Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.049
Filtrar
1.
BMC Genomics ; 23(1): 339, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35501686

RESUMO

BACKGROUND: Allotetraploid oilseed rape (Brassica napus L.) is an important worldwide oil-producing crop. The origin of rapeseed is still undetermined due to the lack of wild resources. Despite certain genetic architecture and phylogenetic studies have been done focus on large group of Brassica nuclear genomes, the organelle genomes information under global pattern is largely unknown, which provide unique material for phylogenetic studies of B. napus. Here, based on de novo assemblies of 1,579 B. napus accessions collected globally, we constructed the chloroplast and mitochondrial pan-genomes of B. napus, and investigated the genetic diversity, phylogenetic relationships of B. napus, B. rapa and B. oleracea. RESULTS: Based on mitotype-specific markers and mitotype-variant ORFs, four main cytoplasmic haplotypes were identified in our groups corresponding the nap, pol, ole, and cam mitotypes, among which the structure of chloroplast genomes was more conserved without any rearrangement than mitochondrial genomes. A total of 2,092 variants were detected in chloroplast genomes, whereas only 326 in mitochondrial genomes, indicating that chloroplast genomes exhibited a higher level of single-base polymorphism than mitochondrial genomes. Based on whole-genome variants diversity analysis, eleven genetic difference regions among different cytoplasmic haplotypes were identified on chloroplast genomes. The phylogenetic tree incorporating accessions of the B. rapa, B. oleracea, natural and synthetic populations of B. napus revealed multiple origins of B. napus cytoplasm. The cam-type and pol-type were both derived from B. rapa, while the ole-type was originated from B. oleracea. Notably, the nap-type cytoplasm was identified in both the B. rapa population and the synthetic B. napus, suggesting that B. rapa might be the maternal ancestor of nap-type B. napus. CONCLUSIONS: The phylogenetic results provide novel insights into the organelle genomic evolution of Brassica species. The natural rapeseeds contained at least four cytoplastic haplotypes, of which the predominant nap-type might be originated from B. rapa. Besides, the organelle pan-genomes and the overall variation data offered useful resources for analysis of cytoplasmic inheritance related agronomical important traits of rapeseed, which can substantially facilitate the cultivation and improvement of rapeseed varieties.


Assuntos
Brassica napus , Brassica rapa , Brassica , Brassica/genética , Brassica napus/genética , Brassica rapa/genética , Núcleo Celular , Cloroplastos/genética , Variação Genética , Humanos , Mitocôndrias/genética , Filogenia
2.
Sci Rep ; 12(1): 6308, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428824

RESUMO

Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin biosynthesis and regulation mechanisms has made great progress. However, research on anthocyanin accumulation for resistance to biological and non-biological stress is still lacking. To study the relationship between anthocyanin accumulation of Chinese cabbage and resistance under low-temperature conditions, RNA sequencing (RNA-seq) was performed on Chinese cabbage 'Xiao Baojian' grown at a low temperature for four time periods and at a control temperature for five time periods. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 7954 differentially expressed genes (DEGs) were enriched, of which 587 DEGs belonged to "biosynthesis of other secondary metabolites." Gene temporal expression patterns were used to discover enriched genes related to phenylpropanoid biosynthesis; flavonoid biosynthesis and anthocyanin biosynthesis pathways were found in cluster 1. The interaction networks were constructed, and hub genes were selected, showing that flavonoid biosynthesis pathway genes (DFR, ANS, F3H, FLS1, CHS1, CHS3, and TT8) and defense mechanisms-related genes (DFR, SNL6, and TKPR1) interact with each other. Anthocyanin biosynthesis DEGs in Chinese cabbage were evaluated under low-temperature conditions to map the relevant pathways, and expression maps of transcription factors in the flavonoid pathway were created at various periods. Low temperature upregulated the expression of genes related to anthocyanin biosynthesis. Taken together, our results provide further analysis of the relationship between plant anthocyanin synthesis and stress resistance and may also provide further insights for the future development of high-quality color and cold-tolerant Chinese cabbage germplasm resources.


Assuntos
Brassica rapa , Brassica , Antocianinas , Brassica/genética , Brassica/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , China , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , Transcriptoma
3.
Food Funct ; 13(9): 5215-5228, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35438092

RESUMO

The potential of pentapeptide IPQVS (RAP1) and octapeptide ELHQEEPL (RAP2) derived from rapeseed napin as natural dipeptidyl-peptidase IV (DPP-IV) inhibitors is promising. The objective was to develop a nanogel strategy to resist the hydrolysis of digestive and intestinal enzymes to enhance the DPP-IV inhibitory activity of RAP1 and RAP2, and stimulate glucagon-like peptide 1 (GLP-1) secretion of RAP2 by a RADA16-assisted molecular design. The linker of double Gly was used in the connection of RADA16 and the functional oligopeptide region (RAP1 and RAP2). Compared to the original oligopeptides, DPP-IV IC50 of the nanogels RADA16-RAP1 and RADA16-RAP2 decreased by 26.43% and 17.46% in Caco-2 cell monolayers, respectively. The results showed that the two nanogel peptides with no toxicity to cells had higher contents of stable ß-sheet structures (increased by 5.6-fold and 5.2-fold, respectively) than the original oligopeptides, and a self-assembled fibrous morphology. Rheological results suggested that the nanogels RADA16-RAP1 and RADA16-RAP2 exhibit good rheological properties for potential injectable applications; the storage modulus (G') was 10 times higher than the low modulus (G''). Furthermore, the RAP2 and its RADA16-assisted nanogel peptide at the concentration of 250 µM significantly (P < 0.05) increased the release of GLP-1 by 35.46% through the calcium-sensing receptor pathway in the enteroendocrine STC-1 cells. Hence, the innovative and harmless nanogels with the sequence of RADA16-GG-Xn have the potential for use by oral and injection administration for treating or relieving type 2 diabetes.


Assuntos
Brassica napus , Brassica rapa , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Células CACO-2 , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Nanogéis , Peptídeos/química , Peptídeos/farmacologia
4.
BMC Genomics ; 23(1): 326, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468724

RESUMO

BACKGROUND: Most crop seeds are F1 hybrids. Seed providers and plant breeders must be confident that the seed supplied to growers is of known, and uniform, genetic makeup. This requires maintenance of pure genotypes of the parental lines and testing to ensure the genetic purity of the F1 seed. Traditionally, seed purity has been assessed with a grow-out test (GOT) in the field, a time consuming and costly venture. Early in the last decade, seed testing with molecular markers was introduced as a replacement for GOT, and Kompetitive allele specific PCR (KASP) markers were recognized as promising tools for genetic testing of seeds. However, the markers available at that time could be inaccurate and applicable to only a small number of accessions or varieties due to the limited genetic information and reference genomes available. RESULTS: We identified 4,925,742 SNPs in 50 accessions of the Brasscia rapa core collection. From these, we identified 2,925 SNPs as accession-specific, considering properties of flanking region harboring accession-specific SNPs and genic region conservation among accessions by the Next Generation Sequencing (NGS) analysis. In total, 100 accession-specific markers were developed as accession-specific KASP markers. Based on the results of our validation experiments, the accession-specific markers successfully distinguised individuals from the mixed population including 50 target accessions from B. rapa core collection and the outgroup. Additionally, the marker set we developed here discriminated F1 hybrids and their parental lines with distinct clusters. CONCLUSIONS: This study provides efficient methods for developing KASP markers to distinguish individuals from the mixture comprised of breeding lines and germplasms from the resequencing data of Chinese cabbage (Brassica rapa spp. pekinensis).


Assuntos
Brassica rapa , Alelos , Brassica rapa/genética , Humanos , Melhoramento Vegetal , Reação em Cadeia da Polimerase , Sementes/genética
5.
Sci Rep ; 12(1): 6742, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468936

RESUMO

The less phytopathogen susceptibility in Himalayan Brassica rapa L. has made it an exceptional crop eluding synthetic pesticide inputs, thereby guarantying economically well-founded and ecologically sustainable agriculture. The relevance of niche microflora of this crop has not been deliberated in this context, as endosymbiosiome is more stable than their rhizosphere counterparts on account of their restricted acquaintance with altering environment; therefore, the present investigation was carried out to study the endophytic microfloral dynamics across the B. rapa germplasm in context to their ability to produce chitinase and to characterize the screened microflora for functional and biochemical comportments in relevance to plant growth stimulation. A total of 200 colonies of bacterial endophytes were isolated from the roots of B. rapa across the J&K UT, comprising 66 locations. After morphological, ARDRA, and sequence analysis, eighty-one isolates were selected for the study, among the isolated microflora Pseudomonas sp. Bacillus sp. dominated. Likewise, class γ-proteobacteria dominated, followed by Firmicutes. The diversity studies have exposed changing fallouts on all the critical diversity indices, and while screening the isolated microflora for chitinase production, twenty-two strains pertaining to different genera produced chitinase. After carbon source supplementation to the chitinase production media, the average chitinase activity was significantly highest in glycerol supplementation. These 22 strains were further studied, and upon screening them for their fungistatic behavior against six fungal species, wide diversity was observed in this context. The antibiotic sensitivity pattern of the isolated strains against chloramphenicol, rifampicin, amikacin, erythromycin, and polymyxin-B showed that the strains were primarily sensitive to chloramphenicol and erythromycin. Among all the strains, only eleven produced indole acetic acid, ten were able to solubilize tricalcium phosphate and eight produced siderophores. The hydrocyanic acid and ammonia production was observed in seven strains each. Thus, the present investigation revealed that these strains could be used as potential plant growth promoters in sustainable agriculture systems besides putative biocontrol agents.


Assuntos
Brassica rapa , Quitinases , Bactérias , Cloranfenicol , Eritromicina , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S
6.
Food Res Int ; 155: 111101, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35400474

RESUMO

Rapeseed napin (Brassica napus) protein-derived hydrolysates (RNPHs, 1-4) are mixtures of peptides, prior to reaching liver tissue and playing their antidiabetic role, at least being absorbed and metabolized by the intestinal barrier. The study aims at screening and identifying high bioavailable rapessed napin-derived oligopeptides via simulated gastrointestinal digestion and absorption. Specifically, RNPHs were obtained using a novel ultrasound-assisted digestive device. The potential capacity of treating type 2 diabetes mellitus (T2DM) was evaluated preliminarily via enhancing glucose transporter 4 (GLUT4) expression and translocation. Also, absorbable rapeseed napin-derived oligopeptides were screened and identified in a Caco-2/HepG2 co-culture model using liquid chromatography coupled with electrospray ionisation and quadrupole time of flight tandem mass spectrometry (LC-ESI-QTOF-MS). The results involved mainly two aspects. First, absorbable oligopeptides from RNPH-1 (Molecular weight, Mw ≤ 3 kDa) with the highest degree of hydrolysis (DH) were the optimal ones to enhance GLUT4 expression and translocation (P < 0.05). Secondly, oligopeptides (Thr-His-Leu-Pro-Lys (THLPK), His-Leu-Pro-Lys (HLPK), (Ile) Leu-Pro-Lys ((I)LPK), His-Leu-Lys (HLK), and Leu-His-Lys (LHK)), identified from both RNPH-1 and RNPH-2 which significantly enhanced GLUT4 expression and translocation, could be absorbed intact and reached HepG2 cells. These findings indicated that high bioavailable oligopeptides from RNPHs were the potential usefulness to treat T2DM in vitro.


Assuntos
Brassica napus , Brassica rapa , Diabetes Mellitus Tipo 2 , Células CACO-2 , Técnicas de Cocultura , Humanos , Oligopeptídeos/química , Hidrolisados de Proteína/química , Espectrometria de Massas em Tandem
7.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269996

RESUMO

Plants are always exposed to the environment, polluted by multiple trace elements. Hydrogen sulfide (H2S), an endogenous gaseous transmitter in plant cells, can help plant combat single elements with excess concentration. Until now, little has been known about the regulatory role of H2S in response to combined stress of multiple elements. Here we found that combined exposure of mercury (Hg) and selenium (Se) triggered endogenous H2S signal in the roots of Brasscia rapa. However, neither Hg nor Se alone worked on it. In roots upon Hg + Se exposure, the defensive role of endogenous H2S was associated to the decrease in reactive oxygen species (ROS) level, followed by alleviating cell death and recovering root growth. Such findings extend our knowledge of plant H2S in response to multiple stress conditions.


Assuntos
Brassica rapa , Sulfeto de Hidrogênio , Mercúrio , Selênio , Brassica rapa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Mercúrio/toxicidade , Raízes de Plantas/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selênio/metabolismo
8.
Appl Microbiol Biotechnol ; 106(7): 2445-2454, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35262786

RESUMO

Nitriles derived from glucosinolates (GSLs) in rapeseed meal (RSM) can cause lesions on animal liver and kidneys. Nitrilase converts nitriles to carboxylic acids and NH3, eliminating their toxicity. Here we describe a nitrilase, BnNIT2, from Brassica napus (optimal temperature, 45 °C; pH, 7.0) that is stable at 40 °C and has a wide substrate specificity. Recombinant BnNIT2 converted the three main nitriles from GSLs (3-hydroxy-4-pentenenitrile, 3-butenenitrile, and 4-pentenenitrile), with the highest specific activity (58.6 U/mg) for 4-pentenenitrile. We used mutagenesis to improve the thermostability of BnNIT2; the resulting mutant BnNIT2-H90M had an ~ 14.5% increase in residual activity at 50 °C for 1 h. To verify the functionality of BnNIT2, GSLs were extracted from RSM and converted into nitriles at pH 5.0 in the presence of Fe2+. Then, BnNIT2 was used to degrade the nitriles from GSLs; ultimately, ~ 80% of nitriles were removed. Thus BnNIT2 is a potential enzyme for detoxification of RSM. KEY POINTS: • Functional identification of the plant nitrilase BnNIT2. • Identified a mutant, H90M, with improved thermostability. • BnNIT2 was capable of degrading nitriles from transformed GSLs.


Assuntos
Brassica napus , Brassica rapa , Aminoidrolases , Animais , Brassica napus/metabolismo , Brassica rapa/metabolismo , Glucosinolatos/metabolismo , Nitrilas/metabolismo , Especificidade por Substrato
9.
Food Chem ; 386: 132754, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35339084

RESUMO

A new idea and strategy for honey traceability and identification was provided by studying the carbon isotope fractionation of rape honey and its components in the different ripening process, as well as the fractionation from rape flowers, stamens, nectar to rape honey. The results showed the moisture content of rape honey continued to decrease, and the glucose and fructose content continued to increase during the ripening process. The δ13C of rape honey and its protein were less affected by honey ripeness, while the δ13C of sugars in rape honey were greatly affected by this. At the same time, the fractionation of carbon isotope from rape flowers to honey was significant. The δ13C of rape honey and its protein, disaccharide, fructose, and glucose had a strong correlation, and the δ13C of rape honey and its components were mainly related to rape flowers and its stamens.


Assuntos
Brassica napus , Brassica rapa , Mel , Carbono , Isótopos de Carbono , Flores , Frutose , Glucose , Mel/análise
10.
BMC Plant Biol ; 22(1): 140, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331150

RESUMO

BACKGROUND: Cabbage white butterflies (Pieris spp.) can be severe pests of Brassica crops such as Chinese cabbage, Pak choi (Brassica rapa) or cabbages (B. oleracea). Eggs of Pieris spp. can induce a hypersensitive response-like (HR-like) cell death which reduces egg survival in the wild black mustard (B. nigra). Unravelling the genetic basis of this egg-killing trait in Brassica crops could improve crop resistance to herbivory, reducing major crop losses and pesticides use. Here we investigated the genetic architecture of a HR-like cell death induced by P. brassicae eggs in B. rapa. RESULTS: A germplasm screening of 56 B. rapa accessions, representing the genetic and geographical diversity of a B. rapa core collection, showed phenotypic variation for cell death. An image-based phenotyping protocol was developed to accurately measure size of HR-like cell death and was then used to identify two accessions that consistently showed weak (R-o-18) or strong cell death response (L58). Screening of 160 RILs derived from these two accessions resulted in three novel QTLs for Pieris brassicae-induced cell death on chromosomes A02 (Pbc1), A03 (Pbc2), and A06 (Pbc3). The three QTLs Pbc1-3 contain cell surface receptors, intracellular receptors and other genes involved in plant immunity processes, such as ROS accumulation and cell death formation. Synteny analysis with A. thaliana suggested that Pbc1 and Pbc2 are novel QTLs associated with this trait, while Pbc3 also contains an ortholog of LecRK-I.1, a gene of A. thaliana previously associated with cell death induced by a P. brassicae egg extract. CONCLUSIONS: This study provides the first genomic regions associated with the Pieris egg-induced HR-like cell death in a Brassica crop species. It is a step closer towards unravelling the genetic basis of an egg-killing crop resistance trait, paving the way for breeders to further fine-map and validate candidate genes.


Assuntos
Brassica rapa , Borboletas , Morte Celular , Óvulo/química , Locos de Características Quantitativas , Animais , Brassica rapa/genética
11.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328800

RESUMO

Chinese cabbage (Brassica rapa L.) leaves are purple in color due to anthocyanin accumulation and have nutritional and aesthetic value, as well as antioxidant properties. Here, we identified the R3 MYB transcription factor BrMYBL2.1 as a key negative regulator of anthocyanin biosynthesis. A Chinese cabbage cultivar with green leaves harbored a functional BrMYBL2.1 protein, designated BrMYBL2.1-G, with transcriptional repressor activity of anthocyanin biosynthetic genes. By contrast, BrMYBL2.1 from a Chinese cabbage cultivar with purple leaves carried a poly(A) insertion in the third exon of the gene, resulting in the insertion of multiple lysine residues in the predicted protein, designated BrMYBL2.1-P. Although both BrMYBL2.1 variants localized to the nucleus, only BrMYBL2.1-G interacted with its cognate partner BrTT8. Transient infiltration assays in tobacco leaves revealed that BrMYBL2.1-G, but not BrMYBL2.1-P, actively represses pigment accumulation by inhibiting the transcription of anthocyanin biosynthetic genes. Transient promoter activation assay in Arabidopsis protoplasts verified that BrMYBL2.1-G, but not BrMYBL2.1-P, can repress transcriptional activation of BrCHS and BrDFR, which was activated by co-expression with BrPAP1 and BrTT8. We determined that BrMYBL2.1-P may be more prone to degradation than BrMYBL2.1-G via ubiquitination. Taken together, these results demonstrate that BrMYBL2.1-G blocks the activity of the MBW complex and thus represses anthocyanin biosynthesis, whereas the variant BrMYBL2.1-P from purple Chinese cabbage cannot, thus leading to higher anthocyanin accumulation.


Assuntos
Arabidopsis , Brassica rapa , Brassica , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Genes (Basel) ; 13(2)2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35205328

RESUMO

Chinese cabbage (Brassica rapa) is a major vegetable crop in China. The accumulation of anthocyanins improves the quality and flavor of Brassica crops and is beneficial for human health. There has been great research interest in breeding purple Chinese cabbage, for which it is necessary to study the key genes and mechanisms of anthocyanin accumulation. Through distant hybridization between purple mustard (Brassica juncea) and green Chinese cabbage (B. rapa), purple Chinese cabbage plants were obtained. Furthermore, the Dark_Pur gene was cloned in the purple Chinese cabbage plants, which came from purple mustard and may be responsible for the purple phenotype in purple Chinese cabbage plants. Through particle bombardment of isolated microspores from Chinese cabbage to transform the Dark_Pur gene, the transformed purple Chinese cabbage plant was obtained, thus verifying the function of the Dark_Pur gene. To further study the Dark_Pur gene regulatory mechanism of anthocyanin accumulation in Chinese cabbage, the purple/green Chinese cabbage lines and purple/green mustard lines were subjected to transcriptome-metabolome analysis. Three stages (cotyledon, seedling, and large-leaf stages) of the purple/green Chinese cabbage lines and purple/green mustard lines were selected for analysis. The results indicated that the expression level of the transcription factor genes BraA09g028560.3C, BraA03g019460.3C, and BraA07g035710.3C may be induced by the Dark_Pur gene and they play an important role in purple Chinese cabbage, and BjuB010898 and BjuO006089 may be responsible for anthocyanin accumulation in mustard. Studying the structural genes of the purple Chinese cabbage showed that PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, FLS, DFR, ANS, and UGT were up-regulated in three growth periods. There were 22 and 10 differentially expressed metabolites (DEMs) in seedling and large-leaf stages between purple/green Chinese cabbage, respectively, and 12 and 14 differentially expressed metabolites (DEMs) in seedling and large-leaf stages between purple/green mustard, respectively, which may indicate that the Dark_Pur gene from purple mustard greatly regulates anthocyanin accumulation in purple Chinese cabbage. This study provides a foundation for further elucidating anthocyanin regulation.


Assuntos
Antocianinas , Brassica rapa , Brassica rapa/genética , Brassica rapa/metabolismo , Regulação da Expressão Gênica de Plantas , Metaboloma , Mostardeira/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Transcriptoma/genética
13.
Genes (Basel) ; 13(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35205341

RESUMO

Heat stress events during flowering in Brassica crops reduce grain yield and are expected to increase in frequency due to global climate change. We evaluated heat stress tolerance and molecular genetic diversity in a global collection of Brassica rapa accessions, including leafy, rooty and oilseed morphotypes with spring, winter and semi-winter flowering phenology. Tolerance to transient daily heat stress during the early reproductive stage was assessed on 142 lines in a controlled environment. Well-watered plants of each genotype were exposed to the control (25/15 °C day/night temperatures) or heat stress (35/25 °C) treatments for 7 d from the first open flower on the main stem. Bud and leaf temperature depression, leaf conductance and chlorophyll content index were recorded during the temperature treatments. A large genetic variation for heat tolerance and sensitivity was found for above-ground biomass, whole plant seed yield and harvest index and seed yield of five pods on the main stem at maturity. Genetic diversity was assessed on 212 lines with 1602 polymorphic SNP markers with a known location in the B. rapa physical map. Phylogenetic analyses confirmed two major genetic populations: one from East and South Asia and one from Europe. Heat stress-tolerant lines were distributed across diverse geographic origins, morphotypes (leafy, rooty and oilseed) and flowering phenologies (spring, winter and semi-winter types). A genome-wide association analysis of heat stress-related yield traits revealed 57 SNPs distributed across all 10 B. rapa chromosomes, some of which were associated with potential candidate genes for heat stress tolerance.


Assuntos
Brassica rapa , Termotolerância , Brassica rapa/genética , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico/genética , Filogenia , Locos de Características Quantitativas , Termotolerância/genética
14.
Food Funct ; 13(5): 3063-3076, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35199808

RESUMO

Tibetan turnip (Brassica rapa L.) polysaccharide (TTP) is an active ingredient and has been studied for many years due to its biological effect. There are a few studies on its digestion properties and the regulation of the intestinal microbiota. In this study, the regulation of intestinal health by TTP was investigated in vitro and in vivo. The results showed that TTP was not degraded after simulated gastrointestinal digestion. When TTP was fermented by the gut microbiota, the content of short-chain fatty acids (SCFAs) and the relative abundance of Bifidobacterium, Catenibacterium increased; the relative abundance of Prevotella, Phascolarctobacterium decreased. The in vivo experiments showed that TTP could reduce the abundances of Muribaculaceae and enrich Lactobacillus. The results of KEGG indicated that TTP could promote arginine and ornithine metabolism, fructose and mannose metabolism, and lipopolysaccharide biosynthesis. These data showed that TTP exerted its prebiotic effect by regulating the intestinal flora and could be used for preventing disease and improving health by maintaining intestinal health.


Assuntos
Brassica rapa , Polissacarídeos/farmacologia , Prebióticos , Animais , Digestão/efeitos dos fármacos , Fezes/microbiologia , Feminino , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Polissacarídeos/química , Adulto Jovem
15.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216327

RESUMO

Plant architecture is crucial for rapeseed breeding. Here, we demonstrate the involvement of BnERF114.A1, a transcription factor for ETHYLENE RESPONSE FACTOR (ERF), in the regulation of plant architecture in Brassica napus. BnERF114.A1 is a member of the ERF family group X-a, encoding a putative 252-amino acid (aa) protein, which harbours the AP2/ERF domain and the conserved CMX-1 motif. BnERF114.A1 is localised to the nucleus and presents transcriptional activity, with the functional region located at 142-252 aa of the C-terminus. GUS staining revealed high BnERF114.A1 expression in leaf primordia, shoot apical meristem, leaf marginal meristem, and reproductive organs. Ectopic BnERF114.A1 expression in Arabidopsis reduced plant height, increased branch and silique number per plant, and improved seed yield per plant. Furthermore, in Arabidopsis, BnERF114.A1 overexpression inhibited indole-3-acetic acid (IAA) efflux, thus promoting auxin accumulation in the apex and arresting apical dominance. Therefore, BnERF114.A1 probably plays an important role in auxin-dependent plant architecture regulation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sequência de Aminoácidos , Brassica napus/genética , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal/métodos , Folhas de Planta/genética , Sementes/genética , Fatores de Transcrição/genética
16.
Plant Cell Environ ; 45(5): 1428-1441, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35037269

RESUMO

Epigenetic regulation is necessary for optimal organism development and preservation of gene expression profiles in the cell. In plants, the trimethylation of histone H3 lysine 27 (H3K27me3) is a silencing epigenetic mark relevant for developmental transitions like flowering. The floral transition is a key agronomic trait; however, the epigenetic mechanisms of flowering time regulation in crops remain poorly understood. Here we study the Jumonji H3K27me3 demethylases BraA.REF6 and BraA.ELF6 in Brassica rapa. Phenotypic characterization of novel mutant lines and genome-wide H3K27me3 chromatin immunoprecipitation and transcriptomic analyses indicated that BraA.REF6 plays a greater role than BraA.ELF6 in fine-tuning H3K27me3 levels. In addition, we found that braA.elf6 mutants were early flowering due to high H3K27me3 levels at B. rapa homologs of the floral repressor FLC. Unlike mutations in Arabidopsis thaliana, braA.ref6 mutants were late flowering without altering the expression of B. rapa FLC genes. Remarkably, we found that BraA.REF6 regulated a number of gibberellic acid (GA) biosynthetic genes, including a homolog of GA1, and that GA-treatment complemented the late flowering mutant phenotype. This study increases our understanding of the epigenetic regulation of flowering time in B. rapa, highlighting conserved and distinct regulatory mechanisms between model and crop species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica rapa , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassica rapa/metabolismo , Epigênese Genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo
17.
Plant Mol Biol ; 108(3): 241-255, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35064421

RESUMO

KEY MESSAGE: Nonsense-mediated mRNA decay (NMD)-mediated degradation of BrFLC2 transcripts is the main cause of rapid flowering of oilseed-type B. rapa 'LP08' plants. Many Brassica species require vernalization (long-term winter-like cooling) for transition to the reproductive stage. In the past several decades, scientific efforts have been made to discern the molecular mechanisms underlying vernalization in many species. Thus, to identify the key regulators required for vernalization in Brassica rapa L., we constructed a linkage map composed of 7833 single nucleotide polymorphism markers using the late-flowering Chinese cabbage (B. rapa L. ssp. pekinensis) inbred line 'Chiifu' and the early-flowering yellow sarson (B. rapa L. ssp. trilocularis) line 'LP08' and identified a single major QTL on the upper-arm of the chromosome A02. In addition, we compared the transcriptomes of the lines 'Chiifu' and 'LP08' at five vernalization time points, including both non-vernalized and post-vernalization conditions. We observed that BrFLC2 was significantly downregulated in the early flowering 'LP08' and had two deletion sites (one at 4th exon and the other at 3' downstream region) around the BrFLC2 genomic region compared with the BrFLC2 genomic region in 'Chiifu'. Large deletion at 3' downstream region did not significantly affect transcription of both sense BrFLC2 transcript and antisense transcript, BrFLC2as along vernalization time course. However, the other deletion at 4th exon of BrFLC2 resulted in the generation of premature stop codon in BrFLC2 transcript in LP08 line. Cycloheximide treatment of LP08 line showed the de-repressed level of BrFLC2 in LP08, suggesting that low transcript level of BrFLC2 in LP08 might be caused by nonsense-mediated mRNA decay removing the nonsense transcript of BrFLC2. Collectively, this study provides a better understanding of the molecular mechanisms underlying floral transition in B. rapa.


Assuntos
Brassica rapa/genética , Brassica rapa/fisiologia , Códon de Terminação/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Sequência de Bases , DNA de Plantas , Genoma de Planta , Mutação , Proteínas de Plantas/genética , Locos de Características Quantitativas
18.
Sci Total Environ ; 821: 153156, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041952

RESUMO

Selenium (Se) can be used to counteract cadmium (Cd) toxicity in plants. However, mechanisms underlying the alleviation of Cd toxicity by Se have not been completely elucidated, especially those by which Se reduces Cd translocation. A hydroponic experiment was performed to illustrate the regulatory mechanisms of Cd transport by selenate (Se (VI)) in pakchoi (Brassica rapa L., LvYou 102). The results showed that this plant had a high accumulation capacity for Cd, and Se(VI) addition restricted Cd translocation from roots to shoots. Se(VI) exposure stimulated the concentrations of pectins and hemicellulose II but reduced the concentration of hemicellulose I in the roots. In many cases, the enzymes pectin methylesterase, polygalacturonase, and ß-galactosidase were dose-dependently triggered by Se(VI) under Cd exposure, but root calcium concentration was significantly lowered (p < 0.05). Xyloglucan endoglycosidase (hydrolase) was triggered by Se(VI) under 2 mg L-1 Cd exposure and cellulase was generally activated by Se(VI) under Cd stress. The above results suggest that Se(VI) up-regulates pectin methylesterase activity, stimulates synthesis of pectins, and down-regulates root Ca concentration to release free carboxyl groups to combine Cd. In this study, the relationships between enzyme activity (e.g., peroxidase, superoxidase and ß-galactosidase), hydrogen peroxide, cell wall structure strengthening/loosening, and Cd toxicity affected by Se(VI) were also discussed.


Assuntos
Brassica rapa , Selênio , Cádmio/toxicidade , Parede Celular , Raízes de Plantas , Ácido Selênico , Selênio/química
19.
J Agric Food Chem ; 70(2): 634-645, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985260

RESUMO

A high glucosinolate (GSL) concentration, an undesirable substance, has severely restricted rapeseed (Brassica species) development. We performed widely targeted metabolomics analysis based on the ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) technology to analyze the metabolic profiles and identify the differential metabolites and GSL components in response to different nitrogen (N) levels in two rapeseed varieties. A total of 341 metabolites and 38 GSL components were detected in the seeds. A total of 188 differential metabolites, including 34 GSL components, were identified in response to different treatments, which were mapped into 2-oxocarboxylic acid metabolism, tryptophan metabolism, and GSL biosynthesis. Key indicators of GSL components highly responsible for different N levels under two contrasting varieties were recognized, i.e., 1-methylpropyl GSL and 4-methylthiobutyl GSL. This study suggests that the efficient N management and variety selection are important strategies for developing rapeseed with low GSLs.


Assuntos
Brassica napus , Brassica rapa , Glucosinolatos , Nitrogênio , Espectrometria de Massas em Tandem
20.
Genome ; 65(2): 105-113, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34648727

RESUMO

This study evaluated the genotyping by sequencing (GBS) protocol for fingerprinting Brassica rapa, and the data derived were more reliable than the re-sequencing data of B. rapa. Of the 10 enzyme solutions used to analyze the numbers of genotypes and single-nucleotide polymorphisms (SNPs) in B. rapa, five solutions showed better results, namely, A (HaeIII, 450-500 bp), E (RsaI+HaeIII, 500-550 bp), F (RsaI+HaeIII, 500-600 bp), G (RsaI+HaeIII, 'All' fragment), and J (RsaI+EcoRV-HF®, 'All' fragment). The five enzyme solutions showed less than 40% similarity in different individuals from various samples, and 90% similarity between two individuals from one sample. The E enzyme solution was the most suitable for fingerprinting B. rapa, revealing well-distributed SNPs in the whole genome. Of the 82 highly inbred lines and 18 F1 lines of B. rapa sequenced by GBS in the E enzyme solution, known parents of 10 F1 lines were verified, and male parents were discovered for 8 F1 lines that had only known female parents. This study provides a valuable method for screening parents for F1 lines in B. rapa for the efficient evaluation of GBS with varied library construction strategies.


Assuntos
Brassica rapa , Melhoramento Vegetal , Brassica rapa/genética , Mapeamento Cromossômico , Genoma de Planta , Genótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...