opportunity in enzyme-catalyzed biodiesel production is the conversion of waste cooking oil. The main technological challenge for this is to obtain efficient immobilization of the lipase catalyst on beads. The beads can be filled into tubular reactors where designed packed-bed provide porous channels, forming micro-flow. It turns out, that in this way, the immobilization costs become the decisive economic factor. This paper reports a solution to that issue. The use of oil cake enables economic viability, which is not given by any of the commercial polymeric substrates used so far for enzyme immobilization. The costs of immobilization are mirrored in the earnings and cash flow of the new biotechnological process.


Assuntos
Biocombustíveis , Reatores Biológicos , Biotecnologia/economia , Gorduras Insaturadas na Dieta , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Biocombustíveis/análise , Biocombustíveis/economia , Reatores Biológicos/economia , Biotecnologia/instrumentação , Biotecnologia/métodos , Catálise , Culinária , Análise Custo-Benefício , Gorduras Insaturadas na Dieta/economia , Gorduras Insaturadas na Dieta/metabolismo , Enzimas Imobilizadas/economia , Esterificação , Humanos , Dispositivos Lab-On-A-Chip/economia , Microtecnologia/instrumentação , Microtecnologia/métodos , Óleos Vegetais/química , Óleos Vegetais/metabolismo
17.
Adv Biochem Eng Biotechnol ; 167: 231-271, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29651504

RESUMO

From the first electromicrobial experiment to a sophisticated microbial electrochemical process - it all takes place in a reactor. Whereas the reactor design and materials used strongly influence the obtained results, there are no common platforms for MES reactors. This is a critical convention gap, as cross-comparison and benchmarking among MES as well as MES vs. conventional biotechnological processes is needed. Only knowledge driven engineering of MES reactors will pave the way to application and commercialization. In this chapter we first assess the requirements on reactors to be used for bioelectrochemical systems as well as potential losses caused by the reactor design. Subsequently, we compile the main types and designs of reactors used for MES so far, starting from simple H-cells to stirred tank reactors. We conclude with a discussion on the weaknesses and strengths of the existing types of reactors for bioelectrochemical systems that are scored on design criteria and draw conclusions for the future engineering of MES reactors.


Assuntos
Bactérias , Reatores Biológicos , Bactérias/metabolismo , Bioengenharia , Biotecnologia/instrumentação , Fenômenos Eletromagnéticos
18.
J Pharm Biomed Anal ; 162: 47-59, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30223142

RESUMO

This review covers literature investigating methods for enantioselective chromatography using supercritical fluids as mobile phase constituents (SFC) in the field of bioanalysis. It provides an overview on method development and screening approaches published in scientific literature 2014-2018. Chiral stationary phases are used to create a chiral environment that allows for discrimination of enantiomers. Especially polysaccharide-based stationary phases are used in methods of recent investigations. In comparison to HPLC chiral SFC separation provides more selective cavity effects of inclusion-type chiral separation phases. Modifier and additive choices as well as further operating conditions like backpressure, temperature and flow rate are summarized and critically discussed. Further on, observed sample pretreatment and possible detection techniques are presented. SFC hyphenated to mass detection was found of major relevance and is therefore further discussed. Coupling of SFC with different detectors allows for straightforward use in bioanalysis. Interfacing MS detectors is generally performed including a make-up pump. Thus, applied make-up conditions were also reviewed. While most of the chiral separations in HPLC are performed in normal phase mode, and thus, challenge MS hyphenation, SFC-MS hyphenation can be easily achieved. This allows for convenient application in chiral trace analyses, often required in bioanalysis. Even worse in enantioseparation than in achiral chromatography, method development in SFC suffers from a lack of knowledge in separation mechanisms and thus approaches are often quite unique and most often achieved by screening using a One-Factor-at-a-Time (OFAT) design. Broad screening experiments with methodical approaches still appear as method of choice for now.


Assuntos
Biotecnologia/métodos , Cromatografia com Fluido Supercrítico , Espectrometria de Massas , Biotecnologia/instrumentação , Cromatografia com Fluido Supercrítico/instrumentação , Espectrometria de Massas/instrumentação , Polissacarídeos/química , Solventes/química , Estereoisomerismo
19.
Chemistry ; 25(19): 4871-4884, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30395380

RESUMO

This Minireview highlights the application of crystallization as a very powerful in situ product removal (ISPR) technique in biocatalytic process design. Special emphasis is placed on its use for in situ product crystallization (ISPC) to overcome unfavorable thermodynamic reaction equilibria, inhibition, and undesired reactions. The combination of these unit operations requires an interdisciplinary perspective to find a holistic solution for the underlying bioprocess intensification approach. Representative examples of successful integrated process options are selected, presented, and assessed regarding their overall productivity and applicability. In addition, parallels to the use of adsorption as a very similar technique are drawn and similarities discussed.


Assuntos
Produtos Biológicos/química , Biotecnologia/métodos , Cristalização/métodos , Bactérias/química , Bactérias/enzimologia , Bactérias/metabolismo , Biocatálise , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Biotecnologia/instrumentação , Cristalização/instrumentação , Desenho de Equipamento , Modelos Moleculares
20.
Methods Mol Biol ; 1864: 3-18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30415325

RESUMO

Efficient delivery of macromolecules into plant cells and tissues is important for both basic research and biotechnology product applications. In transgenic research, the goal is to deliver DNA molecules into regenerable cells and stably integrate them into the genome. Over the past 40 years, many macromolecule delivery methods have been studied. To generate transgenic plants, particle bombardment and Agrobacterium-mediated transformation are the methods of choice for DNA delivery. The rapid advance of genome editing technologies has generated new requirements on large biomolecule delivery and at the same time reinvigorated the development of new transformation technologies. Many of the gene delivery options that have been studied before are now being repurposed for delivering genome editing machinery for various applications. This article reviews the major progress in the development of tools for large biomolecule delivery into plant cells in the new era of precision genome engineering.


Assuntos
Edição de Genes/métodos , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Genoma de Planta/genética , Agrobacterium/genética , Biotecnologia/instrumentação , Biotecnologia/métodos , Edição de Genes/instrumentação , Edição de Genes/tendências , Engenharia Genética/instrumentação , Engenharia Genética/tendências , Plantas Geneticamente Modificadas/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA