Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.587
Filtrar
1.
BMC Plant Biol ; 21(1): 359, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353289

RESUMO

BACKGROUND: Plant height is an important architecture trait which is a fundamental yield-determining trait in crops. Variety with dwarf or semi-dwarf phenotype is a major objective in the breeding because dwarfing architecture can help to increase harvest index, increase planting density, enhance lodging resistance, and thus be suitable for mechanization harvest. Although some germplasm or genes associated with dwarfing plant type have been carried out. The molecular mechanisms underlying dwarfism in oilseed rape (Brassica napus L.) are poorly understood, restricting the progress of breeding dwarf varieties in this species. Here, we report a new dwarf mutant Bndwarf2 from our B. napus germplasm. We studied its inheritance and mapped the dwarf locus BnDWARF2. RESULTS: The inheritance analysis showed that the dwarfism phenotype was controlled by one semi-dominant gene, which was mapped in an interval of 787.88 kb on the C04 chromosome of B. napus by Illumina Brassica 60 K Bead Chip Array. To fine-map BnDWARF2, 318 simple sequence repeat (SSR) primers were designed to uniformly cover the mapping interval. Among them, 15 polymorphic primers that narrowed down the BnDWARF2 locus to 34.62 kb were detected using a F2:3 family population with 889 individuals. Protein sequence analysis showed that only BnaC04.BIL1 (BnaC04g41660D) had two amino acid residues substitutions (Thr187Ser and Gln399His) between ZS11 and Bndwarf2, which encoding a GLYCOGEN SYNTHASE KINASE 3 (GSK3-like). The quantitative real-time PCR (qRT-PCR) analysis showed that the BnaC04.BIL1 gene expressed in all tissues of oilseed rape. Subcellular localization experiment showed that BnaC04.BIL1 was localized in the nucleus in tobacco leaf cells. Genetic transformation experiments confirmed that the BnaC04.BIL1 is responsible for the plant dwarf phenotype in the Bndwarf2 mutants. Overexpression of BnaC04.BIL1 reduced plant height, but also resulted in compact plant architecture. CONCLUSIONS: A dominant dwarfing gene, BnaC04.BIL1, encodes an GSK3-like that negatively regulates plant height, was mapped and isolated. Our identification of a distinct gene locus may help to improve lodging resistance in oilseed rape.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Tabaco/genética
2.
BMC Plant Biol ; 21(1): 372, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388971

RESUMO

BACKGROUND: Oilseed rape (B. napus L.) has great potential for phytoremediation of cadmium (Cd)-polluted soils due to its large plant biomass production and strong metal accumulation. Soil properties and the presence of other soluble compounds or ions, cause a heterogeneous distribution of Cd. RESULTS: The aim of our study was to reveal the differential responses of B. napus to different Cd abundances. Herein, we found that high Cd (50 µM) severely inhibited the growth of B. napus, which was not repressed by low Cd (0.50 µM) under hydroponic culture system. ICP-MS assays showed that the Cd2+ concentrations in both shoots and roots under 50 µM Cd were over 10 times higher than those under 0.50 µM Cd. Under low Cd, the concentrations of only shoot Ca2+/Mn2+ and root Mn2+ were obviously changed (both reduced); under high Cd, the concentrations of most cations assayed were significantly altered in both shoots and roots except root Ca2+ and Mg2+. High-throughput transcriptomic profiling revealed a total of 18,021 and 1408 differentially expressed genes under high Cd and low Cd conditions, respectively. The biological categories related to the biosynthesis of plant cell wall components and response to external stimulus were over-accumulated under low Cd, whereas the terms involving photosynthesis, nitrogen transport and response, and cellular metal ion homeostasis were highly enriched under high Cd. Differential expression of the transporters responsible for Cd uptake (NRAMPs), transport (IRTs and ZIPs), sequestration (HMAs, ABCs, and CAXs), and detoxification (MTPs, PCR, MTs, and PCSs), and some other essential nutrient transporters were investigated, and gene co-expression network analysis revealed the core members of these Cd transporters. Some Cd transporter genes, especially NRAMPs and IRTs, showed opposite responsive patterns between high Cd and low Cd conditions. CONCLUSIONS: Our findings would enrich our understanding of the interaction between essential nutrients and Cd, and might also provide suitable gene resources and important implications for the genetic improvement of plant Cd accumulation and resistance through molecular engineering of these core genes under varying Cd abundances in soils.


Assuntos
Brassica napus/genética , Brassica napus/metabolismo , Cádmio/metabolismo , Transporte Biológico , Brassica napus/crescimento & desenvolvimento , Quelantes/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íons/metabolismo , Solo/química , Tetraploidia , Transcriptoma
3.
BMC Plant Biol ; 21(1): 366, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380425

RESUMO

BACKGROUND: Small RNAs are short non-coding RNAs that are key gene regulators controlling various biological processes in eukaryotes. Plants may regulate discrete sets of sRNAs in response to pathogen attack. Sclerotinia sclerotiorum is an economically important pathogen affecting hundreds of plant species, including the economically important oilseed B. napus. However, there are limited studies on how regulation of sRNAs occurs in the S. sclerotiorum and B. napus pathosystem. RESULTS: We identified different classes of sRNAs from B. napus using high throughput sequencing of replicated mock and infected samples at 24 h post-inoculation (HPI). Overall, 3999 sRNA loci were highly expressed, of which 730 were significantly upregulated during infection. These 730 up-regulated sRNAs targeted 64 genes, including disease resistance proteins and transcriptional regulators. A total of 73 conserved miRNA families were identified in our dataset. Degradome sequencing identified 2124 cleaved mRNA products from these miRNAs from combined mock and infected samples. Among these, 50 genes were specific to infection. Altogether, 20 conserved miRNAs were differentially expressed and 8 transcripts were cleaved by the differentially expressed miRNAs miR159, miR5139, and miR390, suggesting they may have a role in the S. sclerotiorum response. A miR1885-triggered disease resistance gene-derived secondary sRNA locus was also identified and verified with degradome sequencing. We also found further evidence for silencing of a plant immunity related ethylene response factor gene by a novel sRNA using 5'-RACE and RT-qPCR. CONCLUSIONS: The findings in this study expand the framework for understanding the molecular mechanisms of the S. sclerotiorum and B. napus pathosystem at the sRNA level.


Assuntos
Ascomicetos/fisiologia , Brassica napus/genética , Brassica napus/microbiologia , Doenças das Plantas/microbiologia , RNA de Plantas , Pequeno RNA não Traduzido , Sequência Conservada , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Análise de Sequência de RNA , Regulação para Cima
4.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299178

RESUMO

Timely flowering is important for seed formation and maximization of rapeseed (Brassica napus) yield. Here, we performed flowering-time quantitative trait loci (QTL) mapping using a double haploid (DH) population grown in three environments to study the genetic architecture. Brassica 60 K Illumina Infinium™ single nucleotide polymorphism (SNP) array and simple sequence repeat (SSR) markers were used for genotyping of the DH population, and a high-density genetic linkage map was constructed. QTL analysis of flowering time from the three environments revealed five consensus QTLs, including two major QTLs. A major QTL located on chromosome A03 was detected specifically in the semi-winter rapeseed growing region, and the one on chromosome C08 was detected in all environments. Ribonucleic acid sequencing (RNA-seq) was performed on the parents' leaves at seven time-points in a day to determine differentially expressed genes (DEGs). The biological processes and pathways with significant enrichment of DEGs were obtained. The DEGs in the QTL intervals were analyzed, and four flowering time-related candidate genes were found. These results lay a foundation for the genetic regulation of rapeseed flowering time and create a rapeseed gene expression library for seven time-points in a day.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/genética , Perfilação da Expressão Gênica/métodos , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Haploidia , Polimorfismo de Nucleotídeo Único
5.
Plant Sci ; 310: 110980, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315596

RESUMO

Flowering is an important turning point from vegetative growth to reproductive growth, and vernalization is an essential condition for the flowering of annual winter plants. To investigate the genetic architecture of flowering time in rapeseed, we used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with flowering time in 203 Chinese semi-winter rapeseed inbred lines. Twenty-one haplotype regions carrying one or more candidate genes showed a significant association with flowering time. Interestingly, we detected a SNP (Bn-scaff_22728_1-p285715) located in exon 3 of the BnVIN3-C03 gene that showed a significant association with flowering time on chromosome C03. Based on the SNP alleles A and G, two groups of accessions with early and late flowering time phenotypes were selected, respectively, and PCR amplification and gene expression analysis were combined to reveal the structural variation of the BnVIN3-C03 gene that affected flowering time. Moreover, we found that BnVIN3-C03 inhibited the expression of BnFLC-A02, BnFLC-A03.1, BnFLC-A10 and BnFLC-C03.1, thus modulating the flowering time of Brassica napus. This result provides insight into the genetic improvement of flowering time in B. napus.


Assuntos
Brassica napus/genética , Estudo de Associação Genômica Ampla/métodos , Transcriptoma/genética , Alelos , Mapeamento Cromossômico , Flores/genética , Haplótipos/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética
6.
Methods Mol Biol ; 2288: 49-72, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270004

RESUMO

Molecular markers are employed for doubled haploid (DH) technology by researchers and applied plant breeders in many crops. In the 1990s, isozymes and RFLPs were commonly used marker technologies to characterize DHs and were later replaced by PCR- based markers (e.g., RAPDs, AFLPs, ISSRs, SSRs) and today by SNPs. Markers are used for multiple purposes in DH production, that is, for the study of genes underlying haploid induction and confirming homozygous plants of gametophytic origin. Furthermore, they are tools for investigating segregation in DH populations and for mapping simple and complex traits using DHs. The deployment of DHs and markers for developing trait-linked markers are demonstrated with examples from rapeseed, wheat, and barley. Marker development for resistance to viruses derived from genetic resources and their use in, for example, pyramiding of resistance genes, are given as an example for the combination of DH-technology and marker development in research. Today, marker systems amenable to automation are frequently used in applied plant breeding. Practical examples are given from Lantmännen (LM) ( https://Lantmannen.com ) using large-scale genotyping for variety development based on SSRs and SNPs.


Assuntos
Produtos Agrícolas/genética , Melhoramento Vegetal/métodos , Brassica napus/genética , Produtos Agrícolas/virologia , DNA de Plantas/genética , Diploide , Resistência à Doença/genética , Genes de Plantas , Marcadores Genéticos , Haploidia , Homozigoto , Hordeum/genética , Isoenzimas/genética , Biologia Molecular/métodos , Doenças das Plantas/genética , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Triticum/genética
7.
Methods Mol Biol ; 2288: 129-144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270009

RESUMO

Rapeseed (Brassica napus) is one of the most important oilseed crops worldwide. It is also a model system to study the process of microspore embryogenesis, due to the high response of some B. napus lines, and to the refinements of the protocols. This chapter presents a protocol for the induction of haploid and DH embryos in B. napus through isolated microspore culture in two specific backgrounds widely used in DH research, the high response DH4079 line and the low response DH12075 line. We also present methods to identify the best phenological window to identify buds with microspores/pollen at the right developmental stage to induce this process. Methods to determine microspore/pollen viability and to check the ploidy by flow cytometry are also described.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/genética , Melhoramento Vegetal/métodos , Aclimatação/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Meios de Cultura/química , Diploide , Citometria de Fluxo , Genótipo , Germinação/genética , Haploidia , Homozigoto , Biologia Molecular/métodos , Ploidias , Pólen/genética , Pólen/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos
8.
BMC Genomics ; 22(1): 548, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34273948

RESUMO

BACKGROUND: Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). RESULTS: In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. CONCLUSIONS: This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Fosfolipases , Fosfolipídeos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
9.
BMC Genomics ; 22(1): 539, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256693

RESUMO

BACKGROUND: Associative transcriptomics has been used extensively in Brassica napus to enable the rapid identification of markers correlated with traits of interest. However, within the important vegetable crop species, Brassica oleracea, the use of associative transcriptomics has been limited due to a lack of fixed genetic resources and the difficulties in generating material due to self-incompatibility. Within Brassica vegetables, the harvestable product can be vegetative or floral tissues and therefore synchronisation of the floral transition is an important goal for growers and breeders. Vernalisation is known to be a key determinant of the floral transition, yet how different vernalisation treatments influence flowering in B. oleracea is not well understood. RESULTS: Here, we present results from phenotyping a diverse set of 69 B. oleracea accessions for heading and flowering traits under different environmental conditions. We developed a new associative transcriptomics pipeline, and inferred and validated a population structure, for the phenotyped accessions. A genome-wide association study identified miR172D as a candidate for the vernalisation response. Gene expression marker association identified variation in expression of BoFLC.C2 as a further candidate for vernalisation response. CONCLUSIONS: This study describes a new pipeline for performing associative transcriptomics studies in B. oleracea. Using flowering time as an example trait, it provides insights into the genetic basis of vernalisation response in B. oleracea through associative transcriptomics and confirms its characterisation as a complex G x E trait. Candidate leads were identified in miR172D and BoFLC.C2. These results could facilitate marker-based breeding efforts to produce B. oleracea lines with more synchronous heading dates, potentially leading to improved yields.


Assuntos
Brassica napus , Brassica , Brassica/genética , Brassica napus/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Transcriptoma
10.
BMC Plant Biol ; 21(1): 347, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301191

RESUMO

BACKGROUND: Tomato (Solanum lycopersicum) is one of the most important horticultural crops, with a marked preference for nitrate as an inorganic nitrogen source. The molecular mechanisms of nitrate uptake and assimilation are poorly understood in tomato. NIN-like proteins (NLPs) are conserved, plant-specific transcription factors that play crucial roles in nitrate signaling. RESULTS: In this study, genome-wide analysis identified six NLP members in tomato genome. These members were clustered into three clades in a phylogenetic tree. Comparative genomic analysis showed that SlNLP genes exhibited collinear relationships to NLPs in Arabidopsis, canola, maize and rice, and that the expansion of the SlNLP family mainly resulted from segmental duplications in the tomato genome. Tissue-specific expression analysis showed that one of the close homologs of AtNLP6/7, SlNLP3, was strongly expressed in roots during both the seedling and flowering stages, that SlNLP4 and SlNLP6 exhibited preferential expression in stems and leaves and that SlNLP6 was expressed at high levels in fruits. Furthermore, the nitrate uptake in tomato roots and the expression patterns of SlNLP genes were measured under nitrogen deficiency and nitrate resupply conditions. Four SlNLPs, SlNLP1, SlNLP2, SlNLP4 and SlNLP6, were upregulated after nitrogen starvation. And SlNLP1 and SlNLP5 were induced rapidly and temporally by nitrate. CONCLUSIONS: These results provide significant insights into the potential diverse functions of SlNLPs to regulate nitrate uptake.


Assuntos
Lycopersicon esculentum/genética , Lycopersicon esculentum/metabolismo , Nitratos/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo
11.
Plant Physiol Biochem ; 166: 605-620, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34186284

RESUMO

BACKGROUND: Soil salinization is a major constraint limiting agricultural development and affecting crop growth and productivity, especially in arid and semi-arid regions. Understanding the molecular mechanism of the adaptability of canola to salt stress is very important to improve the salt tolerance of canola and promote its cultivation in saline alkali soil. RESULTS: To identify the metabolomic and transcriptomic mechanisms of canola under alkaline salt stress, we collected roots of control (no salt treatment) and 72 h Na2CO3-stressed canola seedlings (hydroponics) for metabolic profiling of metabolites, supplemented with RNA-Seq analysis and real-time quantitative PCR validation. Metabolomic analysis showed that the metabolites of amino acids and fatty acids were higher accumulated under alkaline salt stress, including L-proline, L-glutamate, L-histidine, L-phenylalanine, L-citrulline, L-tyrosine, L-saccharopine, L-tryptophan, linoleic acid, dihomo gamma linolenic acid, alpha linolenic acid, Eric acid, oleic acid and neuronic acid, while the metabolism of carbohydrate (sucrase, alpha, alpha trehalose), polyol (ribitol), UDP-D-galactose, D-mannose, D-fructose and D-glucose 6-phosphate decreased. Transcriptomic and metabolomic pathway analysis indicated that carbohydrate metabolism may not play an important role in the resistance of canola to alkaline salt stress. Organic acid metabolism (fatty acid accumulation) and amino acid metabolism are important metabolic pathways in the root of canola under alkaline salt stress. CONCLUSIONS: These results suggest that the genes and metabolites involved in fatty acid metabolism and amino acids metabolism in roots of canola may regulate salt tolerance of canola seedlings under alkaline salt stress, which improves our understanding of the molecular mechanisms of salt tolerance in canola.


Assuntos
Brassica napus , Álcalis , Brassica napus/genética , Metabolômica , Raízes de Plantas , Transcriptoma
12.
BMC Plant Biol ; 21(1): 286, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157966

RESUMO

BACKGROUND: Brassica napus is an essential crop for oil and livestock feed. Eventually, this crop's economic interest is at the most risk due to anthropogenic climate change. DELLA proteins constitute a significant repressor of plant growth to facilitate survival under constant stress conditions. DELLA proteins lack DNA binding domain but can interact with various transcription factors or transcription regulators of different hormonal families. Significant progress has been made on Arabidopsis and cereal plants. However, no comprehensive study regarding DELLA proteins has been delineated in rapeseed. RESULTS: In our study, we have identified 10 BnaDELLA genes. All of the BnaDELLA genes are closely related to five AtDELLA genes, suggesting a relative function and structure. Gene duplication and synteny relationship among Brassica. napus, Arabidopsis. thaliana, Brassica rapa, Brassica oleracea, and Brassica nigra genomes were also predicted to provide valuable insights into the BnaDELLA gene family evolutionary characteristics. Chromosomal mapping revealed the uneven distribution of BnaDELLA genes on eight chromosomes, and site-specific selection assessment proposes BnaDELLA genes purifying selection. The motifs composition in all BnaDELLA genes is inconsistent; however, every BnaDELLA gene contains 12 highly conserved motifs, encoding DELLA and GRAS domains. The two known miRNAs (bna-miR6029 and bna-miR603) targets BnaC07RGA and BnaA09GAI, were also predicted. Furthermore, quantitative real-time PCR (qRT-PCR) analysis has exhibited the BnaDELLA genes diverse expression patterns in the root, mature-silique, leaf, flower, flower-bud, stem, shoot-apex, and seed. Additionally, cis-acting element prediction shows that all BnaDELLA genes contain light, stress, and hormone-responsive elements on their promoters. The gene ontology (GO) enrichment report indicated that the BnaDELLA gene family might regulate stress responses. Combine with transcriptomic data used in this study, we detected the distinct expression patterns of BnaDELLA genes under biotic and abiotic stresses. CONCLUSION: In this study, we investigate evolution feature, genomic structure, miRNAs targets, and expression pattern of the BnaDELLA gene family in B. napus, which enrich our understanding of BnaDELLA genes in B. napus and suggests modulating individual BnaDELLA expression is a promising way to intensify rapeseed stress tolerance and harvest index.


Assuntos
Brassica napus/genética , Genes de Plantas/genética , Brassica napus/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Evolução Molecular , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , MicroRNAs/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , RNA de Plantas/genética , Alinhamento de Sequência , Estresse Fisiológico , Transcriptoma
13.
BMC Plant Biol ; 21(1): 288, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167468

RESUMO

BACKGROUND: B-box (BBX) genes play important roles in plant growth regulation and responses to abiotic stresses. The plant growth and yield production of allotetraploid rapeseed is usually hindered by diverse nutrient stresses. However, no systematic analysis of Brassicaceae BBXs and the roles of BBXs in the regulation of nutrient stress responses have not been identified and characterized previously. RESULTS: In this study, a total of 536 BBXs were identified from nine brassicaceae species, including 32 AtBBXs, 66 BnaBBXs, 41 BoBBXs, 43 BrBBXs, 26 CrBBXs, 81 CsBBXs, 52 BnBBXs, 93 BjBBXs, and 102 BcBBXs. Syntenic analysis showed that great differences in the gene number of Brassicaceae BBXs might be caused by genome duplication. The BBXs were respectively divided into five subclasses according to their phylogenetic relationships and conserved domains, indicating their diversified functions. Promoter cis-element analysis showed that BBXs probably participated in diverse stress responses. Protein-protein interactions between BnaBBXs indicated their functions in flower induction. The expression profiles of BnaBBXs were investigated in rapeseed plants under boron deficiency, boron toxicity, nitrate limitation, phosphate shortage, potassium starvation, ammonium excess, cadmium toxicity, and salt stress conditions using RNA-seq data. The results showed that different BnaBBXs showed differential transcriptional responses to nutrient stresses, and some of them were simultaneously responsive to diverse nutrient stresses. CONCLUSIONS: Taken together, the findings investigated in this study provided rich resources for studying Brassicaceae BBX gene family and enriched potential clues in the genetic improvement of crop stress resistance.


Assuntos
Brassica napus/genética , Brassicaceae/genética , Genes de Plantas/genética , Fatores de Transcrição/genética , Brassica napus/fisiologia , Sequência Conservada , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Filogenia , Mapas de Interação de Proteínas , Estresse Fisiológico , Sintenia , Tetraploidia , Fatores de Transcrição/fisiologia
14.
Gene ; 798: 145798, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34175391

RESUMO

Rapeseed (Brassica napus L.) is an important oil crop with a huge genome. This study used next generation sequencing technology to develop SSR markers in rapeseed. A total of 213,876 sequence reads were obtained in 58.8 Mb. For these reads, 21,523 SSRs were recovered from 18,575 microsatellites sequences and 8,964 SSR primer pairs were identified. Di- and mono-nucleotides were the most abundant, accounting for 47.5% and 30.7% of all SSRs, respectively. A total of 8,776 SSRs were designed from contigs and 100 SSR primers were tested for validation of SSR locus amplification. Nearly all (94%) of the markers were found to produce clear amplicons and to be reproducible. For these markers, forty-three SSRs showed polymorphic bands in eight rapeseed accessions. Thirty-four SSRs were then applied to 78 rapeseed accessions from China to evaluate the genetic diversity. Result showed that the allele number varied from two to seven, with a mean value of 3.59. The effective allele number of ranged from 1.14 to 3.25, with an average of 2.09. The average values of observed heterozygosity and expected heterozygosity were 0.54 and 0.49, respectively. The Nei's gene diversity varied from 0.12 to 0.69, with a mean value of 0.48. Resulting of the markers testing showed that the identified genome-wide SSRs were useful in rapeseed genetic studies, including genetic diversity, QTL mapping and marker-assisted selection for breeding.


Assuntos
Brassica napus/genética , Marcadores Genéticos , Repetições de Microssatélites , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala
15.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070927

RESUMO

Citric acid (CA), as an organic chelator, plays a vital role in alleviating copper (Cu) stress-mediated oxidative damage, wherein a number of molecular mechanisms alter in plants. However, it remains largely unknown how CA regulates differentially abundant proteins (DAPs) in response to Cu stress in Brassica napus L. In the present study, we aimed to investigate the proteome changes in the leaves of B. L. seedlings in response to CA-mediated alleviation of Cu stress. Exposure of 21-day-old seedlings to Cu (25 and 50 µM) and CA (1.0 mM) for 7 days exhibited a dramatic inhibition of overall growth and considerable increase in the enzymatic activities (POD, SOD, CAT). Using a label-free proteome approach, a total of 6345 proteins were identified in differentially treated leaves, from which 426 proteins were differentially expressed among the treatment groups. Gene ontology (GO) and KEGG pathways analysis revealed that most of the differential abundance proteins were found to be involved in energy and carbohydrate metabolism, photosynthesis, protein metabolism, stress and defense, metal detoxification, and cell wall reorganization. Our results suggest that the downregulation of chlorophyll biosynthetic proteins involved in photosynthesis were consistent with reduced chlorophyll content. The increased abundance of proteins involved in stress and defense indicates that these DAPs might provide significant insights into the adaptation of Brassica seedlings to Cu stress. The abundances of key proteins were further verified by monitoring the mRNA expression level of the respective transcripts. Taken together, these findings provide a potential molecular mechanism towards Cu stress tolerance and open a new route in accelerating the phytoextraction of Cu through exogenous application of CA in B. napus.


Assuntos
Brassica napus/efeitos dos fármacos , Ácido Cítrico/farmacologia , Cobre/toxicidade , Poluentes Ambientais/toxicidade , Proteínas de Plantas/genética , Proteoma/genética , Adaptação Fisiológica , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Catalase/genética , Catalase/metabolismo , Clorofila/biossíntese , Ácido Cítrico/metabolismo , Cobre/metabolismo , Poluentes Ambientais/antagonistas & inibidores , Poluentes Ambientais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Peroxidases/classificação , Peroxidases/genética , Peroxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Proteoma/classificação , Proteoma/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Estresse Fisiológico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
16.
Ecotoxicol Environ Saf ; 220: 112392, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102395

RESUMO

Understanding the molecular mechanisms of cadmium (Cd) tolerance and accumulation in plants is important to address Cd pollution. In the present study, we performed comparative transcriptome analysis to identify the Cd response processes in the roots of two turnip landraces, KTRG-B14 (high-Cd accumulation) and KTRG-B36 (low-Cd accumulation). Two common enhanced processes, glutathione metabolism and antioxidant system, were identified in both landraces. However, some differential antioxidant processes are likely employed by two landraces, namely, several genes encoding peptide methionine sulfoxide reductases and thioredoxins were up-regulated in B14, whereas flavonoid synthesis was potentially induced to fight against oxidative stress in B36. In addition to the commonly upregulated ZINC INDUCED FACILITATOR 1-like gene in two landraces, different metal transporter-encoding genes identified in B14 (DETOXIFICATION 1) and B36 (PLANT CADMIUM RESISTANCE 2-like, probable zinc transporter 10, and ABC transporter C family member 3) were responsible for Cd accumulation and distribution in cells. Several genes that encode extensins were specifically upregulated in B14, which may improve Cd accumulation in cell walls or regulate root development to absorb more Cd. Meanwhile, the induced high-affinity nitrate transporter 2.1-like gene was also likely to contribute to the higher Cd accumulation in B14. However, Cd also caused some toxic symptoms in both landraces. Cd stress might inhibit iron uptake in both landraces whereas many apoenzyme-encoding genes were influenced in B36, which may be attributed to the interaction between Cd and other metal ions. This study provides novel insights into the molecular mechanism of plant root response to Cd at an early stage. The transporters and key enzymes identified in this study are helpful for the molecular-assisted breeding of low- or high-Cd-accumulating plant resources.


Assuntos
Brassica napus/genética , Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Antioxidantes/metabolismo , Biodegradação Ambiental , Brassica napus/metabolismo , Glutationa/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Ferro/metabolismo , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Transcriptoma
17.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062819

RESUMO

An oxidative burst is an early response of plants to various biotic/abiotic stresses. In plant-microbe interactions, the plant body can induce oxidative burst to activate various defense mechanisms to combat phytopathogens. A localized oxidative burst is also one of the typical behaviors during hypersensitive response (HR) caused by gene-for-gene interaction. In this study, the occurrence of oxidative burst and its signaling pathways was studied from different levels of disease severity (i.e., susceptible, intermediate, and resistant) in the B. napus-L. maculans pathosystem. Canola cotyledons with distinct levels of resistance exhibited differential regulation of the genes involved in reactive oxygen species (ROS) accumulation and responses. Histochemical assays were carried out to understand the patterns of H2O2 accumulation and cell death. Intermediate and resistant genotypes exhibited earlier accumulation of H2O2 and emergence of cell death around the inoculation origins. The observations also suggested that the cotyledons with stronger resistance were able to form a protective region of intensive oxidative bursts between the areas with and without hyphal intrusions to block further fungal advancement to the uninfected regions. The qPCR analysis suggested that different onset patterns of some marker genes in ROS accumulation/programmed cell death (PCD) such as RBOHD, MPK3 were associated with distinct levels of resistance from B. napus cultivars against L. maculans. The observations and datasets from this article indicated the distinct differences in ROS-related cellular behaviors and signaling between compatible and incompatible interactions.


Assuntos
Cotilédone/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Explosão Respiratória/genética , Brassica napus/genética , Brassica napus/parasitologia , Morte Celular/genética , Cotilédone/parasitologia , Epistasia Genética , Genótipo , Peróxido de Hidrogênio/metabolismo , Leptosphaeria/genética , Leptosphaeria/patogenicidade , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Transdução de Sinais/genética , Estresse Fisiológico/genética
18.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066572

RESUMO

The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY (NPF) genes, initially characterized as nitrate or peptide transporters in plants, are involved in the transport of a large variety of substrates, including amino acids, nitrate, auxin (IAA), jasmonates (JAs), abscisic acid (ABA) and gibberellins (GAs) and glucosinolates. A total of 169 potential functional NPF genes were excavated in Brassica napus, and they showed diversified expression patterns in 90 different organs or tissues based on transcriptome profile data. The complex time-serial expression changes were found for most functional NPF genes in the development process of leaves, silique walls and seeds, which indicated that the expression of Brassica napus NPF (BnaNPF) genes may respond to altered phytohormone and secondary metabolite content through combining with promoter element enrichment analysis. Furthermore, many BnaNPF genes were detected to respond to vernalization with two different patterns, and 20 BnaNPF genes responded to nitrate deficiency. These results will provide useful information for further investigation of the biological function of BnaNPF genes for growth and development in rapeseed.


Assuntos
Proteínas de Transporte de Ânions/genética , Brassica napus/genética , Brassica napus/fisiologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Nitrogênio/deficiência , Proteínas de Plantas/genética , Sequência de Aminoácidos , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/metabolismo , Brassica napus/efeitos dos fármacos , Variações do Número de Cópias de DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nitratos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Especificidade da Espécie , Sintenia/genética
19.
BMC Genomics ; 22(1): 442, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118867

RESUMO

BACKGROUND: Rutabaga or swede (Brassica napus ssp. napobrassica (L.) Hanelt) varies in root and leaf shape and colour, flesh colour, foliage growth habits, maturity date, seed quality parameters, disease resistance and other traits. Despite these morphological differences, no in-depth molecular analyses of genetic diversity have been conducted in this crop. Understanding this diversity is important for conservation and broadening the use of this resource. RESULTS: This study investigated the genetic diversity within and among 124 rutabaga accessions from five Nordic countries (Norway, Sweden, Finland, Denmark and Iceland) using a 15 K single nucleotide polymorphism (SNP) Brassica array. After excluding markers that did not amplify genomic DNA, monomorphic and low coverage site markers, the accessions were analyzedwith 6861 SNP markers. Allelic frequency statistics, including polymorphism information content (PIC), minor allele frequency (MAF) and mean expected heterozygosity ([Formula: see text]e) and population differentiation statistics such as Wright's F-statistics (FST) and analysis of molecular variance (AMOVA) indicated that the rutabaga accessions from Norway, Sweden, Finland and Denmark were not genetically different from each other. In contrast, accessions from these countries were significantly different from the accessions from Iceland (P < 0.05). Bayesian analysis with the software STRUCTURE placed 66.9% of the rutabaga accessions into three to four clusters, while the remaining 33.1% constituted admixtures. Three multivariate analyses: principal coordinate analysis (PCoA), the unweighted pair group method with arithmetic mean (UPGMA) and neighbour-joining (NJ) clustering methods grouped the 124 accessions into four to six subgroups. CONCLUSION: Overall, the correlation of the accessions with their geographic origin was very low, except for the accessions from Iceland. Thus, Icelandic rutabaga accessions can offer valuable germplasm for crop improvement.


Assuntos
Brassica napus , Genética Populacional , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Brassica napus/genética , Dinamarca , Finlândia , Variação Genética , Islândia , Biologia Molecular , Noruega , Suécia
20.
Environ Pollut ; 285: 117218, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33933876

RESUMO

Oilseed rape (Brassica napus) has potential as a hyperaccumulator in the phytoremediation of cadmium (Cd)-contaminated soils. Oilseed rape varieties with higher Cd accumulation ability and Cd tolerance are ideal candidates for the hyperaccumulation of excess Cd. To explore the physiological and molecular mechanisms underlying Cd tolerance and high Cd accumulation in oilseed rape leaves, we examined two genotypes, "BN067" (Cd-sensitive with lower Cd accumulation in leaves) and "BN06" (Cd-tolerant with higher Cd accumulation in leaves). We characterized the physiological morphology, structure, subcellular distribution of Cd, cell wall components, cell chelates, and the transcriptional levels of the related genes. Greater Cd accumulation was observed in the cell walls and vacuoles of Cd-tolerant leaves, reducing Cd toxicity to the lamellar structure of the chloroplast thylakoid and leaf stomata. Higher expression of PMEs genes and lower expression of pectin methylesterase inhibitors (PMEI) genes improved pectin methylesterase (PME) activity in leaves of Cd-tolerant genotype. Stronger demethylation of pectin along with higher pectin and hemicellulose levels induced by lower pectinase and hemicellulose activities in the leaves of the Cd-tolerant genotype, resulting in higher Cd retention in the cell walls. Under Cd toxicity, higher Cd sequestration within the vacuoles of Cd-tolerant leaves was closely related to greater accumulation of Cd chelates with stronger biosynthesis in protoplasts. The results highlight the importance of using hyperaccumulation by plants to remediate our environment, and also provide a theoretical basis for the development of Cd-tolerant varieties.


Assuntos
Brassica napus , Poluentes do Solo , Brassica napus/genética , Cádmio/análise , Pectinas , Raízes de Plantas/química , Polissacarídeos , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...