Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 707
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445660

RESUMO

Bortezomib (BTZ) has demonstrated its efficacy in several hematological disorders and has been associated with thrombocytopenia. There is controversy about the effect of BTZ on human platelets, so we set out to determine its effect on various types of platelet samples. Human platelets were investigated in platelet-rich plasma (PRP) and as gel-filtered platelets (GFPs). Mitochondrial inner membrane potential depolarization and phosphatidylserine (PS) and P-selectin expression levels were studied by flow cytometry, while thrombin generation was measured by a fluorescent method. In PRP, BTZ caused negligible PS expression after 60 min of treatment. However, in GFPs, PS expression was dose- and time-dependently increased in the BTZ-treated groups, as was P-selectin. The percentage of depolarized cells was also higher after BTZ pretreatment at both time points. Peak thrombin and velocity index increased significantly even with the lowest BTZ concentration (p = 0.0019; p = 0.0032) whereas time to peak and start tail parameters decreased (p = 0.0007; p = 0.0034). The difference between PRP and GFP results can be attributed to the presence of plasma proteins in PRP, as the PS-stimulating effect of BTZ could be attenuated by supplementing GFPs with purified human albumin. Overall, BTZ induces a procoagulant platelet phenotype in an experimental setting devoid of plasma proteins.


Assuntos
Apoptose , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/patologia , Bortezomib/farmacologia , Selectina-P/metabolismo , Ativação Plaquetária , Inibidores de Proteassoma/farmacologia , Antineoplásicos/farmacologia , Plaquetas/efeitos dos fármacos , Humanos , Selectina-P/genética
2.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360915

RESUMO

Patients diagnosed with melanoma have a poor prognosis due to regional invasion and metastases. The receptor tyrosine kinase epidermal growth factor receptor (EGFR) is found in a subtype of melanoma with a poor prognosis and contributes to drug resistance. Aloysia citrodora essential oil (ALOC-EO) possesses an antitumor effect. Understanding signaling pathways that contribute to the antitumor of ALOC-EO is important to identify novel tumor types that can be targeted by ALOC-EO. Here, we investigated the effects of ALOC-EO on melanoma growth and tumor cell migration. ALOC-EO blocked melanoma growth in vitro and impaired primary tumor cell growth in vivo. Mechanistically, ALOC-EO blocked heparin-binding-epidermal growth factor (HB-EGF)-induced EGFR signaling and suppressed ERK1/2 phosphorylation. Myelosuppressive drugs upregulated HB-EGF and EGFR expression in melanoma cells. Cotreatment of myelosuppressive drugs with ALOC-EO improved the antitumor activity and inhibited the expression of matrix metalloproteinase-7 and -9 and a disintegrin and metalloproteinase domain-containing protein9. In summary, our study demonstrates that ALOC-EO blocks EGFR and ERK1/2 signaling, with preclinical efficacy as a monotherapy or in combination with myelosuppressive drugs in melanoma.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/metabolismo , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Neoplasias Cutâneas/metabolismo , Verbenaceae/química , Animais , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Humanos , Melanoma/patologia , Camundongos , Fosforilação/efeitos dos fármacos , Neoplasias Cutâneas/patologia
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(4): 1187-1194, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34362501

RESUMO

OBJECTIVE: To investigate the effects of chidamide combined with anti-myeloma drugs on the proliferation and apoptosis of myeloma cells. METHODS: The proliferation inhibition of the cells was detected by CCK-8 method, and flow cytometry was used to detected the apoptosis of the cells. RESULTS: Chidamide could inhibit the proliferation of myeloma cells and promote the apoptosis of primary myeloma plasma cells in a time- and dose-dependent manner (P<0.05). In NCI-H929 cell line, chidamide combined with low-dose bortezomib and lenalidomide showed synergistic effect, while combined with dexamethasone and pomalidomide showed additive effect. In MM.1s cell line, chidamide combined with bortezomib, dexamethasone, lenalidomide and pomalidomide all showed synergistic effects. CONCLUSION: Chidamide inhibits proliferation of myeloma cells in a time- and dose-dependent manner and promotes apoptosis of primary myeloma plasma cells. Furthermore, it can enhance the inhibitory effect of anti-myeloma drugs.


Assuntos
Mieloma Múltiplo , Preparações Farmacêuticas , Aminopiridinas , Apoptose , Benzamidas , Bortezomib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos
4.
Anticancer Res ; 41(7): 3271-3279, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230121

RESUMO

BACKGROUND/AIM: Androgen receptor (AR) degradation is the primary regulator of androgen receptor activity. This study was designed to investigate the influence of the proteasome on AR protein stability after enzalutamide (Enz) treatment. MATERIALS AND METHODS: Cell counting after treatment was utilized to assess the effect of Enz on cell proliferation. Changes in mRNA levels were evaluated using reverse transcription-polymerase chain reaction (RT-PCR). Proteasome activity was assessed by measurement of the chymotrypsin-like activity of the beta-5 subunit of the proteasome. Changes in protein levels after treatment with Enz, MG132 (MG), bortezomib (Bor), or their combination were assessed using western blot analysis. RESULTS: Treatment with Enz led to a significant reduction of cell proliferation and AR protein levels. However, AR mRNA levels were unchanged. Inhibition of proteasome activity by MG counteracts the Enz-mediated AR degradation transiently, whereas Bor showed no inhibition of the Enz-mediated AR degradation. CONCLUSION: Enz-mediated change in AR stability as an early and essential event after treatment was shown. However, investigations of the ubiquitin/proteasome system indicate involvement of several proteases in the Enz-mediated AR degradation process.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Bortezomib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Leupeptinas/farmacologia , Masculino , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , RNA Mensageiro/metabolismo
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(3): 797-804, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34105475

RESUMO

OBJECTIVE: To investigate the effects of autophagy inhibitor ROC-325 and its combination with bortezomib on the proliferation, apoptosis and autophagy of multiple myeloma cell lines. METHODS: Multiple myeloma cells were treated with ROC-325 at different concentration. The cell proliferation was detected by CCK-8. Apoptosis was determined by Caspase-3/7 and Caspase-9 activity assays. Autophagy was detected by monodansylcadaverine staining. The apoptosis-related proteins (PARP and Caspase-3) and autophagy-related proteins (P62, Beclin-1, and LC3A/B) were analyzed by Western blot. The combined effect with bortezomib on bortezomib-resistant cell line was detected by CCK-8. RESULTS: ROC-325 inhibited the proliferation of RPMI 8226, RPMI 8226-BTZ100, U266 and IM9 cells in a dose-dependent manner (r=-0.8275, r=-0.9079, r=-0.9422, r=-0.9305), the 72 h IC50 values were 2.795, 4.020, 5.432 and 4.755 µmol/L, respectively. The activity assays of Caspase-3/7 and Caspase-9 showed that their relative activity was increased gradually in proportion to the drug concentration with the statistically significant difference (r=0.9648, r=0.9377, r=0.9318; r=0.9087, r=0.9431, r=0.8914). MDC staining results showed that the number of autophagic vacuoles increased with the rise of ROC-325 concentration (r=0.9565, r=0.9373, r=0.9233). ROC-325 could increase the expression of apoptosis-related proteins (PARP and Caspase-3) and autophagy-related proteins (P62 and LC3-Ⅱ/LC3-Ⅰ), but decrease the expression of Beclin-1 detected by Western blot. The CCK-8 assay showed that ROC-325 combined with bortezomib had synergistic effect on the inhibition of drug resistant cell line RPMI 8226-BTZ100. CONCLUSION: ROC-325 can inhibit the proliferation, induce the apoptosis of myeloma cells through the mitochondrial pathway, inhibit the autophagy of myeloma cells by affecting the fusion of autophagosomes and lysosomes, and overcome bortezomib resistance by the combination of ROC-325 with bortezomib.


Assuntos
Mieloma Múltiplo , Apoptose , Autofagia , Bortezomib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Hidroxicloroquina/análogos & derivados
6.
Int J Mol Sci ; 22(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071136

RESUMO

In this paper, we compared the effects of bortezomib on L1210 (S) cells with its effects on P-glycoprotein (P-gp)-positive variant S cells, which expressed P-gp either after selection with vincristine (R cells) or after transfection with a human gene encoding P-gp (T cells). Bortezomib induced the death-related effects in the S, R, and T cells at concentrations not exceeding 10 nM. Bortezomib-induced cell cycle arrest in the G2/M phase was more pronounced in the S cells than in the R or T cells and was related to the expression levels of cyclins, cyclin-dependent kinases, and their inhibitors. We also observed an increase in the level of polyubiquitinated proteins (via K48-linkage) and a decrease in the gene expression of some deubiquitinases after treatment with bortezomib. Resistant cells expressed higher levels of genes encoding 26S proteasome components and the chaperone HSP90, which is involved in 26S proteasome assembly. After 4 h of preincubation, bortezomib induced a more pronounced depression of proteasome activity in S cells than in R or T cells. However, none of these changes alone or in combination sufficiently suppressed the sensitivity of R or T cells to bortezomib, which remained at a level similar to that of S cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Linfoide/patologia , Proteínas de Neoplasias/metabolismo , Inibidores de Proteases/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Ciclo Celular/efeitos dos fármacos , Divisão Celular , Linhagem Celular Tumoral , Enzimas Desubiquitinantes , Fluoresceínas/metabolismo , Genes cdc/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Leucemia Linfoide/genética , Leucemia Linfoide/metabolismo , Camundongos , Proteínas de Neoplasias/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Proteínas Recombinantes/metabolismo , Transcrição Genética/efeitos dos fármacos , Proteínas Ubiquitinadas/metabolismo , Vincristina/farmacologia
7.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070363

RESUMO

Osteolytic bone disease is a hallmark of multiple myeloma (MM) mediated by MM cell proliferation, increased osteoclast activity, and suppressed osteoblast function. The proteasome inhibitor bortezomib targets MM cells and improves bone health in MM patients. Radium-223 dichloride (radium-223), the first targeted alpha therapy approved, specifically targets bone metastases, where it disrupts the activity of both tumor cells and tumor-supporting bone cells in mouse models of breast and prostate cancer bone metastasis. We hypothesized that radium-223 and bortezomib combination treatment would have additive effects on MM. In vitro experiments revealed that the combination treatment inhibited MM cell proliferation and demonstrated additive efficacy. In the systemic, syngeneic 5TGM1 mouse MM model, both bortezomib and radium-223 decreased the osteolytic lesion area, and their combination was more effective than either monotherapy alone. Bortezomib decreased the number of osteoclasts at the tumor-bone interface, and the combination therapy resulted in almost complete eradication of osteoclasts. Furthermore, the combination therapy improved the incorporation of radium-223 into MM-bearing bone. Importantly, the combination therapy decreased tumor burden and restored body weights in MM mice. These results suggest that the combination of radium-223 with bortezomib could constitute a novel, effective therapy for MM and, in particular, myeloma bone disease.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Mieloma Múltiplo , Neoplasias Experimentais , Animais , Bortezomib/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Radioisótopos/farmacologia , Rádio (Elemento)/farmacologia
8.
Neoplasma ; 68(4): 788-797, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034498

RESUMO

Multiple myeloma (MM) is a plasma cell malignancy of bone marrow. In the present study, we aimed to study the function and potential mechanism of the antisense non-coding RNA in the INK4 Locus (ANRIL) in MM. The expression levels of ANRIL in MM patients and healthy donors were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The effects and mechanisms of ANRIL in MM were evaluated by cell viability assay, BrdU incorporation assay, tumor xenograft model, flow cytometry, western blot, RNA immunoprecipitation (RIP), transcriptome RNA sequencing, and chromatin immunoprecipitation (ChIP). We found that ANRIL was upregulated in MM patients and cell lines, and associated with advanced international staging system (ISS) stage and poor overall survival. Enforced ANRIL expression promoted proliferation and tumor xenograft growth of MM cells, while knockdown of ANRIL exhibited opposite effects. Moreover, ANRIL overexpression increased the half-maximal inhibitory concentration (IC50) of bortezomib and reduced bortezomib-induced apoptosis in MM cells. ANRIL was found to accumulate in the nuclei of MM cells, and interact with EZH2 by RIP assay. Transcriptome RNA sequencing identified PTEN as a target of ANRIL in MM cells. In the ChIP assay, knockdown of ANRIL reduced EZH2 occupancy and H3K27me3 binding to the promoter region of PTEN. Furthermore, EZH2 knockout or PTEN restoration abrogated the effects caused by ANRIL overexpression in MM cells. Our results indicated that ANRIL exerted oncogenic functions and conferred chemoresistance of MM cells by EZH2-mediated epigenetically silencing of PTEN.


Assuntos
Mieloma Múltiplo , RNA Longo não Codificante , Apoptose , Bortezomib/farmacologia , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , PTEN Fosfo-Hidrolase/genética , RNA Longo não Codificante/genética
9.
Macromol Rapid Commun ; 42(13): e2100083, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34048124

RESUMO

For the local treatment of bone defects, highly adaptable macromolecular architectures are still required as drug delivery system (DDS) in solid bone substitute materials. Novel DDS fabricated by host-guest interactions between ß-cyclodextrin-modified dendritic glycopolymers and adamantane-modified temperature-sensitive polymers for the proteasome inhibitor bortezomib (BZM) is presented. These DDS induce a short- and long-term (up to two weeks) retarded release of BZM from calcium phosphate bone cement (CPC) in comparison to a burst release of the drug alone. Different release parameters of BZM/DDS/CPC are evaluated in phosphate buffer at 37 °C to further improve the long-term retarded release of BZM. This is achieved by increasing the amount of drug (50-100 µg) and/or DDS (100-400 µg) versus CPC (1 g), by adapting the complexes better to the porous bone cement environment, and by applying molar ratios of excess BZM toward DDS with 1:10, 1:25, and 1:100. The temperature-sensitive polymer shells of BZM/DDS complexes in CPC, which allow drug loading at room temperature but are collapsed at body temperature, support the retarding long-term release of BZM from DDS/CPC. Thus, the concept of temperature-sensitive DDS for BZM/DDS complexes in CPC works and matches key points for a local therapy of osteolytic bone lesions.


Assuntos
Cimentos Ósseos , Inibidores de Proteassoma , Bortezomib/farmacologia , Fosfatos de Cálcio , Sistemas de Liberação de Medicamentos , Temperatura
10.
Nat Commun ; 12(1): 3239, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050165

RESUMO

The human mitochondrial AAA+ protein LONP1 is a critical quality control protease involved in regulating diverse aspects of mitochondrial biology including proteostasis, electron transport chain activity, and mitochondrial transcription. As such, genetic or aging-associated imbalances in LONP1 activity are implicated in pathologic mitochondrial dysfunction associated with numerous human diseases. Despite this importance, the molecular basis for LONP1-dependent proteolytic activity remains poorly defined. Here, we solved cryo-electron microscopy structures of human LONP1 to reveal the underlying molecular mechanisms governing substrate proteolysis. We show that, like bacterial Lon, human LONP1 adopts both an open and closed spiral staircase orientation dictated by the presence of substrate and nucleotide. Unlike bacterial Lon, human LONP1 contains a second spiral staircase within its ATPase domain that engages substrate as it is translocated toward the proteolytic chamber. Intriguingly, and in contrast to its bacterial ortholog, substrate binding within the central ATPase channel of LONP1 alone is insufficient to induce the activated conformation of the protease domains. To successfully induce the active protease conformation in substrate-bound LONP1, substrate binding within the protease active site is necessary, which we demonstrate by adding bortezomib, a peptidomimetic active site inhibitor of LONP1. These results suggest LONP1 can decouple ATPase and protease activities depending on whether AAA+ or both AAA+ and protease domains bind substrate. Importantly, our structures provide a molecular framework to define the critical importance of LONP1 in regulating mitochondrial proteostasis in health and disease.


Assuntos
Proteases Dependentes de ATP/ultraestrutura , Proteínas Mitocondriais/ultraestrutura , Proteases Dependentes de ATP/antagonistas & inibidores , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Envelhecimento/metabolismo , Bortezomib/farmacologia , Domínio Catalítico/efeitos dos fármacos , Microscopia Crioeletrônica , Ensaios Enzimáticos , Humanos , Hidrólise , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos/genética , Proteólise , Proteostase , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
11.
J Hematol Oncol ; 14(1): 59, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849608

RESUMO

Therapeutic regimens for previously treated multiple myeloma (MM) may not provide prolonged disease control and are often complicated by significant adverse events, including peripheral neuropathy. In patients with previously treated MM in the Phase 3 BOSTON study, once weekly selinexor, once weekly bortezomib, and 40 mg dexamethasone (XVd) demonstrated a significantly longer median progression-free survival (PFS), higher response rates, deeper responses, a trend to improved survival, and reduced incidence and severity of bortezomib-induced peripheral neuropathy when compared with standard twice weekly bortezomib and 80 mg dexamethasone (Vd). The pre-specified analyses described here evaluated the influence of the number of prior lines of therapy, prior treatment with lenalidomide, prior proteasome inhibitor (PI) therapy, prior immunomodulatory drug therapy, and prior autologous stem cell transplant (ASCT) on the efficacy and safety of XVd compared with Vd. In this 1:1 randomized study, enrolled patients were assigned to receive once weekly oral selinexor (100 mg) with once weekly subcutaneous bortezomib (1.3 mg/m2) and 40 mg per week dexamethasone (XVd) versus standard twice weekly bortezomib and 80 mg per week dexamethasone (Vd). XVd significantly improved PFS, overall response rate, time-to-next-treatment, and showed reduced all grade and grade ≥ 2 peripheral neuropathy compared with Vd regardless of prior treatments, but the benefits of XVd over Vd were more pronounced in patients treated earlier in their disease course who had either received only one prior therapy, had never been treated with a PI, or had prior ASCT. Treatment with XVd improved outcomes as compared to Vd regardless of prior therapies as well as manageable and generally reversible adverse events. XVd was associated with clinical benefit and reduced peripheral neuropathy compared to standard Vd in previously treated MM. These results suggest that the once weekly XVd regimen may be optimally administered to patients earlier in their course of disease, as their first bortezomib-containing regimen, and in those relapsing after ASCT.Trial registration: ClinicalTrials.gov (NCT03110562). Registered 12 April 2017. https://clinicaltrials.gov/ct2/show/NCT03110562 .


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bortezomib/uso terapêutico , Dexametasona/uso terapêutico , Hidrazinas/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Triazóis/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bortezomib/farmacologia , Dexametasona/farmacologia , Feminino , Humanos , Hidrazinas/farmacologia , Masculino , Mieloma Múltiplo/patologia , Triazóis/farmacologia
12.
Blood Adv ; 5(7): 1933-1946, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33821992

RESUMO

Resistance to the proteasome inhibitor bortezomib (BTZ) represents a major obstacle in the treatment of multiple myeloma (MM). The contribution of lipid metabolism in the resistance of MM cells to BTZ is mostly unknown. Here we report that levels of fatty acid elongase 6 (ELOVL6) were lower in MM cells from BTZ-nonresponsive vs BTZ-responsive patients and in cultured MM cells selected for BTZ resistance compared with parental counterparts. Accordingly, depletion of ELOVL6 in parental MM cells suppressed BTZ-induced endoplasmic reticulum (ER) stress and cytotoxicity, whereas restoration of ELOVL6 levels in BTZ-resistant MM cells sensitized them to BTZ in tissue culture settings and, as xenografts, in a plasmacytoma mouse model. Furthermore, for the first time, we identified changes in the BTZ-induced lipidome between parental and BTZ-resistant MM cell lines underlying a functional difference in their response to BTZ. We demonstrated that restoration of ELOVL6 levels in BTZ-resistant MM cells resensitized them to BTZ largely via upregulation of ELOVL6-dependent ceramide species, which was a prerequisite for BTZ-induced ER stress and cell death in these cells. Our data characterize ELOVL6 as a major clinically relevant regulator of MM cell resistance to BTZ, which can emerge from the impaired ability of these cells to alter ceramide composition in response to BTZ.


Assuntos
Mieloma Múltiplo , Animais , Bortezomib/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Elongases de Ácidos Graxos , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética
13.
Cell Death Dis ; 12(4): 396, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854043

RESUMO

Despite the significant advances in the treatment of multiple myeloma (MM), this disease is still considered incurable because of relapse and chemotherapy resistance, underscoring the need to seek novel therapies with different mechanisms. Anlotinib, a novel multi-targeted tyrosine kinase inhibitor (TKI), has exhibited encouraging antitumor activity in several preclinical and clinical trials, but its effect on MM has not been studied yet. In this study, we found that anlotinib exhibits encouraging cytotoxicity in MM cells, overcomes the protective effect of the bone marrow microenvironment and suppresses tumor growth in the MM mouse xenograft model. We further examined the underlying molecular mechanism and found that anlotinib provokes cell cycle arrest, induces apoptosis and inhibits multiple signaling pathways. Importantly, we identify c-Myc as a novel direct target of anlotinib. The enhanced ubiquitin proteasomal degradation of c-Myc contributes to the cell apoptosis induced by anlotinib. In addition, anlotinib also displays strong cytotoxicity against bortezomib-resistant MM cells. Our study demonstrates the extraordinary anti-MM effect of anlotinib both in vitro and in vivo, which provides solid evidence and a promising rationale for future clinical application of anlotinib in the treatment of human MM.


Assuntos
Bortezomib/farmacologia , Genes myb/efeitos dos fármacos , Indóis/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Quinolinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
14.
Biomed Res Int ; 2021: 5551504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928148

RESUMO

Background: Previous studies have demonstrated the ubiquitin-proteasome inhibitor bortezomib (BTZ) can effectively alleviate hypoxia-induced pulmonary hypertension (HPH) by suppressing the intracellular calcium homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Further evaluation showed that the antiproliferation roles of BTZ are mainly mediated by inhibition of the intracellular calcium homeostasis. Caveolin-1 belongs to one of the key regulators of the intracellular calcium homeostasis in PASMCs, which can regulate the store-operated calcium entry (SOCE). However, the effects of BTZ on Caveolin-1 remain unclear. Methods: Primarily cultured human PASMCs were used as the cell model. CCK-8 assay was performed to assess the PASMCs proliferation. Western blotting and real-time qPCR were used to detect the mRNA and protein expressions. Fura-2-based fluorescence imaging experiments were used to determine the intracellular calcium concentration ([Ca2+]i). The protein synthesis inhibitor cycloheximide (CHX) was utilized to determine the protein degradation process. Results: Firstly, in cultured human PASMCs, treatment of BTZ for 24 or 60 hours significantly downregulates Caveolin-1 at both mRNA and protein levels. Secondly, in the presence CHX, BTZ treatment also leads to downregulated protein expression and fastened protein degradation of Caveolin-1, indicating that BTZ can promote the Caveolin-1 protein degradation, other than the BTZ on Caveolin-1 mRNA transcription. Then, BTZ significantly attenuates the hypoxia-elevated baseline [Ca2+]i, SOCE, and cell proliferation. Conclusion: We firstly observed that the ubiquitin-proteasome inhibitor BTZ can inhibit the Caveolin-1 expression at both mRNA transcription and protein degradation processes, providing new mechanistic basis of BTZ on PASMC proliferation.


Assuntos
Bortezomib/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Caveolina 1/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Caveolina 1/genética , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cloroquina/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Proteólise/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806209

RESUMO

Multiple myeloma (MM) is a B-cell neoplasm characterized by clonal plasma-cell proliferation. The survival and prognosis of this condition have been significantly improved by treatment with active anti-MM drugs such as bortezomib or lenalidomide. Further, the discovery of novel agents has recently paved the way for new areas of investigation. However, MM, including myeloma-related bone diseases, remains fatal. Bone disease or bone destruction in MM is a consequence of skeletal involvement with bone pain, spinal cord compression, and bone fracture resulting from osteolytic lesions. These consequences affect disease outcomes, including patients' quality of life and survival. Several studies have sought to better understand MM bone disease (MBD) through the classification of its molecular mechanisms, including osteoclast activation and osteoblast inhibition. Bisphosphonates and the receptor activator of the nuclear factor-kappa B (NF-κB) ligand (RANKL) inhibitor, denosumab, prevent skeletal-related events in MM. In addition, several other bone-targeting agents, including bone-anabolic drugs, are currently used in preclinical and early clinical evaluations. This review summarizes the current knowledge of the pathogenesis of MBD and discusses novel agents that appear very promising and will soon enter clinical development.


Assuntos
Doenças Ósseas/terapia , Mieloma Múltiplo/terapia , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Doenças Ósseas/etiologia , Remodelação Óssea , Osso e Ossos , Bortezomib/farmacologia , Denosumab/farmacologia , Difosfonatos/farmacologia , Humanos , Mieloma Múltiplo/complicações , Subunidade p50 de NF-kappa B/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteólise/complicações , Ligante RANK/metabolismo , Proteínas Wnt/antagonistas & inibidores
16.
J Proteomics ; 241: 104197, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848640

RESUMO

Proteasome inhibitors are an important class of chemotherapeutic drugs. In this study, we performed a large-scale ubiquitylome analysis of the three proteasome inhibitors MG132, bortezomib and carfilzomib. Although carfilzomib is currently being used for the treatment of multiple myeloma, it has not yet been subjected to a global ubiquitylome analysis. In this study, we identified more than 14,000 unique sites of ubiquitylation in more than 4400 protein groups. We introduced stringent criteria to determine the correct ubiquitylation site ratios and used five biological replicates to achieve increased statistical power. With the vast amount of data acquired, we made proteome-wide comparisons between the proteasome inhibitors and indicate candidate proteins that will benefit from further study. We find that in addition to the expected increase in ubiquitylation in the majority of proteins, unexpectedly a select few are specifically and significantly decreased in ubiquitylation at specific sites after treatment with proteasome inhibitors. We chose to follow-up on Mortality factor 4-like 1 (MORF4L1), which was significantly decreased in ubiquitylation at lysine 187 and lysine 104 upon proteasome inhibition, but increased in protein abundance by approximately two-fold. We demonstrate that the endogenous protein level of MORF4L1 is highly regulated by the ubiquitin proteasome system. SIGNIFICANCE: This study provides a highly curated dataset of more than 14,000 unique sites of ubiquitylation in more than 4400 protein groups. For the proper quantification of ubiquitylation sites, we introduced a higher standard by quantifying only those ubiquitylation sites that are not flanked by neighboring ubiquitylation, thereby avoiding the report of incorrect ratios. The sites identified will serve to identify important targets of the ubiquitin proteasome system and aid to better understand the repertoire of proteins that are affected by inhibiting the proteasome with MG132, bortezomib, and carfilzomib. In addition, we investigated the unusual observation that ubiquitylation of the tumor suppressor Mortality factor 4-like (MORF4L1) protein decreases rather than increases upon proteasome inhibition, which may contribute to an additional anti-tumor effect of bortezomib and carfilzomib.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Humanos , Leupeptinas , Mieloma Múltiplo/tratamento farmacológico , Oligopeptídeos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Proteômica , Ubiquitinação
17.
Biochem Biophys Res Commun ; 556: 207-214, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33848935

RESUMO

Bortezomib is a classical proteasome inhibitor and previous researches have reported its roles of anti-oxidation and anti-inflammatory functions in various diseases. However, the role of Bortezomib in myocardial ischemia reperfusion injury (MIRI) is unclear. Thus, our research seeks to reveal the protective effects of Bortezomib pretreatment in the mice model of MIRI. First, by the optimization of Bortezomib concentration and pretreatment timepoints, we found that 0.5 mg/kg Bortezomib pretreatment 2 h before MIRI significantly attenuated pathological damage and neutrophil infiltration. Then we found that pretreatment with Bortezomib obviously increased myocardial systolic function ((left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS)) and decreased infarct size, as well as serum Troponin T levels. Meanwhile, Bortezomib pretreatment also remarkably augmented oxidative stress related protein levels of Superoxide dismutase [Cu-Zn] (SOD1), Catalase (CAT) and Glutathione (GSH), while reactive oxygen species (ROS) contents and Malonaldehyde (MDA) protein level were significantly reduced. Mechanistically, Bortezomib pretreatment significantly promoted nuclear translocation of transcriptional factor nuclear factor erythroid 2-related factor 2(Nrf2) and Heme Oxygenase 1(HO-1) expression. Interestingly, co-treatment with ML-385, a new type and selective Nrf2 inhibitor, counteracted antioxidative effects induced by Bortezomib pretreatment. In conclusion, Bortezomib pretreatment mitigates MIRI by inhibiting oxidative damage which is regulated by Nrf2/HO-1 signaling pathway.


Assuntos
Bortezomib/farmacologia , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Bortezomib/administração & dosagem , Bortezomib/uso terapêutico , Modelos Animais de Doenças , Esquema de Medicação , Coração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sístole/efeitos dos fármacos , Fatores de Tempo , Troponina T/sangue , Função Ventricular/efeitos dos fármacos
18.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(2): 515-519, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33812423

RESUMO

OBJECTIVE: To study the effect of PX-12 on apoptosis of multiple myeloma (MM) cell line induced by bortezomib. METHODS: MM cell line H929 cells were divided into PX-12 group, bortezomib group, combination group, and control group. 5.0 µmol/L PX-12, 20 nmol/L bortezomib, combination of the two drugs, and DMSO were given to the above mentioned group, respectively. After culture for 24, 48, and 72 hours, the changes of cell viability were observed, the MM cell activity was detected by MTT method, and the cell cycle distribution and apoptosis of each group was detected by flow cytometry. The intracellular ROS level was measured by H2DCFDA probe labeling. RESULTS: MTT assay showed that after culture for 72 hours, the activity of H929 cells in PX-12 group (P<0.05) and bortezomib group (P<0.01) was significantly lower than that in the control group, while that in the combination group was decreased most significantly (P<0.01). After culture for 48 hours, cells in G1 phase in PX-12 group was decreased to 40%, while cells in S phase and G2/M phase was increased to 28% and 40%, respectively. The cells in bortezomib group also showed a similar distribution after being treated. After treated with PX-12 and bortezomib, the cells in G1 phase were decreased significantly to 19% and 12% in S phase, but increased significantly to 68% in G2/M phase, which was significantly different from PX-12 group and bortezomib group (P<0.01). After culture for 72 hours, the apoptosis rate was 71.3% in the combination group, which was significantly higher than that in PX-12 group, bortezomib group, and control group (20.6%, 33.3%, 10.6%)(P<0.01). After culture for 24 hours, the intracellular ROS level in the combination group was 12015±430.2, which was higher than that in the PX-12 group, bortezomib group, and control group (6729±352.8, 2651±228.3, 1098±164.6, respectively) (P<0.01). CONCLUSION: PX-12 can increase the apoptosis of MM cell line H929 induced by bortezomib, which may be caused by increasing of ROS level.


Assuntos
Mieloma Múltiplo , Apoptose , Bortezomib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos
19.
Cell Death Dis ; 12(3): 251, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674562

RESUMO

Ciclopirox (CPX) is an antifungal drug that has recently been reported to act as a potential anticancer drug. However, the effects and underlying molecular mechanisms of CPX on glioblastoma multiforme (GBM) remain unknown. Bortezomib (BTZ) is the first proteasome inhibitor-based anticancer drug approved to treat multiple myeloma and mantle cell lymphoma, as BTZ exhibits toxic effects on diverse tumor cells. Herein, we show that CPX displays strong anti-tumorigenic activity on GBM. Mechanistically, CPX inhibits GBM cellular migration and invasion by reducing N-Cadherin, MMP9 and Snail expression. Further analysis revealed that CPX suppresses the expression of several key subunits of mitochondrial enzyme complex, thus leading to the disruption of mitochondrial oxidative phosphorylation (OXPHOS) in GBM cells. In combination with BTZ, CPX promotes apoptosis in GBM cells through the induction of reactive oxygen species (ROS)-mediated c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) signaling. Moreover, CPX and BTZ synergistically activates nuclear factor kappa B (NF-κB) signaling and induces cellular senescence. Our findings suggest that a combination of CPX and BTZ may serve as a novel therapeutic strategy to enhance the anticancer activity of CPX against GBM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bortezomib/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Ciclopirox/farmacologia , Glioblastoma/tratamento farmacológico , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Glioblastoma/enzimologia , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Fosforilação Oxidativa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Blood Adv ; 5(7): 1805-1815, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33787860

RESUMO

Systemic chronic active Epstein-Barr virus (EBV; sCAEBV) infection, T- and natural killer (NK)-cell type (sCAEBV), is a fatal disorder accompanied by persisting inflammation harboring clonal proliferation of EBV-infected T or NK cells. Today's chemotherapy is insufficient to resolve disease activity and to rid infected cells of sCAEBV. The currently established treatment strategy for eradicating infected cells is allogeneic hematopoietic stem cell transplantation. In this study, we focused on the effects of proteasome inhibitor bortezomib on the disease. Bortezomib suppressed survival and induced apoptosis of EBV+ T- or NK-cell lines and peripheral mononuclear cells containing EBV-infected T or NK cells of sCAEBV patients. Bortezomib enhanced binding immunoglobulin protein/78-kDa glucose-regulated protein (Bip/GRP78) expression induced by endoplasmic reticulum stress and activated apoptosis-promoting molecules JNK and p38 in the cell lines. Bortezomib suppressed the activation of survival-promoting molecule NF-κB, which was constitutively activated in EBV+ T- or NK-cell lines. Furthermore, quantitative reverse transcription-polymerase chain reaction demonstrated that bortezomib suppressed messenger RNA expression of proinflammatory cytokines tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ) in EBV+ T or NK cells from the patients. Finally, we examined the effects of bortezomib using xenograft models of sCAEBV generated by IV injection of patients' cells. The intraperitoneal administration of bortezomib significantly reduced EBV-DNA load in peripheral blood and the infiltration of EBV-infected cells in the models' livers. Moreover, the serum concentration of TNF-α and IFN-γ decreased after bortezomib treatment to the models. Our findings will be translated into the treatment of sCAEBV not only to reduce the number of tumor cells but also to suppress inflammation.


Assuntos
Antineoplásicos , Infecções por Vírus Epstein-Barr , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...