Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.365
Filtrar
1.
PLoS One ; 15(7): e0236273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32722687

RESUMO

Creating a homologous restorer line for Ogura cytoplasmic male sterility (Ogu-CMS) in Brassica napus is meaningful for the wider application of Ogu-CMS system in rapeseed production. Previously, an independent development of a new Ogu-CMS restorer line (CLR650) was reported locally from crossing between Raphanobrassica (AACCRR, 2n = 56) and B. napus and a new version of Ogu CMS lines CLR6430 derived from CLR650 was characterized in this study. The results showed that the fertility restoration gene in CLR6430 presented a distorted segregation in different segregating populations. However, the majority of somatic cells from roots had a regular chromosome number (2n = 38) and no radish signal covered a whole chromosome was detected using GISH. Thirty-two specific markers derived from the introgressed radish fragments were developed based on the re-sequencing results. Unique radish insertions and differences between CLR6430 and R2000 were also identified through both radish-derived markers and PCR product sequences. Further investigations on the genetic behaviors, interactions between the fertility restoration and other traits and specific molecular markers to the introgression in CLR6430 were also conducted in this study. These results should provide the evidence of nucleotide differences between CLR6430 and R2000, and the specific markers will be helpful for breeding new Ogura restore lines in future.


Assuntos
Brassica napus/genética , Marcadores Genéticos/genética , Infertilidade das Plantas/genética , Brassica rapa/genética , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Repetições de Microssatélites/genética , Raphanus/genética
2.
PLoS One ; 15(6): e0234411, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32511257

RESUMO

The AINTEGUMENTA-like (AIL) proteins, which belong to the AP2 family, play important roles in regulating the growth and development of plant organs. The AIL family has not yet been comprehensively studied in rapeseed (Brassica napus), an allotetraploid and model organism for the study of polyploid evolution. In the present study, 99 AIL family genes were identified and characterized from B. rapa, B. oleracea, B. napus, B. juncea, and B. nigra using a comprehensive genome-wide study, including analyses of phylogeny, gene structure, chromosomal localization, and expression pattern. Using a phylogenetic analysis, the AIL genes were divided into eight groups, which were closely related to the eight AtAIL genes, and which shared highly conserved structural features within the same subfamily. The non-synonymous/synonymous substitution ratios of the paralogs and orthologs were less than 1, suggesting that the AIL genes mainly experienced purifying selection during evolution. In addition, the RNA sequencing data and qRT-PCR analysis revealed that the B. napus AIL genes exhibited organ- and developmental stage-specific expression patterns. Certain genes were highly expressed in the developing seeds (BnaAIL1, BnaAIL2, BnaAIL5, and BnaAIL6), the roots (BnaANT, BnaAIL5, and BnaAIL6), and the stem (BnaAIL7B). Our results provide valuable information for further functional analysis of the AIL family in B. napus and related Brassica species.


Assuntos
Brassica napus/genética , Brassica/genética , Genes de Plantas , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Brassica/crescimento & desenvolvimento , Brassica napus/crescimento & desenvolvimento , Mapeamento Cromossômico , Sequência Conservada , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Homeodomínio/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Sintenia
3.
PLoS One ; 15(6): e0233959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497146

RESUMO

Development of oilseed rape (Brassica napus L.) breeding lines producing oil characterized by high oleic and low linolenic acid content is an important goal of rapeseed breeding programs worldwide. Such kind of oil is ideal for deep frying and can also be used as a raw material for biodiesel production. By performing chemical mutagenesis using ethyl methanesulfonate, we obtained mutant winter rapeseed breeding lines that can produce oil with a high content of oleic acid (C18:1, more than 75%) and a low content of linolenic acid (C18:3, less than 3%). However, the mutant lines revealed low agricultural value as they were characterized by low seed yield, low wintering, and high content of glucosinolates in seed meal. The aim of this work was to improve the mutant lines and develop high-oleic and low-linolenic recombinants exhibiting both good oil quality and high agronomic value. The plant materials used in this study included high-oleic and low-linolenic mutant breeding lines and high-yielding domestic canola-type breeding lines of good agricultural value with high oleic acid content and extremely low glucosinolates content. Field trials were conducted in four environments, in a randomized complete block design. Phenotyping was performed for wintering, yield of seed and oil, and seed quality traits. Genotype × environment interaction was investigated with respect to the content of C18:1 and C18:3 acids in seed oil. Genotyping was done for the selection of homozygous high oleic and low linolenic lines using allele-specific CAPS markers and SNaPshot assay, respectively. Finally, new high oleic and low linolenic winter rapeseed recombinant lines were obtained for use as a starting material for the development of new varieties that may be of high value on the oil crop market.


Assuntos
Brassica napus/genética , Ácido Oleico/genética , Sementes/genética , Ácido alfa-Linoleico/genética , Brassica napus/química , Mutagênese , Ácido Oleico/análise , Melhoramento Vegetal , Óleos Vegetais/química , Sementes/química , Seleção Genética , Ácido alfa-Linoleico/análise
4.
PLoS One ; 15(4): e0231425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32275733

RESUMO

NAC (NAM, ATAF1,2, and CUC2) transcription factors are one of the largest transcription factor families found in the plants and are involved in diverse developmental and signalling events. Despite the availability of comprehensive genomic information from diverse plant species, the basic genomic, biochemical, and evolutionary details of NAC TFs have not been established. Therefore, NAC TFs family proteins from 160 plant species were analyzed in the current study. Study revealed, Brassica napus (410) encodes highest number and Klebsormidium flaccidum (3) encodes the lowest number of TFs. The study further revealed the presence of NAC TF in the Charophyte algae K. flaccidum. On average, the monocot plants encode higher number (141.20) of NAC TFs compared to the eudicots (125.04), gymnosperm (75), and bryophytes (22.66). Furthermore, our analysis revealed that several NAC TFs are membrane bound and contain monopartite, bipartite, and multipartite nuclear localization signals. NAC TFs were also found to encode several novel chimeric proteins and regulate a complex interactome network. In addition to the presence of NAC domain, several NAC proteins were found to encode other functional signature motifs as well. Relative expression analysis of NAC TFs in A. thaliana revealed root tissue treated with urea and ammonia showed higher level of expression and leaf tissues treated with urea showed lower level of expression. The synonymous codon usage is absent in the NAC TFs and it appears that they have evolved from orthologous ancestors and undergone vivid duplications to give rise to paralogous NAC TFs. The presence of novel chimeric NAC TFs are of particular interest and the presence of chimeric NAC domain with other functional signature motifs in the NAC TF might encode novel functional properties in the plants.


Assuntos
Evolução Molecular , Genoma de Planta , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Brassica napus/genética , Clorófitas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
5.
Plant Mol Biol ; 103(4-5): 457-471, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32274640

RESUMO

KEY MESSAGE: In this manuscript, we disclosed the influence of light on the accumulation of storage reserves in B. napus embryos.1.Light induced the gene expression in the developing embryos of B. napus.2.Light promoted the starch synthesis in chloroplasts of B. napus embryos.3.Light enhanced the metabolic activity of storage reserve synthesis in B. napus embryos. Light influences the accumulation of storage reserves in embryos, but the molecular mechanism was not fully understood. Here, we monitored the effects of light on reserve biosynthesis in Brassica napus by comparing embryos from siliques grown in normal light conditions to those that were shaded or masked (i.e., darkened completely). Masked embryos developed more slowly, weighed less, and contained fewer proteins and lipids than control embryos. They also had fewer and smaller oil bodies than control embryos and lacked chloroplasts, where starch grains are usually synthesized. The levels of most amino acids, carbohydrates, and fatty acids were higher in masked embryos than in control or shaded embryos, whereas the levels of these metabolites in the masked endosperms were lower than those in control and shaded endosperm. Transcriptome analysis indicated that genes involved in photosynthesis (42 genes), amino acid biosynthesis (51 genes), lipid metabolism (61 genes), and sugar transport (13 genes) were significantly repressed in masked embryos. Our results suggest that light contributes to reserve accumulation in embryos by inducing the expression of metabolic genes, thereby enhancing the biosynthesis of storage reserves.


Assuntos
Brassica napus/embriologia , Brassica napus/genética , Brassica napus/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Sementes/genética , Sementes/efeitos da radiação , Aminoácidos/metabolismo , Brassica napus/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Clorofila/análise , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Endosperma/metabolismo , Endosperma/efeitos da radiação , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Fotossíntese , Óleos Vegetais/metabolismo , Proteínas de Plantas/genética , Sementes/citologia , Sementes/crescimento & desenvolvimento , Amido/biossíntese , Transcriptoma
6.
Artigo em Inglês | MEDLINE | ID: mdl-32276152

RESUMO

Due to the rapid decline in oceanic fish stock, ω-3 fatty acid (C18:3) has attracted serious attention and, hence, the identification of genotypes with high ω-3 content has become the main objective of Brassica napus (rapeseed) breeding. A candidate genes association study permitted us to delineate a genomic region linked to ω-3 content, offering a detailed understanding of the complex genetic mechanism of fatty acid biosynthesis in B. napus. Herein, the candidate genes association study, conducted on 324 genetically diverse rapeseed accessions, detected 114 single nucleotide polymorphisms (SNPs) associated with ω-3 fatty acid. Furthermore, these loci were functionally characterized in Saccharomyces cerevisiae. These associated loci were selected based on their contribution to a high C18:3 ratio, and the selected candidate loci were validated using allele-specific SNPs markers in an inbred population through polymerase chain reaction (PCR). These findings may contribute to improving the fatty acid composition by marker-based breeding and will facilitate the development of rapeseed varieties with high ω-3 content.


Assuntos
Brassica napus/genética , Ácidos Graxos Ômega-3/genética , Genes de Plantas , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Sequência de Aminoácidos , Brassica napus/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Marcadores Genéticos , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
7.
Mol Genet Genomics ; 295(4): 981-999, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32306107

RESUMO

Leaf color is an important characteristic of normal chloroplast development. Variegated plants have green- and white-sectored leaves, which can be used to identify important pathways and molecular mechanisms of chloroplast development. We studied two Brassica napus variegation mutants from same one variegated ancestor, designated ZY-4 and ZY-8, which have different degrees of variegation. When grown in identical conditions, the ratio of white sectors in ZY-4 leaves is higher than in ZY-8. In both mutants, the cells in green sectors contain normal chloroplasts; while, the cells in white sectors contain abnormal plastids. Seedling chloroplasts ultrastructure of both mutants showed that the biogenesis of chloroplasts was blocked in early stages; delayed development and structual damage in ZY-4 were more serious than in ZY-8. Employing bulked segregant analysis(BSA), two bulks (BY142 and BY137) from BC2F1 lines derived from ZY-4 and ZS11, and one bulk (BY56) from BC2F1 lines derived from ZY-8 and ZS11, and screening by Brassica 60K SNP BeadChip Array, showed the candidate regions localized in chromosome A08 (BY142), C04 (BY137), and A08 (BY56), respectively. Transcriptome analysis of five seedling development stages of ZY-4, ZY-8, and ZS11 showed that photosynthesis, energy metabolism-related pathways and translation-related pathways were important for chloroplast biogenesis. The number of down- or up-regulated genes related to immune system process in ZY-4 was more than in ZY-8. The retrograde signaling pathway was mis-regulated in both mutants. DEG analysis indicated that both mutants showed photooxidative damages. By coupling transcriptome and BSA CHIP analyses, some candidate genes were identified. The gene expression pattern of carotene biosynthesis pathway was disrupted in both mutants. However, histochemical analysis of ROS revealed that there was no excessive accumulation of ROS in ZY-4 and ZY-8. Taken together, our data indicate that the disruption of carotene biosynthetic pathways leads to the variegation phenotypes of ZY-4 and ZY-8 and there are some functions that can compensate for the disruption of carotene biosynthesis in ZY-4 and ZY-8 to reduce ROS and prevent seedling mortality.


Assuntos
Brassica napus/genética , Carotenoides/metabolismo , Plastídeos/genética , Transcriptoma/genética , Arabidopsis/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação/genética , Fotossíntese/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plastídeos/metabolismo
8.
DNA Cell Biol ; 39(5): 766-782, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32239973

RESUMO

The fruit-weight 2.2 (fw2.2) locus, which was first described in tomato, is known for controlling up to 30% of fruit mass. The functions of its homologs, the FW2.2-like (FWL) genes, have also been documented in other diploid plants such as maize and rice. However, the evolution and contribution of the FWL gene family to seed weight in polyploid crops remain to be explored. In this study, we deployed an integrated approach to characterize the FWL gene family in the allotetraploid crop, Brassica napus. A total of 18 FWL genes were identified and designated BnFWL1-18. These were classified into three groups based on their phylogenetic relationships, which were supported by multiple sequence alignment, chromosome location, collinearity, transmembrane prediction, conserved motifs, selection pressure, protein three-dimensional (3D) structure, and the composition and position of cis-regulatory elements. Strikingly, three conserved 3D models were identified in all 18 BnFWL proteins, pertaining to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. Intriguingly, we found that the BnFWL12 protein was structurally similar to phosphoenolpyruvate carboxylase, which is required for photosynthesis. More importantly, we identified an "SDGE" phosphorylation motif in BnFWL12 in a search for putative casein kinase II (CK2) phosphorylation sites. Moreover, the temporospatial expression profiles in different tissues revealed that the discrete expression patterns are likely associated with the functional differentiation of BnFWL genes. Taken together, our data shed light on the evolutionary divergence of the FWL gene family in a polyploid crop, providing foundations for further functional studies.


Assuntos
Brassica napus/genética , Evolução Molecular , Genômica , Proteínas de Plantas/genética , Poliploidia , Sequência de Aminoácidos , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Motivos de Nucleotídeos , Filogenia , Proteínas de Plantas/química
9.
Gene ; 747: 144674, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32304781

RESUMO

Very long chain fatty acids (VLCFAs) that are structural components of cell membrane lipid, cuticular waxes and seed oil, play crucial roles in plant growth, development and stress response. Fatty acid elongases (FAEs) comprising KCS and ELO, are key enzymes for VLCFA biosynthesis in plants. Although reference genomes of Brassica napus and its parental speices both have been sequenced, whole-genome analysis of FAE gene family in these Brassica speices is not reported. Here, 58, 33 and 30 KCS genes were identified in B. napus, B. rapa and B. oleracea genomes, respectively, whereas 14, 6 and 8 members were obtained for ELO genes. These KCS genes were unevenly located in 37 chromosomes and 3 scaffolds of 3 Brassica species, while these ELO genes were mapped to 19 chromosomes. The KCS and ELO proteins were divided into 8 and 4 subclasses, respectively. Gene structure and protein motifs remained highly conserved in each KCS or ELO subclass. Most promoters of KCS and ELO genes harbored various plant growth-, phytohormone-, and stress response-related cis-acting elements. 20 SSR loci existed in the KCS and ELO genes/promoters. The whole-genome duplication and segmental duplication mainly contributed to expansion of KCS and ELO genes in these genomes. Transcriptome analysis showed that KCS and ELO genes in 3 Brassica species were expressed in various tissues/organs with different levels, whereas 1 BnELO gene and 6 BnKCS genes might be pathogen-responsive genes. The qRT-PCR assay showed that BnKCS22 and BnELO04 responded to various phytohormone treatments and abiotic stresses. This work lays the foundation for further function identification of KCS and ELO genes in B. napus and its progenitors.


Assuntos
Brassica napus/enzimologia , Brassica napus/genética , Elongases de Ácidos Graxos/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Brassica napus/efeitos dos fármacos , Cromossomos de Plantas/genética , Sequência Conservada/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Loci Gênicos , Repetições de Microssatélites/genética , Motivos de Nucleotídeos , Filogenia , Reguladores de Crescimento de Planta/farmacologia , Sequências Reguladoras de Ácido Nucleico/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Sintenia/genética
10.
Ann Bot ; 126(1): 119-140, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32221530

RESUMO

BACKGROUND AND AIMS: Mineral elements have many essential and beneficial functions in plants. Phosphorus (P) deficiency can result in changes in the ionomes of plant organs. The aims of this study were to characterize the effects of P supply on the ionomes of shoots and roots, and to identify chromosomal quantitative trait loci (QTLs) for shoot and root ionomic traits, as well as those affecting the partitioning of mineral elements between shoot and root in Brassica napus grown with contrasting P supplies. METHODS: Shoot and root concentrations of 11 mineral elements (B, Ca, Cu, Fe, K, Mg, Mn, Na, P, S and Zn) were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES) in a Brassica napus double haploid population grown at an optimal (OP) and a low phosphorus supply (LP) in an agar system. Shoot, root and plant contents, and the partitioning of mineral elements between shoot and root were calculated. KEY RESULTS: The tissue concentrations of B, Ca, Cu, K, Mg, Mn, Na, P and Zn were reduced by P starvation, while the concentration of Fe was increased by P starvation in the BnaTNDH population. A total of 133 and 123 QTLs for shoot and root ionomic traits were identified at OP and LP, respectively. A major QTL cluster on chromosome C07 had a significant effect on shoot Mg and S concentrations at LP and was narrowed down to a 2.1 Mb region using an advanced backcross population. CONCLUSIONS: The tissue concentration and partitioning of each mineral element was affected differently by P starvation. There was a significant difference in mineral element composition between shoots and roots. Identification of the genes underlying these QTLs will enhance our understanding of processes affecting the uptake and partitioning of mineral elements in Brassica napus.


Assuntos
Brassica napus/genética , Fenótipo , Fosfatos , Fósforo , Raízes de Plantas/genética , Locos de Características Quantitativas/genética
11.
Chemosphere ; 250: 126308, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32135439

RESUMO

Recently, oilseed rape has gathered interest for its ability to withstand elevated metal contents in plant, a key feature for remediation of contaminated soils. In this study, comparative and functional metabolomic analyses using liquid chromatography/mass spectrometry were undertaken to explore the metabolic basis of this attribute under cadmium (Cd) stress. Results revealed both conserved and differential metabolomic responses between genotype CB671 (tolerant Cd-accumulating) and its sensitive counterpart ZD622. CB671 responded to Cd stress by rearranging carbon flux towards production of compatible solutes, sugar storage forms and ascorbate, as well as jasmonates, ethylene and vitamin B6. Intriguingly, IAA abundance was reduced by 1.91-fold, which was in connection with tryptophan funnelling into serotonin (3.48-fold rise). In ZD622 by contrast, Cd provoked drastic depletion of carbohydrates and vitamins, but subtle hormones alteration. A striking accumulation of unsaturated fatty acids and oxylipins in CB671, paralleled by glycerophospholipids build-up and induction of inositol-derived signalling metabolites (up to 5.41-fold) suggested ability for prompt triggering of detoxifying mechanisms. Concomitantly, phytosteroids, monoterpenes and carotenoids were induced, denoting fine-tuned mechanisms for membrane maintenance, which was not evident in ZD622. Further, ZD622 markedly accumulated phenolics from upstream sub-classes of flavonoids; in CB671 however, a distinct phenolic wiring was activated, prioritizing anthocyanins and lignans instead. Along with cell wall (CW) saccharides, the activation of lignans evoked CW priming in CB671. Current results have demonstrated existence of notable metabolomic-based strategies for Cd tolerance in metal-accumulating oilseed rapes, and provided a holistic view of metabolites potentially contributing to Cd tolerance in this species.


Assuntos
Brassica napus/metabolismo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Ácido Ascórbico/metabolismo , Brassica napus/genética , Cádmio/análise , Poluição Ambiental/análise , Genótipo , Metabolômica , Raízes de Plantas/metabolismo
12.
Plant Biol (Stuttg) ; 22(4): 709-721, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32223006

RESUMO

The CLE (CLAVATA3/ESR) gene family, encoding a group of small secretory peptides, plays important roles in cell-to-cell communication, thereby controlling a broad spectrum of development processes. The CLE family has been systematically characterized in some plants, but not in Brassica napus. In the present study, 116 BnCLE genes were identified in the B. napus genome, including seven unannotated, six incorrectly predicted and five multi-CLE domain-encoding genes. These BnCLE members were separated into seven distinct groups based on phylogenetic analysis, which might facilitate the functional characterization of the peptides. Further characterization of CLE pre-propeptides revealed 31 unique CLE peptides from 45 BnCLE genes, which may give rise to distinct roles of BnCLE and expansion of the gene family. The biological activity of these unique CLE dodecamer peptides was tested further through in vitro peptide assays. Variations in several important residues were identified as key contributors to the functional differentiation of BnCLE and expansion of the gene family in B. napus. Expression profile analysis helped to characterize possible functional redundancy and sub-functionalization among the BnCLE members. This study presents a comprehensive overview of the CLE gene family in B. napus and provides a foundation for future evolutionary and functional studies.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Brassica napus/classificação , Brassica napus/genética , Perfilação da Expressão Gênica , Genes de Plantas/genética , Filogenia
13.
BMC Plant Biol ; 20(1): 62, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32028890

RESUMO

BACKGROUND: Cold stress is one of the primary environmental factors that affect plant growth and productivity, especially for crops like Brassica napus that live through cold seasons. Till recently, although a number of genes and pathways involved in B. napus cold response have been revealed by independent studies, a genome-wide identification of the key regulators and the regulatory networks is still lack. In this study, we investigated the transcriptomes of cold stressed semi-winter and winter type rapeseeds in short day condition, mainly with the purpose to systematically identify the functional conserved transcription factors (TFs) in cold response of B. napus. RESULTS: Global modulation of gene expression was observed in both the semi-winter type line (158A) and the winter type line (SGDH284) rapeseeds, in response to a seven-day chilling stress in short-day condition. Function analysis of differentially expressed genes (DEGs) revealed enhanced stresses response mechanisms and inhibited photosynthesis in both lines, as well as a more extensive inhibition of some primary biological processes in the semi-winter type line. Over 400 TFs were differentially expressed in response to cold stress, including 56 of them showed high similarity to the known cold response TFs and were consistently regulated in 158A and SGDH284, as well as 25 TFs which targets were over-represented in the total DEGs. A further investigation based on their interactions indicated the critical roles of several TFs in cold response of B. napus. CONCLUSION: In summary, our results revealed the alteration of gene expression in cold stressed semi-winter and winter ecotype B. napus lines and provided a valuable collection of candidate key regulators involved in B. napus response to cold stress, which could expand our understanding of plant stress response and benefit the future improvement of the breed of rapeseeds.


Assuntos
Brassica napus/genética , Resposta ao Choque Frio/genética , Genoma de Planta , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
14.
BMC Plant Biol ; 20(1): 69, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046649

RESUMO

BACKGROUND: Acetolactate synthase (ALS)-inhibiting herbicides from the chemical families of sulfonylureas and imidazolinones are used worldwide. However, drift or sprayer contamination from some sulfonylurea herbicides causes a high level of male sterility in cruciferous species, especially oilseed rape (OSR). In this paper, we evaluated the gametocidal effects of 27 ALS-inhibiting herbicides that were sprayed on OSR plants at the bolting stage. RESULTS: OSR anther development was very sensitive to sublethal exposure to most ALS-inhibiting herbicides. The application of 18 out of the 20 tested sulfonylureas (except ethametsulfuron and ethoxysulfuron), two imidazolinones (imazethapyr and imazamox), and one sulfonylamino-carbonyltriazolinone (flucarbazone-sodium) at suitable rates could induce male sterility. Eight of the herbicides, including chlorsulfuron (at application rates of 60-120 mg/ha), halosulfuron-methyl (300-600 mg/ha), sulfosulfuron (400-600 mg/ha), triflusulfuron-methyl (500-750 mg/ha), pyrazosulfuron-ethyl (150-225 mg/ha), nicosulfuron (200-300 mg/ha), imazethapyr (750-1125 mg/ha), and imazamox (400-800 mg/ha), could induce over 90% male sterility and over 60% relative outcrossed seed set in six cultivars with different origins. These eight chemicals could be used as new gametocides for hybrid seed production. This study also examined the possibility of external application of these gametocides on several unstable Polima cytoplasmic male sterile and thermosensitive genic male sterile lines. Although the outcrossed seed set of the treated lines was slightly reduced, the gametocide application significantly increased the seed purity of the resulting hybrid. CONCLUSION: The finding of the gametocidal effects of most sulfonylureas and imidazolinones are of great importance for developing new functions for ALS-inhibiting herbicides. The application of gametocides will also greatly promote the safe utilization of environment-sensitive male sterility in hybrid seed production. Unexpectedly, the application of three triazolopyrimidines (florasulam, flumetsulam, and penoxsulam) and one pyrimidinylthiobenzoate (bispyribac-sodium) did not cause male sterility, although these herbicides obviously inhibited the activity of ALS and plant growth. This result suggests that inhibition of ALS activity does not always lead to male sterility in plants, and these gametocides may also inhibit other biological functions vital for microspore development.


Assuntos
Brassica napus/efeitos dos fármacos , Herbicidas/administração & dosagem , Imidazóis/administração & dosagem , Sementes/efeitos dos fármacos , Compostos de Sulfonilureia/administração & dosagem , Brassica napus/genética , Brassica napus/fisiologia , Cruzamentos Genéticos , Hibridização Genética , Reprodução , Sementes/genética , Sementes/fisiologia
15.
BMC Genomics ; 21(1): 139, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041524

RESUMO

BACKGROUND: Lead (Pb) pollution in soil has become one of the major environmental threats to plant growth and human health. Safe utilization of Pb contaminated soil by phytoremediation require Pb-tolerant rapeseed (Brassica napus L.) accessions. However, breeding of new B. napus cultivars tolerance to Pb stress has been restricted by limited knowledge on molecular mechanisms involved in Pb tolerance. This work was carried out to identify genetic loci related to Pb tolerance during seedling establishment in rapeseed. RESULTS: Pb tolerance, which was assessed by quantifying radicle length (RL) under 0 or 100 mg/L Pb stress condition, shown an extensive variation in 472 worldwide-collected rapeseed accessions. Based on the criterion of relative RL > 80%, six Pb-tolerant genotypes were selected. Four quantitative trait loci (QTLs) associated with Pb tolerance were identified by Genome-wide association study. The expression level of nine promising candidate genes, including GSTUs, BCATs, UBP13, TBR and HIPP01, located in these four QTL regions, were significantly higher or induced by Pb in Pb-tolerant accessions in comparison to Pb-sensitive accessions. CONCLUSION: To our knowledge, this is the first study on Pb-tolerant germplasms and genomic loci in B. napus. The findings can provide valuable genetic resources for the breeding of Pb-tolerant B. napus cultivars and understanding of Pb tolerance mechanism in Brassica species.


Assuntos
Brassica napus/efeitos dos fármacos , Brassica napus/genética , Chumbo/toxicidade , Locos de Características Quantitativas , Plântula/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Brassica napus/crescimento & desenvolvimento , Genoma de Planta , Estudo de Associação Genômica Ampla , Genótipo , Chumbo/metabolismo , Polimorfismo de Nucleotídeo Único , Plântula/genética , Poluentes do Solo/metabolismo
16.
Plant Sci ; 293: 110411, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081260

RESUMO

In Brassica napus, pod number and pod density are critical factors to determine seed yield. Although the pod density is an essential yield trait, the regulation of yield formation in oil crops, as well as the genetic and molecular mechanisms, are poorly understood. In this study, we characterized a rapeseed high-density pod mutant (dpt247) from composite hybridization. To shed some light on the nature of this mutation, it was investigated morphologically, anatomically, physiologically, genetically and transcriptomically. The mutant plant showed noticeable phenotypic differences in comparison with the control plant, including reduced plant height and primary branch length, decreased number of primary branches, significantly increased number of pod on the main inflorescence, and more compact pod distribution. Besides, the mutant had higher levels of indole-3-acetic acid (IAA) and zeatin riboside (ZR) in the shoot apical meristem (SAM). The dense pod trait was controlled by two major recessive genes identified in the segregating genetic populations of GRE501 and dpt247. RNA sequencing indicated genes participated in auxin, cytokinin and WUS/CLV signalling pathway in dpt247 were more active in the mutant. These results provide important information for understanding the regulation of yield formation and high yield breeding in rapeseed.


Assuntos
Brassica napus/genética , Genes Recessivos/genética , Sementes/genética , Divisão Celular , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Isopenteniladenosina/análogos & derivados , Fenótipo , Brotos de Planta , Sementes/fisiologia , Análise de Sequência de RNA , Transcriptoma
17.
J Agric Food Chem ; 68(10): 3033-3049, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32052629

RESUMO

The high levels of secondary metabolites in rapeseed play important roles in determining the oil quality and feeding value. Here, we characterized the metabolic profiles in seeds of various yellow- and black-seeded rapeseed accessions. Two hundred and forty-eight features were characterized, including 31 phenolic acids, 54 flavonoids, 24 glucosinolates, 65 lipid compounds, and 74 other polar compounds. The most abundant phenolic acids and various flavonoids (epicatechin, isorhamnetin, kaempferol, quercetin, and their derivatives) were widely detected and showed significant differences in distribution between the yellow- and black-seeded rapeseed. Furthermore, the related genes (e.g., BnTT3, BnTT18, BnTT10, BnTT12, and BnBAN) involved in the proanthocyanidin pathway had lower expression levels in yellow-seeded rapeseed, strongly suggesting that the seed coat color could be mainly determined by the levels of epicatechin and their derivatives. These results improve our understanding of the primary constituents of rapeseed and lay the foundation for breeding novel varieties with a high nutritional value.


Assuntos
Brassica napus/química , Extratos Vegetais/química , Brassica napus/classificação , Brassica napus/genética , Brassica napus/metabolismo , Catequina/química , Cromatografia Líquida de Alta Pressão , Cor , Flavonoides/química , Hidroxibenzoatos/química , Metaboloma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/química , Espectrometria de Massas em Tandem
18.
Artigo em Inglês | MEDLINE | ID: mdl-31891862

RESUMO

As one of the largest families of transcription factors in plants, the R2R3-MYB proteins play important roles in diverse biological processes including growth and development, primary and secondary metabolism such as flavonoid and anthocyanin biosynthesis as well as abiotic and biotic stress responses. However, functions of R2R3-MYB genes in rapeseed (Brassica napus L.) remain elusive. Here, we characterized BnaMYB111L, which is homologous to Arabidopsis MYB111 and encodes an R2R3-MYB protein in rapeseed. BnaMYB111L is responsive to abscisic acid (ABA), heat, cold, hydrogen peroxide and fungal pathogen Sclerotinia scelerotiorum treatments through quantitative RT-PCR assay. BnaMYB111L encodes a transcriptional activator and is localized exclusively to nuclei. Interestingly, overexpression of BnaMYB111L in tobacco (Nicotiana benthamiana) and rapeseed protoplasts promoted reactive oxygen species (ROS) production and hypersensitive response-like cell death, accumulation of malondialdehyde (MDA) as well as degradation of chlorophyll. Furthermore, BnaMYB111L expression evoked the alterations of transcript levels of genes encoding ROS-producing enzyme, vacuolar processing enzymes and genes implicated in defense responses. A further dual luciferase reporter assay indicated that BnaMYB111L activated the expression of RbohB, MC4 and ACRE132, which are involved in ROS generation, cell death as well as defense responses. Taken together, this study characterized the function of rapeseed MYB111L and identified its putative target genes involved in ROS production and cell death.


Assuntos
Brassica napus , Morte Celular , Proteínas de Plantas , Espécies Reativas de Oxigênio , Fatores de Transcrição , Brassica napus/genética , Brassica napus/metabolismo , Morte Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-31928657

RESUMO

Sclerotinia sclerotiorum causes a devastating disease in oilseed rape (Brassica napus), resulting in major economic losses. Resistance response of B. napus against S. sclerotiorum exhibits a typical quantitative disease resistance (QDR) characteristic, but the molecular determinants of this QDR are largely unknown. In this study, we isolated a B. napus mitogen-activated protein kinase gene, BnaMPK6, and found that BnaMPK6 expression is highly responsive to infection by S. sclerotiorum and treatment with salicylic acid (SA) or jasmonic acid (JA). Moreover, overexpression (OE) of BnaMPK6 significantly enhances resistance to S. sclerotiorum, whereas RNAi in BnaMPK6 significantly reduces this resistance. These results showed that BnaMPK6 plays an important role in defense to S. sclerotiorum. Furthermore, expression of defense genes associated with SA-, JA- and ethylene (ET)-mediated signaling was investigated in BnaMPK6-RNAi, WT and BnaMPK6-OE plants after S. sclerotiorum infection, and consequently, it was indicated that the activation of ET signaling by BnaMPK6 may play a role in the defense. Further, four BnaMPK6-encoding homologous loci were mapped in the B. napus genome. Using the allele analysis and expression analysis on the four loci, we demonstrated that the locus BnaA03.MPK6 makes an important contribution to QDR against S. sclerotiorum. Our data indicated that BnaMPK6 is a previously unknown determinant of QDR against S. sclerotiorum in B. napus.


Assuntos
Ascomicetos/fisiologia , Brassica napus/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Brassica napus/microbiologia , Resistência à Doença/genética , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
20.
PLoS One ; 15(1): e0227990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945118

RESUMO

Rapeseed (Brassica napus L.) is one of the most economically important oilseed crops worldwide. In Japan, it has been cultivated for more than a century and has formed many feral populations. The aim of this study was to elucidate the genetic diversity of feral rapeseeds by genotyping 537 individuals (among which 130 were determined to be genetically modified) sampled from various regions in Japan. Analysis of 30 microsatellite markers amplified 334 alleles and indicated moderate genetic diversity and high inbreeding (expected heterozygosity, 0.50; observed heterozygosity, 0.16; inbreeding coefficient within individuals, 0.68) within the feral populations. The Mantel test showed only an insignificant weak positive correlation between geographic distance and genetic distance. Analysis of molecular variance showed a greater genetic diversity among individuals than between populations. These results are in accordance with population structure assessed by using principal coordinate analysis and the program STRUCTURE, which showed that the 537 individuals could be assigned to 8 genetic clusters with very large genetic differences among individuals within the same geographic population, and that among feral individuals, many are closely related to rapeseed accessions in the NARO Genebank but some have unknown origins. These unique feral rapeseeds are likely to be affected by strong selection pressure. The results for genetically modified individuals also suggest that they have two different sources and have a considerable degree of diversity, which might be explained by hybridization with nearby individuals and separation of hybrid cultivars. The information obtained in this study could help improve the management of feral rapeseed plants in Japan.


Assuntos
Brassica napus , Produtos Agrícolas , Plantas Geneticamente Modificadas , Biodiversidade , Brassica napus/classificação , Brassica napus/genética , Produtos Agrícolas/classificação , Produtos Agrícolas/genética , Variação Genética , Japão , Filogenia , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA