Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.548
Filtrar
1.
Food Chem ; 399: 133946, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998491

RESUMO

Genotype, growth stages, and moisture regimes affect polyphenols as beneficial compounds in rapeseed with edible and medicinal properties. The aims of this study were to assess the effects of tissue, genotype background and moisture on growth, pigment composition, phenolic acids, flavonoids, antioxidant, and antiglycation activities in rapeseed. Treatments included two moisture regimes (10% field capacity as drought-treated and 30% field capacity as control), tissue (leaf, flower and seed), and 12 rapeseed genotypes. The range of loss in growth traits under drought compared with control was between 23% and 47%. Drought reduced number of leaves, leaf area, fresh and dry weights by 23%, 31%, 37%, and 36%, respectively whilst increased chlorophylls, carotenoids, total pigment, phenolic compounds, flavonoids, and antioxidant activities. Analysis for antiglycation properties in two genotypes (G01 and G08) which accumulated higher phenolic compounds showed that higher antiglycation property was associated with higher epicatechin, and caffeic, and syringic acids. Flower extracts showed higher phenolics than leaf and seed suggesting flowering stage is a preferred timing to harvest a higher polyphenols from rapeseed. Overall, our results demonstrated role of specific polyphenols in antiglycation activities and the importance of growth stage and genotype in attaining higher polyphenols and antioxidants that affect edible and medicinal values of rapeseed under water limited conditions.


Assuntos
Brassica napus , Brassica rapa , Antioxidantes/análise , Antioxidantes/farmacologia , Brassica napus/genética , Flavonoides/farmacologia , Fenóis/análise , Extratos Vegetais/farmacologia , Polifenóis/farmacologia
2.
J Environ Sci (China) ; 124: 319-329, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182142

RESUMO

Experiments were performed to explore the impact of sulfur nanoparticles (SNPs) on growth, Cu accumulation, and physiological and biochemical responses of oilseed rape (Brassica napus L.) inoculated with 5 mg/L Cu-amended MS medium supplemented with or without 300 mg/L SNPs exposure. Cu exerted severe phytotoxicity and inhibited plant growth. SNPs application enhanced the shoot height, root length, and dry weight of shoot and root by 34.6%, 282%, 41.7% and 37.1%, respectively, over Cu treatment alone, while the shoot and root Cu contents and Cu-induced lipid perodixation as the malondialdehyde (MDA) levels in shoots and roots were decreased by 37.6%, 35%, 28.4% and 26.8%. Further, the increases in superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST) enzyme activities caused by Cu stress were mitigated in shoots (10.9%-37.1%) and roots (14.6%-35.3%) with SNPs addition. SNPs also positively counteracted the negative effects on shoot K, Ca, P, Mg, Mn, Zn and Fe contents and root K, Ca, Mg and Mn contents from Cu exposure alone, and significantly promoted the nutrients accumulation in plant. Additionally, in comparison with common bulk sulfur particles (BSPs) and sulfate, SNPs showed more positive effects on promoting growth in shoots (6.7% and 19.5%) and roots (10.9% and 15.1%), as well as lowering the shoot Cu content (40.1% and 43.3%) under Cu stress. Thus, SNPs application has potential to be a green and sustainable technology for increasing plant productivity and reducing accumulation of toxic metals in heavy metal polluted soils.


Assuntos
Brassica napus , Metais Pesados , Nanopartículas , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Brassica napus/metabolismo , Catalase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Redutase/farmacologia , Glutationa Transferase , Peróxido de Hidrogênio , Lipídeos/farmacologia , Malondialdeído , Metais Pesados/farmacologia , Estresse Oxidativo , Peroxidases , Raízes de Plantas/metabolismo , Solo , Sulfatos , Enxofre , Superóxido Dismutase/metabolismo
3.
Talanta ; 251: 123814, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35961082

RESUMO

Brassica plants play an important role in common agricultural practices, such as livestock feed or biofumigation, due to the bioactivity of the natural degradation products of glucosinolate metabolites. Therefore, the ability to survey comprehensive glucosinolate profiles for individual brassicas is essential for informing proper species selection for the intended application. Current methods for glucosinolate identification and quantification involve complex or unconventional procedures, and proper reference materials are not readily available. Therefore, researchers with limited resources that require glucosinolate profiles are at an extreme disadvantage. In this work, a simple and accurate HPLC-MS method was developed and validated to build preliminary glucosinolate profiles for three agriculturally relevant forage brassica varieties [turnip (B. rapa L.), canola (B. napus L.), and rapeseed (B. napus L.)]. The average glucosinolate content across three herbage collection dates for canola, rapeseed and turnip were 2.9 ± 0.9 mg g-1, 6.4 ± 1.3 mg g-1, and 14 ± 3.4 mg g-1, respectively. GLS concentrations are reported in milligrams of glucosinolate, calculated as sinigrin equivalents, per gram of dry plant material. This semi-quantitative approach for reporting total GLS content in brassicas is accurate within 15%. Several minor individual glucosinolates were identified that have not been previously reported in canola, rapeseed and turnip species, including glucotropaeolin and 4-hydroxyglucobrassicin (canola), glucoraphanin and glucoberteroin (rapeseed), and glucosinalbin and glucobarbarin (turnip). This non-targeted screen of several forage brassica varieties demonstrates the inherent variation in both the individual glucosinolate content and the total glucosinolate profile among brassicas, and highlights the importance of such glucosinolate characterization in agricultural practices. Additionally, the method developed in this study can be used as a tool for researchers with limited resources to build accurate glucosinolate profiles of brassica plants.


Assuntos
Brassica napus , Brassica rapa , Brassica , Brassica/metabolismo , Glucosinolatos/metabolismo
4.
Food Chem ; 403: 134315, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183466

RESUMO

Sixteen multiparous Holstein cows in four blocks of 4 × 4 Latin square over 4-week experimental periods were used to study the effects of seaweed (Saccharina latissima) supplement (with/without) and protein source (rapeseed meal (RSM)/wheat distiller's grain (WDG)) on milk mineral concentrations. Dietary treatments did not affect milk production and basic composition. Feeding seaweed slightly decreased milk Ca and Cu concentrations; whilst increased (by 3.3-fold) milk iodine (I) concentration, due to a higher dietary I supply. Substitution of WDG with RSM increased feed-to-milk transfer of Ca, Na, and Se and decreased that of Mg, P, Fe, and Mn; but only reduced milk Mn and I concentrations (the latter by 27 % as a potential result of increased glucosinolate intake). Seaweed supplement can improve milk I content when cows' I supply/availability is limited, but care should be taken to avoid excess milk I contents that may pose nutritional risks for young children.


Assuntos
Brassica napus , Brassica rapa , Feófitas , Alga Marinha , Feminino , Bovinos , Animais , Leite/metabolismo , Lactação , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Grão Comestível , Verduras , Minerais/metabolismo
5.
J Environ Manage ; 325(Pt A): 116627, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419294

RESUMO

Changes in soil moisture content accompanying ongoing climate change are expected to affect plant growth and contaminants behaviour in the soil. The study was aimed at investigating soil water content impact on the energy crop oilseed rape (Brassica napus L.) efficiency to remediate Cd contaminated soil (1-250 mg kg-1). B. napus growth, Cd accumulation and removal efficiency were evaluated under optimal, reduced and elevated soil water content (SWC). B. napus showed good tolerance to Cd contamination and ability to phytoextract Cd from the soil. Cd accumulation in oilseed rape increased with Cd soil concentration, whereas removal efficiency was regulated by rape growth and Cd soil concentrations. B. napus has demonstrated good efficiency to cope with low and moderate Cd pollution (with tolerance index TI > 0.69), while high Cd soil pollution had a highly significant adverse impact on plant growth (growth was reduced up to 90%) resulting in low Cd removal efficiency. SWC governed plant growth, Cd accumulation and removal from the soil. Oilseed rapes grown under elevated SWC were of higher biomass (18%) compared to those grown under reduced SWC though the detrimental effect of Cd was more severe at elevated SWC. Reduced SWC led to decreased Cd uptake, conversely elevated SWC promoted Cd uptake. The optimal SWC ensures the highest Cd removal efficiency, whereas soil water deficit or excess restricts B. napus potential to remove Cd from the soil and prolongs remediation.


Assuntos
Brassica napus , Solo , Água , Cádmio , Poluição Ambiental
6.
J Hazard Mater ; 443(Pt B): 130284, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36332279

RESUMO

Rapeseed cultivation is a novel approach to safely utilizing lead (Pb) contaminated farmland. However, the mechanism of Pb absorption in seeds remains uncertain. A field experiment was conducted to explore this mechanism with two contrasting treatments: rapeseed exposed to atmospheric deposition and non-exposed treatment. Non-exposed treatment ultimately decreased Pb content in leaf, silique, and seed by 46.7%, 53.7%, and 53.6%, respectively. Sub-microstructure analysis further confirmed that rapeseed leaves and siliques could directly absorb atmospheric Pb. In addition, Pb isotope analysis indicates that atmospheric deposition is the primary source of silique and seed Pb. The root and silique organs had relative Pb contributions of 28.0% and 72.0%, respectively, to seed. Thus, the direct absorption of atmospheric Pb by siliques during the filling stage was found to be the leading cause of seed Pb pollution.


Assuntos
Brassica napus , Brassica rapa , Chumbo/análise , Sementes/química , Poluição Ambiental
7.
Food Chem ; 401: 134151, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36103741

RESUMO

In this study, a two-step extraction strategy (TSES) and targeted metabolomics combined with chemometrics was successfully applied for profiling of phenolic compounds in different colored rapeseeds. To this end, organic solvent extraction followed by deep eutectic solvent extraction made up the TSES with improved extraction coverage of free phenolics and enhanced extraction yield of conjugated phenolics, which combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) for further profiling of phenolics. TSES-LC-MS/MS method was established with determination coefficients for phenolic compounds greater than 0.9989. Finally, the relationship between color differences and phenolic compounds in rapeseeds was investigated upon TSES-LC-MS/MS method combined with chemometrics. Syringin, kaempferol, isorhamnetin, and sinapic acid were found to be the differential phenolics for the six different colored rapeseeds and their spatial distribution in rapeseeds were presented. Consequently, our method showed great potential for future studies based on comprehensive extraction and profiling of phenolics from complex matrices.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/química , Cromatografia Líquida , Quempferóis/análise , Espectrometria de Massas em Tandem/métodos , Quimiometria , Solventes Eutéticos Profundos , Fenóis/análise , Solventes , Cromatografia Líquida de Alta Pressão/métodos
8.
J Hazard Mater ; 442: 130066, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36193614

RESUMO

Exploration of the mechanisms of cadmium (Cd) activation mediated by the rhizosphere process is important to advance our understanding of Cd accumulation in plants. In this study, two oilseed rape cultivars (L338, L351) with varied Cd accumulation traits were applied and the responses of their rhizosphere ecology to Cd stress were investigated by metabolome and microbiome. The results showed that shoot Cd accumulations in L338 accounted for 54.16% and 64.76% of those in L351 under low and high Cd contamination, respectively. Moreover, the cultivars response of rhizosphere process reflected that the lower pH and higher Cd mobility were assigned to the characters of L351, which were induced by the secretion of carboxylic acid (e.g. Acetaminophen cysteine, N-Fructosyl alliin) and the enrichment of bacterial taxa with the capacities of Cd resistant and activation (e.g. Sphingomonas, Flavobacterium, Neorhizobium, Altererythrobacter). Conclusively, the varied Cd accumulation traits of two oilseed rape cultivars were not only derived from the Cd transfer ability, it would be ascribed to Cd mobility regulated by rhizosphere processes as well. The results provide baseline data and a new perspective on the cultivar response of Cd accumulation, thus maintaining cleaner production of oilseed rape.


Assuntos
Brassica napus , Poluentes do Solo , Cádmio/análise , Biodegradação Ambiental , Exsudatos e Transudatos/química , Ácidos Carboxílicos , Raízes de Plantas/química
9.
Sci Rep ; 12(1): 20216, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418358

RESUMO

Canola is one of the important oil crops and is considered the most promising oil source and adapts to reclaimed soil conditions. The current study aimed to evaluate the influence of yeast extract (YE) integrated with nitrogen (N) rates and treatments were arranged as follows: Control (without F0), 95 kg N ha-1 (F1), 120 kg N ha-1 (F2), 142 kg N ha-1 (F3), 95 kg N ha-1 + YE (F4), 120 kg N ha-1 + YE (F5) and 142 kg N ha-1 + YE (F6) on physico-chemical properties, yield and its components for three Canola genotypes i.e. AD201 (G1), Topaz and SemuDNK 234/84 under the sandy soil. In this work, Results reveal that increasing rates of Nitrogen fertilization from 95 kg N ha-1 to 142 kg N ha-1 have a great effect on physicochemical properties yield and its components. The result proved that 142 kg N ha-1 with yeast treatment was the best treatment for three Canola genotypes. Also, the result showed that seed yield was positively correlated with Chl. a/b ratio, plant height, number of branches/plant, number of pods/plant, and number of seeds/pod, and a strong negative correlation was detected between seed oil percentage when the amount of nitrogen fertilization applied without or with yeast extract is increased.


Assuntos
Brassica napus , Solo , Nitrogênio , Areia , Brassica napus/fisiologia , Minerais , Fertilidade
10.
Sci Rep ; 12(1): 20033, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414656

RESUMO

Vermicompost (VC) is a rich source of HA that improves plant growth and yield indices such as fresh and dry weights, plant height, stem diameter, leaf area, and chlorophyll index value. In this study, the effect of foliar application of HA extracted from different types of VC enriched with bacteria and/or fertilizers, commercial HA (CHA) and indole acetic acid (IAA) on the growth characteristics of canola (Brassica napus) in greenhouse conditions were compared. According to the results, the foliar application of HA extracted from VC had complete superiority over CHA and IAA in most traits except for the leaf number. Furthermore, the highest level of foliar application of HA (600 mg L-1) enriched with Azotobacter chroococcum (21Az) + Pseudomonas fluorescens (Ps 59) (HA-AS) generated the highest height, diameter, leaf area, and chlorophyll index value. Also, the highest stomatal conductance and photosynthesis rate were observed with the application of 600 mg L-1 HA extracted from VC enriched with nitrogen, sulfur, and phosphorus (HA-NSP) compared to the other treatments. Besides, dry and fresh weights and seed yield under HA-NSP and HA-AS treatments were at their highest rate. Among the extracted HAs, the one extracted from the nitrogen enriched VC had the lowest efficiency. Based on the present study, the HA extracted from VC enriched with Azotobacter, Pseudomonas and NSP is recommended to increase canola growth and production.


Assuntos
Brassica napus , Substâncias Húmicas , Nitrogênio/farmacologia , Clorofila/farmacologia
11.
Genes (Basel) ; 13(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36360273

RESUMO

Copy number variations (CNVs) are defined as deletions, duplications and insertions among individuals of a species. There is growing evidence that CNV is a major factor underlining various autoimmune disorders and diseases in humans; however, in plants, especially oilseed crops, the role of CNVs in disease resistance is not well studied. Here, we investigate the genome-wide diversity and genetic properties of CNVs in resistance gene analogues (RGAs) across eight Brassica napus lines. A total of 1137 CNV events (704 deletions and 433 duplications) were detected across 563 RGAs. The results show CNVs are more likely to occur across clustered RGAs compared to singletons. In addition, 112 RGAs were linked to a blackleg resistance QTL, of which 25 were affected by CNV. Overall, we show that the presence and abundance of CNVs differ between lines, suggesting that in B. napus, the distribution of CNVs depends on genetic background. Our findings advance the understanding of CNV as an important type of genomic structural variation in B. napus and provide a resource to support breeding of advanced canola lines.


Assuntos
Brassica napus , Humanos , Brassica napus/genética , Variações do Número de Cópias de DNA/genética , Melhoramento Vegetal , Resistência à Doença/genética , Genoma
12.
Genome Biol ; 23(1): 233, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345039

RESUMO

BACKGROUND: Regulation of gene expression plays an essential role in controlling the phenotypes of plants. Brassica napus (B. napus) is an important source for the vegetable oil in the world, and the seed oil content is an important trait of B. napus. RESULTS: We perform a comprehensive analysis of the transcriptional variability in the seeds of B. napus at two developmental stages, 20 and 40 days after flowering (DAF). We detect 53,759 and 53,550 independent expression quantitative trait loci (eQTLs) for 79,605 and 76,713 expressed genes at 20 and 40 DAF, respectively. Among them, the local eQTLs are mapped to the adjacent genes more frequently. The adjacent gene pairs are regulated by local eQTLs with the same open chromatin state and show a stronger mode of expression piggybacking. Inter-subgenomic analysis indicates that there is a feedback regulation for the homoeologous gene pairs to maintain partial expression dosage. We also identify 141 eQTL hotspots and find that hotspot87-88 co-localizes with a QTL for the seed oil content. To further resolve the regulatory network of this eQTL hotspot, we construct the XGBoost model using 856 RNA-seq datasets and the Basenji model using 59 ATAC-seq datasets. Using these two models, we predict the mechanisms affecting the seed oil content regulated by hotspot87-88 and experimentally validate that the transcription factors, NAC13 and SCL31, positively regulate the seed oil content. CONCLUSIONS: We comprehensively characterize the gene regulatory features in the seeds of B. napus and reveal the gene networks regulating the seed oil content of B. napus.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Redes Reguladoras de Genes , Sementes/genética , Sementes/metabolismo , Locos de Características Quantitativas , Óleos Vegetais/metabolismo
14.
Sci Rep ; 12(1): 18893, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344537

RESUMO

Glyphosate is the most used herbicide worldwide, and is an important source of economical weed control in glyphosate-resistant crops, and conservation tillage systems, among other uses. Downy brome (Bromus tectorum L.), otherwise known as cheatgrass, is a highly invasive winter-annual grass weed in cropping systems, pastureland, and naturalized or ruderal areas in western North America. In 2021, a downy brome population remained uncontrolled following four applications of glyphosate in a glyphosate-resistant canola (Brassica napus L.) field located in Taber County, Alberta, Canada. All individuals from the subsequent generation of the population survived glyphosate treatment at the typical field rate (900 g ae ha-1). In dose-response bioassays, the putative glyphosate-resistant population exhibited 10.6- to 11.9-fold, 7.7- to 8.7-fold, 7.8- to 8.8-fold, and 8.3- to 9.5-fold resistance to glyphosate based on plant survival, visible control, and biomass fresh weight and dry weight, respectively, compared with two susceptible populations 21 days after treatment. Estimated glyphosate rates for 80% control of this population ranged from 2795 to 4511 g ae ha-1; well above common usage rates. This downy brome population represents the first glyphosate-resistant grass weed confirmed in Canada, and the second weed species exhibiting glyphosate resistance in the Canadian prairie region.


Assuntos
Brassica napus , Herbicidas , Humanos , Bromus , Glicina/farmacologia , Controle de Plantas Daninhas , Herbicidas/farmacologia , Alberta , Resistência a Herbicidas/genética
15.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361657

RESUMO

Clubroot caused by Plasmodiophora brassicae led to a significant decrease in the yield and quality of Brassica napus, one of the most important oil crops in the world. JAZ proteins are an essential repressor of jasmonates (JAs) signaling cascades, which have been reported to regulate the resistance to P. brassicae in B. napus. In this study, we identified 51, 25 and 26 JAZ proteins in B. napus, B. rapa and B. oleracea, respectively. Phylogenetic analysis displayed that the notedJAZ proteins were divided into six groups. The JAZ proteins clustered in the same group shared a similar motif composition and distribution order. The 51 BnaJAZs were not evenly assigned on seventeen chromosomes in B. napus, except for A04 and C07. The BnaJAZs of the AtJAZ7/AtJAZ8 group presented themselves to be significantly up-regulated after inoculation by P. brassicae. Variation analysis in a population with a specific resistance performance in P. brassicae displayed a 64 bp translocation in BnaC03T0663300ZS (BnaJAZ8.C03, homologous to AtJAZ8) with an 8% reduction in the disease index on average. Through protein-protein interaction analysis, 65 genes were identified that might be involved in JAZ8 regulation of resistance to P. brassicae in B. napus, which provided new clues for understanding the resistance mechanism to P. brassicae.


Assuntos
Brassica napus , Plasmodioforídeos , Plasmodioforídeos/fisiologia , Brassica napus/genética , Resistência à Doença/genética , Filogenia , Doenças das Plantas/genética
16.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362332

RESUMO

Low temperature is a major environmental factor, which limits rapeseed (Brassica napus L.) growth, development, and productivity. So far, the physiological and molecular mechanisms of rapeseed responses to cold stress are not fully understood. Here, we explored the transcriptome and metabolome profiles of two rapeseed genotypes with contrasting cold responses, i.e., XY15 (cold-sensitive) and GX74 (cold-tolerant). The global metabolome profiling detected 545 metabolites in siliques of both genotypes before (CK) and after cold-stress treatment (LW). The contents of several sugar metabolites were affected by cold stress with the most accumulated saccharides being 3-dehydro-L-threonic acid, D-xylonic acid, inositol, D-mannose, D-fructose, D-glucose, and L-glucose. A total of 1943 and 5239 differentially expressed genes were identified from the transcriptome sequencing in XY15CK_vs_XY15LW and GX74CK_vs_GX74LW, respectively. We observed that genes enriched in sugar metabolism and biosynthesis-related pathways, photosynthesis, reactive oxygen species scavenging, phytohormone, and MAPK signaling were highly expressed in GX74LW. In addition, several genes associated with cold-tolerance-related pathways, e.g., the CBF-COR pathway and MAPK signaling, were specifically expressed in GX74LW. Contrarily, genes in the above-mentioned pathways were mostly downregulated in XY15LW. Thus, our results indicate the involvement of these pathways in the differential cold-stress responses in XY15 and GX74.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Resposta ao Choque Frio/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica/métodos , Brassica rapa/genética , Genótipo , Metaboloma , Açúcares
17.
Viruses ; 14(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36423120

RESUMO

Turnip yellows virus (TuYV) is one of the most important pathogens of oilseed rape worldwide. The virus has a large host range including many crop species (e.g., oilseed rape, pea, chickpea) and weeds from more than twenty plant families. Other than oilseed rape, we detected TuYV in many commonly grown weed species that share the fields and vegetation period together with canola crops in Czech and Slovak Republics. TuYV was detected by reverse-transcription polymerase chain reaction (RT-PCR) in at least 26 species including main crop hosts (oilseed rape), intercrops and weeds such as Amaranthus retroflexus, Atriplex patula (Amaranthaceae), Arctium lappa, Lactuca serriola, Taraxacum officinale, Tripleurospermum inodorum (Asteraceae), Phacelia tanacetifolia (Boraginaceae), Brassica napus, Capsella bursa-pastoris, Descurainia Sophia, Raphanus raphanistrum, Sinapis alba, Sisymbrium officinale, Thlaspi arvense (Brassicaceae), Silene alba, Stellaria media (Caryophyllaceae), Euphorbia helioscopia (Euphorbiaceae), Geranium rotundifolium (Geraniaceae), Lamium purpureum (Lamiaceae), Fumaria officinalis, Papaver rhoeas (Papaveraceae), Veronica persica (Plantaginaceae syn. Scrophulariaceae), Fallopia convolvulus (Polygonaceae), Solanum nigrum (Solanaceae), Urtica dioica (Urticaceae) and Viola arvensis (Violaceae). The detection of TuYV was further confirmed by RT-qPCR as well as Sanger sequencing of the PCR fragments. We discovered four new weed species as hosts of TuYV such as T. inodorum, S. alba, G. rotundifolium and E. helioscopia, representing their three respective plant families. The readthrough domain (RTD) gene sequence analysis of the Czech and Slovak TuYV isolates from oilseed rape and weed species showed similar within-group nucleotide divergence (7.1% and 5.6%, respectively) and the absence of geographical- or host-based phylogenetic clustering. The high-throughput sequencing of the P. rhoeas sample enabled the obtention of a nearly complete genome of TuYV and revealed the mixed infection of TuYV with turnip mosaic virus and cucumber mosaic virus. Our results thus show that weed species are an important TuYV reservoir and play a significant role in the spread and incidence of the disease in field crops such as oilseed rape.


Assuntos
Brassica napus , Filogenia , Produtos Agrícolas , Eslováquia
18.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430165

RESUMO

We used the NanoLuc luciferase bioluminescent reporter system to detect turnip yellows virus (TuYV) in infected plants. For this, TuYV was genetically tagged by replacing the C-terminal part of the RT protein with full-length NanoLuc (TuYV-NL) or with the N-terminal domain of split NanoLuc (TuYV-N65-NL). Wild-type and recombinant viruses were agro-infiltrated in Nicotiana benthamiana, Montia perfoliata, and Arabidopsis thaliana. ELISA confirmed systemic infection and similar accumulation of the recombinant viruses in N. benthamiana and M. perfoliata but reduced systemic infection and lower accumulation in A. thaliana. RT-PCR analysis indicated that the recombinant sequences were stable in N. benthamiana and M. perfoliata but not in A. thaliana. Bioluminescence imaging detected TuYV-NL in inoculated and systemically infected leaves. For the detection of split NanoLuc, we constructed transgenic N. benthamiana plants expressing the C-terminal domain of split NanoLuc. Bioluminescence imaging of these plants after agro-infiltration with TuYV-N65-NL allowed the detection of the virus in systemically infected leaves. Taken together, our results show that NanoLuc luciferase can be used to monitor infection with TuYV.


Assuntos
Arabidopsis , Brassica napus , Vírus de Plantas , Viroses , Arabidopsis/genética , Doenças das Plantas/genética , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/genética , Células Clonais
19.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430242

RESUMO

Polyhydroxyalkanoates (PHA) are promising biodegradable and biocompatible bioplastics, and extensive knowledge of the employed bacterial strain's metabolic capabilities is necessary in choosing economically feasible production conditions. This study aimed to create an in-depth view of the utilization of Photobacterium ganghwense C2.2 for PHA production by linking a wide array of characterization methods: metabolic pathway annotation from the strain's complete genome, high-throughput phenotypic tests, and biomass analyses through plate-based assays and flask and bioreactor cultivations. We confirmed, in PHA production conditions, urea catabolization, fatty acid degradation and synthesis, and high pH variation and osmotic stress tolerance. With urea as a nitrogen source, pure and rapeseed-biodiesel crude glycerol were analyzed comparatively as carbon sources for fermentation at 20 °C. Flask cultivations yielded 2.2 g/L and 2 g/L PHA at 120 h, respectively, with molecular weights of 428,629 g/mol and 81,515 g/mol. Bioreactor batch cultivation doubled biomass accumulation (10 g/L and 13.2 g/L) in 48 h, with a PHA productivity of 0.133 g/(L·h) and 0.05 g/(L·h). Thus, phenotypic and genomic analyses determined the successful use of Photobacterium ganghwense C2.2 for PHA production using urea and crude glycerol and 20 g/L NaCl, without pH adjustment, providing the basis for a viable fermentation process.


Assuntos
Brassica napus , Brassica rapa , Poli-Hidroxialcanoatos , Glicerol , Biocombustíveis , Genômica , Ureia
20.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430962

RESUMO

The GARP genes are plant-specific transcription factors (TFs) and play key roles in regulating plant development and abiotic stress resistance. However, few systematic analyses of GARPs have been reported in allotetraploid rapeseed (Brassica napus L.) yet. In the present study, a total of 146 BnaGARP members were identified from the rapeseed genome based on the sequence signature. The BnaGARP TFs were divided into five subfamilies: ARR, GLK, NIGT1/HRS1/HHO, KAN, and PHL subfamilies, and the members within the same subfamilies shared similar exon-intron structures and conserved motif configuration. Analyses of the Ka/Ks ratios indicated that the GARP family principally underwent purifying selection. Several cis-acting regulatory elements, essential for plant growth and diverse biotic and abiotic stresses, were identified in the promoter regions of BnaGARPs. Further, 29 putative miRNAs were identified to be targeting BnaGARPs. Differential expression of BnaGARPs under low nitrate, ammonium toxicity, limited phosphate, deficient boron, salt stress, and cadmium toxicity conditions indicated their potential involvement in diverse nutrient stress responses. Notably, BnaA9.HHO1 and BnaA1.HHO5 were simultaneously transcriptionally responsive to these nutrient stresses in both hoots and roots, which indicated that BnaA9.HHO1 and BnaA1.HHO5 might play a core role in regulating rapeseed resistance to nutrient stresses. Therefore, this study would enrich our understanding of molecular characteristics of the rapeseed GARPs and will provide valuable candidate genes for further in-depth study of the GARP-mediated nutrient stress resistance in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Nutrientes , Desenvolvimento Vegetal , Família
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...