Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
Chemosphere ; 261: 127798, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32750617

RESUMO

Mining activities lead to important physical, chemical and biological effects on soil properties, generating severe impacts in the establishment and maintenance of vegetation. Assisted phytoremediation can be considered an environmentally friendly approach for soil remediation. In this study, two mining soils (PORT and GAM) were treated with 10%, by mass, of the following amendments: manure biochars prepared at 450 °C (BMW450) and 600 °C (BMW600), hydrochars prepared by hydrothermal carbonization (HTC) of manure at 190 °C (HWM190) and 240 °C (HMW240) and manure waste (MW). Brassica napus was used as a phytoextraction species. After 45 days of plant growth, soil samples were widely characterized, including microbial biomass carbon, enzymatic activity and metal content. In addition, plant biomass production, bioconcentration factor, translocation factor and metal uptake were determined. Experimental results showed that addition of biochars improved the As uptake by Brassica napus in both soils but just in the roots increasing bioconcentration factor between 22.1 and 39.5% for GAM soil and between 28.6 and 53.4% for PORT soil. Brassica napus cannot be considered as Zn accumulator in GAM soil samples and in the case of PORT samples, only the addition of BMW600 and HMW240 enhanced the phytoextraction process of Zn on the roots. Soil enzyme activity improved in hydrochar amended soils.


Assuntos
Biodegradação Ambiental , Brassica napus/crescimento & desenvolvimento , Carvão Vegetal/química , Esterco , Poluentes do Solo/análise , Biomassa , Carbono/farmacologia , Metais/farmacologia , Mineração , Solo/química
2.
Ecotoxicol Environ Saf ; 205: 111162, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32836158

RESUMO

The mechanisms of intercropping increasing plant biomass, cadmium accumulation, and organic acids secreted in rhizosphere soil are still unclear. Oilseed rape and intercrops were grown in boxes separated either with no barrier between the compartments or by a nylon mesh barrier (37 µm) to license partial root interaction, or a solid barrier to stop any root interactions. Two intercropping systems (oilseed rape-faba bean and oilseed rape-ryegrass) were carried out in soil with Cd content of 5 mg/kg. The intermingling of roots between oilseed rape and faba bean enhanced the biomass of oilseed rape. However, the biomass was negatively affected implying the higher nutrient apportionment to the ryegrass than oilseed rape. Oilseed rape intercropping with both faba bean and ryegrass played a positive role in the shoot Cd concentration of oilseed rape. The intermingling of roots played a positive role in the citric and malic acids when intercropping with faba bean. A remarkable increase in water-soluble Cd and DTPA-Cd content was observed during oilseed rape-faba bean complete root interaction treatment, up to 175.00% and 46.65%, respectively, which compare with the monoculture treatment. In both systems, the translocation factor values were higher for oilseed rape (O-F system) than for the other test plants and were always >1. Thus the Cd removal potential of oilseed rape can be further improved in the future by optimizing agronomic practices and intercropping with faba bean.


Assuntos
Brassica napus/crescimento & desenvolvimento , Cádmio/metabolismo , Produção Agrícola/métodos , Lolium/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Vicia faba/crescimento & desenvolvimento , Bioacumulação , Biomassa , Brassica napus/metabolismo , China , Lolium/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Solo/química , Vicia faba/metabolismo
3.
PLoS One ; 15(6): e0234411, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32511257

RESUMO

The AINTEGUMENTA-like (AIL) proteins, which belong to the AP2 family, play important roles in regulating the growth and development of plant organs. The AIL family has not yet been comprehensively studied in rapeseed (Brassica napus), an allotetraploid and model organism for the study of polyploid evolution. In the present study, 99 AIL family genes were identified and characterized from B. rapa, B. oleracea, B. napus, B. juncea, and B. nigra using a comprehensive genome-wide study, including analyses of phylogeny, gene structure, chromosomal localization, and expression pattern. Using a phylogenetic analysis, the AIL genes were divided into eight groups, which were closely related to the eight AtAIL genes, and which shared highly conserved structural features within the same subfamily. The non-synonymous/synonymous substitution ratios of the paralogs and orthologs were less than 1, suggesting that the AIL genes mainly experienced purifying selection during evolution. In addition, the RNA sequencing data and qRT-PCR analysis revealed that the B. napus AIL genes exhibited organ- and developmental stage-specific expression patterns. Certain genes were highly expressed in the developing seeds (BnaAIL1, BnaAIL2, BnaAIL5, and BnaAIL6), the roots (BnaANT, BnaAIL5, and BnaAIL6), and the stem (BnaAIL7B). Our results provide valuable information for further functional analysis of the AIL family in B. napus and related Brassica species.


Assuntos
Brassica napus/genética , Brassica/genética , Genes de Plantas , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Brassica/crescimento & desenvolvimento , Brassica napus/crescimento & desenvolvimento , Mapeamento Cromossômico , Sequência Conservada , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Homeodomínio/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Sintenia
4.
Ecotoxicol Environ Saf ; 201: 110796, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32505050

RESUMO

1,2-Hexanediol is commonly used in the cosmetic industry as a preservative, an emollient, and a moisturizing agent. However, studies on the scientific toxicity of 1,2-hexanediol are limited. In this study, we evaluated the potential toxic effects of 1,2-hexanediol using phytotoxicity and cytotoxicity testing methods. Phytotoxicity tests using Brassica campestris subsp. napus and Latuca sativa L. showed that 1,2-hexanediol significantly inhibited seed germination and root elongation at the lowest concentration (0.1%). Additionally, plants treated with 1,2-hexanediol failed to survive. In cytotoxicity tests, RAW 264.7 and HK-2 cells treated with 1.0% 1,2-Hexanediol showed a significant decline in viability, followed by death. Since most personal care products contain >2% 1,2-hexanediol, it is highly likely that 1,2-hexanediol is toxic to humans. Moreover, if 1,2-hexanediol enters the human body either via oral intake or through an open wound, it could have critical effects. Furthermore, upon release into the environment, 1,2-hexanediol could cause considerable damage to plants and other organisms. Therefore, further investigation of 1,2-hexanediol is required to prevent toxicity to humans and other living organisms.


Assuntos
Brassica napus/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Glicóis/toxicidade , Hexanos/toxicidade , Alface/efeitos dos fármacos , Sementes/efeitos dos fármacos , Animais , Brassica napus/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Germinação/efeitos dos fármacos , Humanos , Alface/crescimento & desenvolvimento , Camundongos , Células RAW 264.7 , Risco , Sementes/crescimento & desenvolvimento
5.
Ecotoxicol Environ Saf ; 197: 110613, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32304923

RESUMO

Cadmium (Cd) contaminated soil has threatened plant growth and human health. Rapeseed (Brassica napus L.), an ideal plant for phytoremediation, is an important source of edible vegetable oil, vegetable, animal fodder, green manure and biodiesel. For safe utilization of Cd polluted soil, physiological, biochemical, and molecular techniques have been used to understand mechanisms of Cd tolerance in B. napus. However, most of these researches have concentrated on vegetative and adult stages, just a few reports focus on the initial growth stage. Here, the partitioning of cadmium, gene expression level and activity of enzymatic antioxidants of H18 (tolerant genotype) and P9 (sensitive genotype) were investigated under 0 and 30 mg/L Cd stress at seedling establishment stage. Results shown that the radicle length of H18 and P9 under Cd stress were decreased by 30.33 (0.01 < P < 0.05) and 88.89% (P < 0.01) respectively. Cd concentration at cotyledon not radicle and hypocotyl in P9 was significantly higher than that in H18. The expression level of BnaHMA4c, which plays a key role in root-to-shoot translocation of Cd, was extremely higher in P9 than in H18 under both normal and Cd stress conditions. We also found that SOD, CAT and POD were more active in responding to Cd stress after 48 h, and the activity of SOD and CAT in H18 were higher than that in P9 at all observed time points. In conclusion, high activity of enzymatic antioxidants at initial Cd stress stage is the main detoxification mechanism in Cd-tolerant rapeseed, while the higher Cd transfer coefficient, driven by higher expression level of BnaHMA4c is the main mechanism for surviving radicle from initial Cd toxicity in Cd-sensitive rapeseed.


Assuntos
Brassica napus/efeitos dos fármacos , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Biodegradação Ambiental , Brassica napus/enzimologia , Brassica napus/crescimento & desenvolvimento , Cádmio/farmacocinética , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Poluentes do Solo/farmacocinética
6.
Mol Genet Genomics ; 295(4): 981-999, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32306107

RESUMO

Leaf color is an important characteristic of normal chloroplast development. Variegated plants have green- and white-sectored leaves, which can be used to identify important pathways and molecular mechanisms of chloroplast development. We studied two Brassica napus variegation mutants from same one variegated ancestor, designated ZY-4 and ZY-8, which have different degrees of variegation. When grown in identical conditions, the ratio of white sectors in ZY-4 leaves is higher than in ZY-8. In both mutants, the cells in green sectors contain normal chloroplasts; while, the cells in white sectors contain abnormal plastids. Seedling chloroplasts ultrastructure of both mutants showed that the biogenesis of chloroplasts was blocked in early stages; delayed development and structual damage in ZY-4 were more serious than in ZY-8. Employing bulked segregant analysis(BSA), two bulks (BY142 and BY137) from BC2F1 lines derived from ZY-4 and ZS11, and one bulk (BY56) from BC2F1 lines derived from ZY-8 and ZS11, and screening by Brassica 60K SNP BeadChip Array, showed the candidate regions localized in chromosome A08 (BY142), C04 (BY137), and A08 (BY56), respectively. Transcriptome analysis of five seedling development stages of ZY-4, ZY-8, and ZS11 showed that photosynthesis, energy metabolism-related pathways and translation-related pathways were important for chloroplast biogenesis. The number of down- or up-regulated genes related to immune system process in ZY-4 was more than in ZY-8. The retrograde signaling pathway was mis-regulated in both mutants. DEG analysis indicated that both mutants showed photooxidative damages. By coupling transcriptome and BSA CHIP analyses, some candidate genes were identified. The gene expression pattern of carotene biosynthesis pathway was disrupted in both mutants. However, histochemical analysis of ROS revealed that there was no excessive accumulation of ROS in ZY-4 and ZY-8. Taken together, our data indicate that the disruption of carotene biosynthetic pathways leads to the variegation phenotypes of ZY-4 and ZY-8 and there are some functions that can compensate for the disruption of carotene biosynthesis in ZY-4 and ZY-8 to reduce ROS and prevent seedling mortality.


Assuntos
Brassica napus/genética , Carotenoides/metabolismo , Plastídeos/genética , Transcriptoma/genética , Arabidopsis/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação/genética , Fotossíntese/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plastídeos/metabolismo
7.
Bull Entomol Res ; 110(5): 597-610, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32252840

RESUMO

The cabbage aphid, Brevicoryne brassicae L. (Hem: Aphididae), is one of the most serious pests of canola worldwide. In this research, the effects of Pseudomonas putida, salicylic acid (SA), and integrated application of both inducers were studied on the resistance of canola to B. brassicae. In free-choice situation, the number of B. brassicae attracted on canola plants under treatments containing P. putida and SA was significantly lower compared to control plants. In the life table study, pre-adult survival, longevity, reproductive period, and fecundity of this aphid were lowest on plants treated with P. putida + SA. The net reproductive rate (R0), intrinsic rate of population increase (r), and finite rate of increase (λ) of B. brassicae decreased significantly in the following order: control (47.19 offspring, 0.293 and 1.340 day-1), P. putida (16.7 offspring, 0.238 and 1.269 day-1), SA (6.37 offspring, 0.163 and 1.178 day-1), and P. putida + SA (3.24 offspring, 0.112 and 1.119 day-1). Moreover, the beneficial effect of the integrated application of P. putida and SA on plant growth parameters was significantly evident in our study. The highest values of glucosinolates, total phenol, and flavonoids were recorded in P. putida + SA treatment. We concluded that canola plants treated with P. putida + SA are more resistant to the cabbage aphid. These findings demonstrated that SA integrated with P. putida on canola plants act effectively for reducing the population of B. brassicae and can be used in integrated management programs of this pest.


Assuntos
Afídeos/fisiologia , Brassica napus/fisiologia , Pseudomonas putida/fisiologia , Ácido Salicílico , Animais , Antibiose , Afídeos/crescimento & desenvolvimento , Brassica napus/crescimento & desenvolvimento , Brassica napus/microbiologia , Feminino , Fertilidade
8.
Plant Mol Biol ; 103(4-5): 457-471, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32274640

RESUMO

KEY MESSAGE: In this manuscript, we disclosed the influence of light on the accumulation of storage reserves in B. napus embryos.1.Light induced the gene expression in the developing embryos of B. napus.2.Light promoted the starch synthesis in chloroplasts of B. napus embryos.3.Light enhanced the metabolic activity of storage reserve synthesis in B. napus embryos. Light influences the accumulation of storage reserves in embryos, but the molecular mechanism was not fully understood. Here, we monitored the effects of light on reserve biosynthesis in Brassica napus by comparing embryos from siliques grown in normal light conditions to those that were shaded or masked (i.e., darkened completely). Masked embryos developed more slowly, weighed less, and contained fewer proteins and lipids than control embryos. They also had fewer and smaller oil bodies than control embryos and lacked chloroplasts, where starch grains are usually synthesized. The levels of most amino acids, carbohydrates, and fatty acids were higher in masked embryos than in control or shaded embryos, whereas the levels of these metabolites in the masked endosperms were lower than those in control and shaded endosperm. Transcriptome analysis indicated that genes involved in photosynthesis (42 genes), amino acid biosynthesis (51 genes), lipid metabolism (61 genes), and sugar transport (13 genes) were significantly repressed in masked embryos. Our results suggest that light contributes to reserve accumulation in embryos by inducing the expression of metabolic genes, thereby enhancing the biosynthesis of storage reserves.


Assuntos
Brassica napus/embriologia , Brassica napus/genética , Brassica napus/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Sementes/genética , Sementes/efeitos da radiação , Aminoácidos/metabolismo , Brassica napus/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Clorofila/análise , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Endosperma/metabolismo , Endosperma/efeitos da radiação , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Fotossíntese , Óleos Vegetais/metabolismo , Proteínas de Plantas/genética , Sementes/citologia , Sementes/crescimento & desenvolvimento , Amido/biossíntese , Transcriptoma
9.
Sci Rep ; 10(1): 4047, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132568

RESUMO

Haze and cloudy weather reduce photo-synthetically active radiation (PAR), which affects the formation of crop yield and nitrogen (N) fertilizer utilization.. We conducted field trails in normal year and severe winter haze year, aiming to compare the difference of photosynthesis and N uptake in winter rapeseed under different N levels. Daily sunshine hours and averaged radiation intensity in winter haze year decreased by 54.1% and 33.3% respectively as compared with the past 30 years. Diurnal variation of net photosynthetic rate in winter haze day was 16.2% lower than that of sunny day. Leaf area and photosynthetic capacity decreased significantly during winter haze year. The shoot biomass and N uptake at the rosette stage accounted for only 9.6% and 26.6% of the total growth period in winter haze year, while 24.4% and 70.5% in normal year, respectively. However, in winter haze year, as the top dressing of N application increasing after the rosette stage, shoot biomass increased gradually. In order to achieve the target yield of 2.5 t ha-1, after suffering winter haze, it is necessary to apply additional 73.1 kg N ha-1. In conclusion, the haze climate reduced the radiation intensity and stability, leading to a decline in photosynthetic productivity in winter oilseed rape. Applying higher N fertilizer after winter haze can compensate the negative influence and ensure rapeseed yield.


Assuntos
Biomassa , Brassica napus/crescimento & desenvolvimento , Fertilizantes , Nitrogênio , Fotossíntese/efeitos dos fármacos , Estações do Ano , Tempo (Meteorologia) , Nitrogênio/metabolismo , Nitrogênio/farmacologia
10.
Sci Rep ; 10(1): 3747, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111959

RESUMO

The study concerned dissipation of metazachlor and clomazone, herbicides widely used in rapeseed (Brassica napus L. subsp. napus) protection, applied to the clay soil under field and laboratory conditions. Furthermore, the uptake of these pesticide from soil by rapeseed plants was investigated under field conditions. An additional aim of this work was to modify the QuEChERS method for the determination of metazachlor and clomazone in the plant material. Analytical procedures for metazachlor and clomazone qualification and quantification in rapeseed plants and soil were developed, using gas chromatography with an micro electron capture detector (GC-µECD) and a mass detector (GC-MS/MS QqQ) as confirmation. Dissipation kinetics of herbicide residues in soil were described as first-order equations. The analytical performance was very satisfactory and confirmed that the methods meet the requirements of the European Commission. In the conducted field experiments it was found that dissipation of clomazone and metazachlor in clay soil follows first-order kinetics (R2 between 0.964 and 0.978), and half-lives were 9.5 days and 10.2 days for clomazone and metazachlor, respectively. Under laboratory conditions, dissipation of clomazone and metazachlor in soil also follows first-order kinetics (R2 between 0.937 and 0.938), and half-lives were 8.8 days and 5.7 days for clomazone and metazachlor, respectively. Residues of both herbicides in rape plants 22 days after application of herbicides were below the maximum residue levels for Brassica plants. Metazachlor and clomazone dissipate very fast in clay soil and their uptake by rape plants is very low.


Assuntos
Acetamidas/metabolismo , Brassica napus/crescimento & desenvolvimento , Isoxazóis/metabolismo , Modelos Biológicos , Oxazolidinonas/metabolismo , Solo
11.
Sci Rep ; 10(1): 4295, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152363

RESUMO

Annexins (ANN) are a multigene, evolutionarily conserved family of calcium-dependent and phospholipid-binding proteins that play important roles in plant development and stress resistance. However, a systematic comprehensive analysis of ANN genes of Brassicaceae species (Brassica rapa, Brassica oleracea, and Brassica napus) has not yet been reported. In this study, we identified 13, 12, and 26 ANN genes in B. rapa, B. oleracea, and B. napus, respectively. About half of these genes were clustered on various chromosomes. Molecular evolutionary analysis showed that the ANN genes were highly conserved in Brassicaceae species. Transcriptome analysis showed that different group ANN members exhibited varied expression patterns in different tissues and under different (abiotic stress and hormones) treatments. Meanwhile, same group members from Arabidopsis thaliana, B. rapa, B. oleracea, and B. napus demonstrated conserved expression patterns in different tissues. The weighted gene coexpression network analysis (WGCNA) showed that BnaANN genes were induced by methyl jasmonate (MeJA) treatment and played important roles in jasmonate (JA) signaling and multiple stress response in B. napus.


Assuntos
Anexinas/metabolismo , Brassica/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Anexinas/genética , Brassica/classificação , Brassica/genética , Brassica/metabolismo , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Brassica rapa/genética , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Filogenia , Proteínas de Plantas/genética
12.
BMC Plant Biol ; 20(1): 101, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32138661

RESUMO

BACKGROUND: Studies have indicated that graphene oxide (GO) could regulated Brassica napus L. root growth via abscisic acid (ABA) and indole-3-acetic acid (IAA). To study the mechanism and interaction between GO and IAA further, B. napus L (Zhongshuang No. 9) seedlings were treated with GO and IAA accordance with a two factor completely randomized design. RESULTS: GO and IAA cotreatment significantly regulated the root length, number of adventitious roots, and contents of IAA, cytokinin (CTK) and ABA. Treatment with 25 mg/L GO alone or IAA (> 0.5 mg/L) inhibited root development. IAA cotreatment enhanced the inhibitory role of GO, and the inhibition was strengthened with increased in IAA concentration. GO treatments caused oxidative stress in the plants. The ABA and CTK contents decreased; however, the IAA and gibberellin (GA) contents first increased but then decreased with increasing IAA concentration when IAA was combined with GO compared with GO alone. The 9-cis-epoxycarotenoid dioxygenase (NCED) transcript level strongly increased when the plants were treated with GO. However, the NCED transcript level and ABA concentration gradually decreased with increasing IAA concentration under GO and IAA cotreatment. GO treatments decreased the transcript abundance of steroid 5-alpha-reductase (DET2) and isochorismate synthase 1 (ICS), which are associated with brassinolide (BR) and salicylic acid (SA) biosynthesis, but increased the transcript abundance of brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1), cam-binding protein 60-like G (CBP60) and calmodulin binding protein-like protein 1, which are associated with BR and SA biosynthesis. Last, GO treatment increased the transcript abundance of 1-aminocyclopropane-1-carboxylic acid synthase 2 (ACS2), which is associated with the ethylene (ETH) pathway. CONCLUSIONS: Treatment with 25 mg/L GO or IAA (> 0.5 mg/L) inhibited root development. However, IAA and GO cotreatment enhanced the inhibitory role of GO, and this inhibition was strengthened with increased IAA concentration. IAA is a key factor in the response of B. napus L to GO and the responses of B. napus to GO and IAA cotreatment involved in multiple pathways, including those involving ABA, IAA, GA, CTK, BR, SA. Specifically, GO and IAA cotreatment affected the GA content in the modulation of B. napus root growth.


Assuntos
Brassica napus/crescimento & desenvolvimento , Grafite/farmacologia , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Brassica napus/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Transdução de Sinais
13.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023925

RESUMO

DNA methylation is a process through which methyl groups are added to the DNA molecule, thereby modifying the activity of a DNA segment without changing the sequence. Increasing evidence has shown that DNA methylation is involved in various aspects of plant growth and development via a number of key processes including genomic imprinting and repression of transposable elements. DNA methylase and demethylase are two crucial enzymes that play significant roles in dynamically maintaining genome DNA methylation status in plants. In this work, 22 DNA methylase genes and six DNA demethylase genes were identified in rapeseed (Brassica napus L.) genome. These DNA methylase and DNA demethylase genes can be classified into four (BnaCMTs, BnaMET1s, BnaDRMs and BnaDNMT2s) and three (BnaDMEs, BnaDML3s and BnaROS1s) subfamilies, respectively. Further analysis of gene structure and conserved domains showed that each sub-class is highly conserved between rapeseed and Arabidopsis. Expression analysis conducted by RNA-seq as well as qRT-PCR suggested that these DNA methylation/demethylation-related genes may be involved in the heat/salt stress responses in rapeseed. Taken together, our findings may provide valuable information for future functional characterization of these two types of epigenetic regulatory enzymes in polyploid species such as rapeseed, as well as for analyzing their evolutionary relationships within the plant kingdom.


Assuntos
Brassica napus/crescimento & desenvolvimento , Metilação de DNA , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Metilases de Modificação do DNA/química , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Família Multigênica , Filogenia , Proteínas de Plantas/química , Domínios Proteicos , Estresse Salino , Análise de Sequência de RNA , Distribuição Tecidual
14.
Int J Mol Sci ; 21(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013254

RESUMO

Brassinosteroids (BRs) are a group of steroid hormones, essentially important for plant development and growth. BR signaling functions to promote cell expansion and cell division, and plays a role in etiolation and reproduction. As the phytohormone originally identified in the pollen grains of Brassica napus, BR promotes the elongation of stigma. Recent studies have revealed that BR is also critical for floral transition, inflorescence stem architecture formation and other aspects of plant reproductive processes. In this review, we focus on the current understanding of BRs in plant reproduction, the spatial and temporal control of BR signaling, and the downstream molecular mechanisms in both the model plant Arabidopsis and crops. The crosstalk of BR with environmental factors and other hormones in reproduction will also be discussed.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Pólen/metabolismo , Transdução de Sinais
15.
BMC Genomics ; 21(1): 139, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041524

RESUMO

BACKGROUND: Lead (Pb) pollution in soil has become one of the major environmental threats to plant growth and human health. Safe utilization of Pb contaminated soil by phytoremediation require Pb-tolerant rapeseed (Brassica napus L.) accessions. However, breeding of new B. napus cultivars tolerance to Pb stress has been restricted by limited knowledge on molecular mechanisms involved in Pb tolerance. This work was carried out to identify genetic loci related to Pb tolerance during seedling establishment in rapeseed. RESULTS: Pb tolerance, which was assessed by quantifying radicle length (RL) under 0 or 100 mg/L Pb stress condition, shown an extensive variation in 472 worldwide-collected rapeseed accessions. Based on the criterion of relative RL > 80%, six Pb-tolerant genotypes were selected. Four quantitative trait loci (QTLs) associated with Pb tolerance were identified by Genome-wide association study. The expression level of nine promising candidate genes, including GSTUs, BCATs, UBP13, TBR and HIPP01, located in these four QTL regions, were significantly higher or induced by Pb in Pb-tolerant accessions in comparison to Pb-sensitive accessions. CONCLUSION: To our knowledge, this is the first study on Pb-tolerant germplasms and genomic loci in B. napus. The findings can provide valuable genetic resources for the breeding of Pb-tolerant B. napus cultivars and understanding of Pb tolerance mechanism in Brassica species.


Assuntos
Brassica napus/efeitos dos fármacos , Brassica napus/genética , Chumbo/toxicidade , Locos de Características Quantitativas , Plântula/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Brassica napus/crescimento & desenvolvimento , Genoma de Planta , Estudo de Associação Genômica Ampla , Genótipo , Chumbo/metabolismo , Polimorfismo de Nucleotídeo Único , Plântula/genética , Poluentes do Solo/metabolismo
16.
Sci Rep ; 10(1): 252, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937837

RESUMO

As a new plant biostimulant, poly-γ-glutamic acid (γ-PGA) may be an effective anti-drought agent that can efficiently alleviate the damage to plants under drought stress. In this study, the effects of γ-PGA on the physiological responses of oilseed rape (Brassica napus L.) seedlings under drought stress were investigated using hydroponics. Growth and development of the rape seedlings were significantly inhibited in a polyethylene glycol-simulated drought environment. However, 12 d after application of γ-PGA under drought stress, the fresh weight, chlorophyll content, and relative water content of rape seedlings all markedly increased. Moreover, proline content and antioxidant enzyme activity were all markedly enhanced, and the malondialdehyde content was significantly reduced in rape seedlings treated with γ-PGA. Furthermore, the content of the important anti-drought response hormone, abscisic acid (ABA), as well as the expression levels of the ABA metabolism regulation genes BnNCED3, BnZEP, and BnAAO4, significantly increased. These results indicate that γ-PGA may induce elements of a tolerance system to drought stress by promoting ABA accumulation in B. Napus.


Assuntos
Ácido Abscísico/metabolismo , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Secas , Ácido Poliglutâmico/análogos & derivados , Estresse Fisiológico , Antioxidantes/metabolismo , Brassica napus/crescimento & desenvolvimento , Brassica napus/fisiologia , Clorofila/metabolismo , Malondialdeído/metabolismo , Ácido Poliglutâmico/farmacologia , Prolina/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Água/metabolismo
17.
Chem Biodivers ; 17(2): e1900399, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31909554

RESUMO

Water stress is one of the main abiotic factors that reduces plant growth, mainly due to high evaporative demand and low water availability. In order to evaluate the effects of drought stress on certain morphological and physiological characteristics of two canola cultivars, we conducted a factorial experiment based on a completely randomized design. The findings show that drought stress exacerbations result in the plant's response to stress due to increased canola resistance caused by changes in plant pigments, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase and malondialdehyde, glucose, galactose, rhamnose and xylose. These in turn ultimately influence the morphological characteristics of canola. Drought stress reduces the concentration of carotenoids, chlorophyll a, chlorophyll b, total chlorophylls; however, glucose, galactose, rhamnose, xylose, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase, malondialdehyde (in leaves and roots) and the chlorophyll a and b ratios were increased. Reduction of plant height, stem height, root length, fresh and dry weight of canola treated with 300 g/l PEG compared to non-treatment were 0.264, 0.236, 0.394, 0.183 and 0.395, respectively. From the two canola cultivars, the morphological characteristics of the NIMA increased compared to the Ks7 cultivar. Interaction effects of cultivar and drought stress showed that NIMA cultivar without treatment had the highest number of morphological characteristics such as carotenoid concentration, chlorophyll a, chlorophyll b, total chlorophylls a and b, whereas the cultivar with 300 g/l PEG (drought stress) had the highest amount of proline, malondialdehyde, soluble sugars and enzymes in leaves and roots. Increasing activity of oxidative enzymes and soluble sugars in canola under drought stress could be a sign of their relative tolerance to drought stress.


Assuntos
Brassica napus/crescimento & desenvolvimento , Secas , Estresse Fisiológico , Brassica napus/metabolismo , Carotenoides/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Glucose/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Ramnose/metabolismo , Superóxido Dismutase/metabolismo
18.
Plant Biotechnol J ; 18(3): 644-654, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31373135

RESUMO

Plant height and branch number are essential components of rapeseed plant architecture and are directly correlated with its yield. Presently, improvement of plant architecture is a major challenge in rapeseed breeding. In this study, we first verified that the two rapeseed BnaMAX1 genes had redundant functions resembling those of Arabidopsis MAX1, which regulates plant height and axillary bud outgrowth. Therefore, we designed two sgRNAs to edit these BnaMAX1 homologs using the CRISPR/Cas9 system. The T0 plants were edited very efficiently (56.30%-67.38%) at the BnaMAX1 target sites resulting in homozygous, heterozygous, bi-allelic and chimeric mutations. Transmission tests revealed that the mutations were passed on to the T1 and T2 progeny. We also obtained transgene-free lines created by the CRISPR/Cas9 editing, and no mutations were detected in potential off-target sites. Notably, simultaneous knockout of all four BnaMAX1 alleles resulted in semi-dwarf and increased branching phenotypes with more siliques, contributing to increased yield per plant relative to wild type. Therefore, these semi-dwarf and increased branching characteristics have the potential to help construct a rapeseed ideotype. Significantly, the editing resources obtained in our study provide desirable germplasm for further breeding of high yield in rapeseed.


Assuntos
Brassica napus/genética , Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Inativação de Genes , Brassica napus/crescimento & desenvolvimento , Genes de Plantas , Mutagênese , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
19.
Plant Biotechnol J ; 18(1): 68-82, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125482

RESUMO

A major challenge of plant biology is to unravel the genetic basis of complex traits. We took advantage of recent technical advances in high-throughput phenotyping in conjunction with genome-wide association studies to elucidate genotype-phenotype relationships at high temporal resolution. A diverse Brassica napus population from a commercial breeding programme was analysed by automated non-invasive phenotyping. Time-resolved data for early growth-related traits, including estimated biovolume, projected leaf area, early plant height and colour uniformity, were established and complemented by fresh and dry weight biomass. Genome-wide SNP array data provided the framework for genome-wide association analyses. Using time point data and relative growth rates, multiple robust main effect marker-trait associations for biomass and related traits were detected. Candidate genes involved in meristem development, cell wall modification and transcriptional regulation were detected. Our results demonstrate that early plant growth is a highly complex trait governed by several medium and many small effect loci, most of which act only during short phases. These observations highlight the importance of taking the temporal patterns of QTL/allele actions into account and emphasize the need for detailed time-resolved analyses to effectively unravel the complex and stage-specific contributions of genes affecting growth processes that operate at different developmental phases.


Assuntos
Brassica napus/genética , Fenótipo , Locos de Características Quantitativas , Brassica napus/crescimento & desenvolvimento , Mapeamento Cromossômico , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala
20.
Chemosphere ; 238: 124555, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31454746

RESUMO

Pesticide residues in bee products is still a major issue. However, the relations to botanical source and land use characteristics are not clear. The large variability of residues detected questions the suitability of bee-collected- and other hive materials as indicators for environmental contamination. The aim of our study was to clarify whether different beehive matrices contain similar pesticide residues, and how these are correlated with forage preferences and land use types in foraging areas. We tested bee-collected pollen, beebread, honey, nurse bees and honey bee larvae for the presence of concurrently used agricultural pesticides in Estonia. Samples were collected at the end of May and mid-July to include the main crop in northern region - winter and spring oilseed rape (Brassica napus). We saw that different beehive matrices contained various types of pesticide residues in different proportions: pollen and beebread tended to contain more insecticides and fungicides, whereas herbicides represented the primary contaminant in honey. The variations were related to collection year and time but were not related to crops as basic forage resource nor the land use type. We found few positive correlations between amount of pesticides and proportion of pollen from any particular plant family. None of these correlations were related to any land-use type. We conclude that pesticide residues in different honey bee colony components vary largely in amount and composition. The occurrence rate of pesticide residues was not linked to any particular crop.


Assuntos
Abelhas/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Mel/análise , Resíduos de Praguicidas/análise , Pólen/química , Animais , Brassica napus/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Estônia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA