Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 551
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Agric Food Chem ; 68(10): 3017-3025, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32059105

RESUMO

Chlorsulfuron has been applied in wheat fields as a recognized herbicide worldwide, yet it was officially banned in China since 2014 for its soil persistence problem. On the basis of our previous research that 5-dimethylamino distinctively accelerated degradation rate in soils, a modified amino moiety (Ia-c) and monosubstituted amino group (Id-e) were introduced onto the fifth position of the benzene ring in sulfonylurea structures, as well as heterocyclic amino substituents (If-g) to seek a suitable soil degradation rate during such an in situ crop rotation system. Referring to the biological data and ScAHAS inhibition and ScAHAS docking results, they turned out to be AHAS inhibitors with high potent herbicidal activities. The various influence on soil degradation rate along with crop safety indicated that different substituents on the fifth position have exerted an apparent impact. Their united study of structure-activity-safety-degradation relationship has great potential to provide valuable information for further development of eco-friendly agrochemicals.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Herbicidas/farmacologia , Proteínas de Plantas/antagonistas & inibidores , Poluentes do Solo/química , Compostos de Sulfonilureia/farmacologia , Acetolactato Sintase/metabolismo , Amaranthus/efeitos dos fármacos , Amaranthus/enzimologia , Brassica/efeitos dos fármacos , Brassica/enzimologia , Inibidores Enzimáticos/química , Herbicidas/química , Cinética , Modelos Moleculares , Proteínas de Plantas/metabolismo , Poluentes do Solo/farmacologia , Relação Estrutura-Atividade , Compostos de Sulfonilureia/química
2.
J Biochem ; 166(5): 441-448, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504617

RESUMO

Glycosylinositol phosphoceramide (GIPC) is the most abundant sphingolipid in plants and fungi. Recently, we detected GIPC-specific phospholipase D (GIPC-PLD) activity in plants. Here, we found that GIPC-PLD activity in young cabbage leaves catalyzes transphosphatidylation. The available alcohol for this reaction is a primary alcohol with a chain length below C4. Neither secondary alcohol, tertiary alcohol, choline, serine nor glycerol serves as an acceptor for transphosphatidylation of GIPC-PLD. We also found that cabbage GIPC-PLD prefers GIPC containing two sugars. Neither inositol phosphoceramide, mannosylinositol phosphoceramide nor GIPC with three sugar chains served as substrate. GIPC-PLD will become a useful catalyst for modification of polar head group of sphingophospholipid.


Assuntos
Biocatálise , Brassica/enzimologia , Ceramidas/metabolismo , Inositol/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipase D/metabolismo , Folhas de Planta/enzimologia , Brassica/química , Ceramidas/química , Inositol/análogos & derivados , Inositol/química , Estrutura Molecular , Fosfatidilcolinas/química , Fosfolipase D/química , Folhas de Planta/química
3.
Int J Mol Sci ; 20(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083282

RESUMO

Petal color, size, and morphology play important roles in protecting other floral organs, attracting pollinators, and facilitating sexual reproduction in plants. In a previous study, we obtained a petal degeneration mutant (pdm) from the 'FT' doubled haploid line of Chinese cabbage and found that the candidate gene for pdm, Bra040093, encodes the enzyme acyl-CoA oxidase1. In this study, we sought to examine the gene networks regulating petal development in pdm plants. We show that the mRNA and protein expression of Bra040093, which is involved in the jasmonic acid (JA) biosynthetic pathway, were significantly lower in the petals of pdm plants than in those of 'FT' plants. Similarly, the JA and methyl jasmonate (MeJA) contents of petals were significantly lower in pdm plants than in 'FT' plants and we found that exogenous application of these hormones to the inflorescences of pdm plants restored the 'FT' phenotype. Comparative analyses of the transcriptomes of 'FT', pdm and pdm + JA (pJA) plants revealed 10,160 differentially expressed genes (DEGs) with consistent expression tendencies in 'FT' vs. pdm and pJA vs. pdm comparisons. Among these DEGs, we identified 69 DEGs related to floral organ development, 11 of which are involved in petal development regulated by JA. On the basis of qRT-PCR verification, we propose regulatory pathways whereby JA may mediate petal development in the pdm mutant. We demonstrate that mutation of Bra040093 in pdm plants leads to reduced JA levels and that this in turn promotes changes in the expression of genes that are expressed in response to JA, ultimately resulting in petal degeneration. These findings thus indicate that JA is associated with petal development in Chinese cabbage. These results enhance our knowledge on the molecular mechanisms underlying petal development and lay the foundations for further elucidation of the mechanisms associated with floral organ development in Chinese cabbage.


Assuntos
Brassica/enzimologia , Brassica/genética , Ciclopentanos/metabolismo , Flores/enzimologia , Mutação/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Acetatos/metabolismo , Acetatos/farmacologia , Brassica/efeitos dos fármacos , Brassica/crescimento & desenvolvimento , Ciclopentanos/farmacologia , Flores/anatomia & histologia , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Oxilipinas/farmacologia , Fenótipo , Proteínas de Plantas/metabolismo
4.
Environ Pollut ; 251: 45-55, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31071632

RESUMO

Hydrogen gas (H2) has been shown as an important factor in plant tolerance to abiotic stresses, but the underlying mechanisms remain unclear. In the present study, the effects of H2 and its interaction with nitric oxide (NO) on alleviating cadmium (Cd) stress in Brassica campestris seedlings were investigated. NO donor (SNP) or hydrogen-rich water (HRW) treatment showed a significant improvement in growth of Cd-stressed seedlings. Cd treatment upregulated both endogenous NO and H2 (36% and 66%, respectively), and the increase of H2 was prior to NO increase. When treated with NO scavenger (PTIO) or NO biosynthesis enzyme inhibitors (L-NAME and Gln), HRW-induced alleviation under Cd stress was prevented. Under Cd stress, HRW pretreatment significantly enhanced the NO accumulation, and together up-regulated the activity of NR (nitrate reductase) and expression of NR. HRW induced lower reactive oxygen species (ROS), higher AsA content, enhanced activity of POD (peroxidase) and SOD (superoxide dismutase) in seedling roots were inhibited by PTIO, L-NAME and Gln. Through proteomic analysis, the level of 29 proteins were changed in response to H2 and NO-induced amelioration of Cd stress. Nearly half of them were involved in oxidation-reduction processes (about 20%) or antioxidant enzymes (approximately 20%). These results strongly indicate that in Cd-stressed seedlings, pretreatment with HRW induces the accumulation of H2 (biosynthesized or permeated), which further stimulates the biosynthesis of NO through the NR pathway. Finally, H2 and NO together enhance the antioxidant capabilities of seedlings in response to Cd toxicity.


Assuntos
Antioxidantes/metabolismo , Brassica/efeitos dos fármacos , Cádmio/toxicidade , Hidrogênio/farmacologia , Óxido Nítrico/biossíntese , Poluentes do Solo/toxicidade , Brassica/enzimologia , Brassica/metabolismo , Cádmio/metabolismo , Doadores de Óxido Nítrico/farmacologia , Oxirredução , Proteômica , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/metabolismo , Poluentes do Solo/metabolismo , Regulação para Cima/efeitos dos fármacos
5.
Ecotoxicol Environ Saf ; 180: 179-184, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31082582

RESUMO

Selenium (Se) and zinc (Zn) are necessary mineral nutrients for human body but millions of people have an inadequate intake of them, and eat food enriched with Se and Zn may minimize these problems. Chinese cabbage is an important food in people's daily life. The aim of this study was to evaluate the effects of single Se, Zn and their combination treatment in soil on their accumulation, antioxidant system and lipid peroxidation in roots and leaves of Chinese cabbage using soil pot culture experiment. When 0.5 mg kg-1 Se +30 mg kg-1 Zn and 1.0 mg kg-1 Se +30 mg kg-1 Zn were spiked in soils, Zn concentrations in roots and leaves of Chinese cabbage were significantly increased (p < 0.05) by 20.2%, 37.8% and 17.9%, 34.1% respectively compared to the treatment of 30 mg kg-1 Zn added, and the latter was significantly higher (p < 0.05) than that of former, indicating Se significantly promoted Zn accumulation. Almost all physiological indexes including POD, SOD, CAT, APX, GR, Chlorophyll a, Chlorophyll b, Carotenoids, MDA and Free proline in the treatments of Se or Zn spiked were significantly improved (p < 0.05) or basically unaffected compared to the control without Se or Zn added. The biomass change trends were similar with these indexes either. These results showed that the addition in soil of Se and Zn significantly increased their accumulation in Chinese cabbage without affected its formal growth. Particularly, the addition of Se promoted Zn accumulation. The conclusions were more important reference for the production practice of cash crop enriched of Se and Zn either.


Assuntos
Brassica/efeitos dos fármacos , Selênio/farmacologia , Solo , Zinco/metabolismo , Antioxidantes/metabolismo , Brassica/enzimologia , Brassica/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Selênio/metabolismo
6.
Environ Pollut ; 249: 716-727, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30933769

RESUMO

Understanding the chemical response and characteristics of bacterial communities in soil is critical to evaluate the effects of selenium (Se) supplement on plant growth and chromium (Cr)/Se uptake in Cr contaminated soil. The rhizosphere soil characteristics of pak choi (Brassica campestris L. ssp. Chinensis Makino) were investigated in soil contaminated with different levels and forms of Cr when supplemented with Se. Although inhibition of plant growth caused by Cr stress was not completely alleviated by Se, Cr content in plant tissues decreased in Cr(VI)120Se5 treatment (Cr(VI): 120 mg kg-1 soil; Se: 5 mg kg-1 soil) and its bioavailability in soil decreased in Cr(III)200Se5 (Cr(III): 200 mg kg-1 soil; Se: 5 mg kg-1 soil) treatment. Moreover, antagonism of Cr and Se on soil enzyme activities and bacterial communities were revealed. Notably, results of Cr(VI) reduction and Se metabolism functional profiles confirmed that bacterial communities play a critical role in regulating Cr/Se bioavailability. Additionally, the increases of Se bioavailability in Cr contaminated soil were ascribed to oxidation of Cr(VI) and reduction of Se reductases proportions, as well as the enhancing of pH in soil. These findings reveal that Se has the potential capacity to sustain the stability of microdomain in Cr contaminated soil.


Assuntos
Brassica/enzimologia , Cromo/análise , Rizosfera , Selênio/farmacologia , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Disponibilidade Biológica , Transporte Biológico , Brassica/metabolismo , Cromo/metabolismo , Selênio/metabolismo , Poluentes do Solo/metabolismo
7.
Plant Cell Physiol ; 60(2): 421-435, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462304

RESUMO

Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nt that are distributed widely in organisms and play many physiological roles. The BoNR8 lncRNA is a 272 nt long transcript yielded by RNA polymerase III in cabbage that was identified as the closest homolog of the AtR8 lncRNA in Arabidopsis. The BoNR8 lncRNA was expressed extensively in the epidermal tissue in the root elongation zone of germinated seeds, and its accumulation was induced by abiotic stresses, auxins and ABA. To investigate the correlation between the BoNR8 lncRNA and germination, BoNR8-overexpressing Arabidopsis plants (BoNR8-AtOX) were prepared. Three independent BoNR8-AtOX lines showed less primary root elongation, incomplete silique development and decreased germination rates. The germination efficiencies were affected strongly by ABA and slightly by salt stress, and ABA-related gene expression was changed in the BoNR8-AtOX lines.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Brassica/genética , Germinação , Proteínas de Plantas/fisiologia , RNA Polimerase III/fisiologia , RNA Longo não Codificante/fisiologia , Sementes/genética , Arabidopsis/genética , Brassica/enzimologia , Brassica/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Polimerase III/metabolismo , RNA Longo não Codificante/genética
8.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373125

RESUMO

The activities of pectin methylesterases (PMEs) are regulated by pectin methylesterase inhibitors (PMEIs), which consequently control the pectin methylesterification status. However, the role of PMEI genes in Brassica oleracea, an economically important vegetable crop, is poorly understood. In this study, 95 B. oleracea PMEI (BoPMEI) genes were identified. A total of 77 syntenic ortholog pairs and 10 tandemly duplicated clusters were detected, suggesting that the expansion of BoPMEI genes was mainly attributed to whole-genome triplication (WGT) and tandem duplication (TD). During diploidization after WGT, BoPMEI genes were preferentially retained in accordance with the gene balance hypothesis. Most homologous gene pairs experienced purifying selection with ω (Ka/Ks) ratios lower than 1 in evolution. Five stamen-specific BoPMEI genes were identified by expression pattern analysis. By combining the analyses of expression and evolution, we speculated that nonfunctionalization, subfunctionalization, neofunctionalization, and functional conservation can occur in the long evolutionary process. This work provides insights into the characterization of PMEI genes in B. oleracea and contributes to the further functional studies of BoPMEI genes.


Assuntos
Brassica/genética , Hidrolases de Éster Carboxílico/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Brassica/enzimologia , Diploide , Evolução Molecular , Duplicação Gênica , Família Multigênica , Transcriptoma
9.
Molecules ; 23(9)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200303

RESUMO

Myrosinase is an enzyme present in many functional foods and spices, particularly in Cruciferous vegetables. It hydrolyses glucosinolates which thereafter rearrange into bioactive volatile constituents (isothiocyanates, nitriles). We aimed to develop a simple reversible method for on-gel detection of myrosinase. Reagent composition and application parameters for native PAGE and SDS-PAGE gels were optimized. The proposed method was successfully applied to detect myrosinase (or sulfatase) on-gel: the detection solution contains methyl red which gives intensive red bands where the HSO4- is enzymatically released from the glucosinolates. Subsequently, myrosinase was successfully distinguished from sulfatase by incubating gel bands in a derivatization solution and examination by LC-ESI-MS: myrosinase produced allyl isothiocyanate (detected in conjugate form) while desulfo-sinigrin was released by sulfatase, as expected. After separation of 80 µg protein of crude extracts of Cruciferous vegetables, intensive color develops within 10 min. On-gel detection was found to be linear between 0.031⁻0.25 U (pure Sinapis alba myrosinase, R² = 0.997). The method was successfully applied to detection of myrosinase isoenzymes from horseradish, Cruciferous vegetables and endophytic fungi of horseradish as well. The method was shown to be very simple, rapid and efficient. It enables detection and partial characterization of glucosinolate decomposing enzymes without protein purification.


Assuntos
Bioquímica/métodos , Glicosídeo Hidrolases/análise , Brassica/enzimologia , Misturas Complexas , Glucosinolatos/química , Glucosinolatos/metabolismo , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray , Sulfatases/metabolismo
10.
Ecotoxicol Environ Saf ; 166: 157-164, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30267988

RESUMO

Silicon (Si) and selenium (Se) are beneficial for many higher plants when grown on stress conditions. However, the mechanisms underlying the differential effects between foliar Si and Se in alleviation of plant toxicity exposed to cadmium (Cd) stress are remained unclear. In this study, we investigated the discrepant mechanisms of foliar Si and Se on Cd absorption and compartmentation by roots, its translocation in xylem, and the antioxidant system within Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis) under low and high Cd stress. Results showed that plant growth was significantly enhanced by foliar additions of Si or/and Se according to an increased plant tissue biomass at high Cd exposure. In addition, the foliar coupled addition of Si and Se showed little effects on the concentrations of Si or Se in plant tissues in comparison with the single addition of foliar Si or Se respectively. The foliar Si alone or combined with Se markedly reduced the Cd concentrations in plant shoots under two Cd treatments. This might be explained by the lower Cd concentrations in symplast and apoplast and the higher Cd concentrations in cell walls of plant roots, and the lower Cd concentrations in xylem sap. However, no great changes in these values were observed under the treatments of foliar Se alone. Moreover, the foliar additions of Si or/and Se all increased the antioxidant enzyme activities of SOD, CAT and APX in plant tissues, especially at high Cd dosage. No significant differences in the increasing degrees of these three antioxidant enzymes were found between the foliar Si and Se treatments. However, only the foliar Se alone or combined with Si markedly promoted the antioxidant enzyme activities of GR and DHAR in plant tissues. Our findings demonstrate that the alleviation of Cd toxicity by foliar Si maybe mainly responsible for inhibition of Cd absorption and its translocation to plant shoots, reinforcing its compartmentation into root cell walls, whilst enhancing the antioxidant enzyme system may be employed by foliar Se.


Assuntos
Brassica/metabolismo , Cádmio/farmacocinética , Selênio/farmacologia , Silício/farmacologia , Absorção Fisiológica , Antioxidantes/metabolismo , Transporte Biológico , Biomassa , Brassica/enzimologia , Brassica/crescimento & desenvolvimento , Parede Celular/metabolismo , Brotos de Planta/metabolismo , Xilema/metabolismo
11.
Food Chem ; 269: 96-102, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30100490

RESUMO

Five Brassicaceae sprouts (white cabbage, kale, broccoli, Chinese cabbage, arugula) were comparatively analyzed based on phytochemicals (polyphenols, glucosinolates, carotenoids, chlorophylls, ascorbic acid) content and accompanying enzymes associated with phytochemical stability and bioavailability (peroxidases, myrosinase, and polyphenol-oxidase) that consequently impact food quality. Significantly high content of polyphenols and glucosinolates, as well as a high antioxidant activity were found in white cabbage, followed by kale sprouts. In addition, white cabbage contained higher amount of fibers and lower polyphenol-oxidase activity which potentially indicates prevention of browning and consequently better sprout quality. Arugula and broccoli showed higher activity of myrosinase that may result in higher bioavailability of active glucosinolates forms. According to our data, sprouts are cheap, easy- and fast-growing source of phytochemicals but also they are characterized by different endogenous enzymes activity. Consequently, this parameter should also be taken into consideration in the studies related to the health benefits of the plant-based food.


Assuntos
Brassica/química , Brassica/enzimologia , Qualidade dos Alimentos , Compostos Fitoquímicos/análise , Disponibilidade Biológica , Catecol Oxidase/metabolismo , Análise de Alimentos , Glucosinolatos , Glicosídeo Hidrolases/metabolismo , Humanos , Peroxidases/metabolismo , Compostos Fitoquímicos/farmacocinética
12.
Plant Signal Behav ; 13(5): e1467698, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29944433

RESUMO

Phosphoglucomutases (PGM) (5.4.2.2.) belong to the Phosphohexomutases superfamily and are highly specific in catalyzing the interconversion of Glc-1-P to Glc-6-P. In this study, we characterize the expression and activity of two cytosolic PGMs (cPGM2 and cPGM3) stigmas of ornamental kale during flower development. In stigmas, cPGM expression and activity showed a gradual increase during stigma development with the highest activity around the time of anthesis. Blocking of cPGM activity in the stigmas using a known inhibitor, resulted in breakdown of self-incompatibility in immature S3 and S4 stigmas, but had no effect on the fully mature S5 stigmas. It is likely that cPGMs are required for accumulation of factors necessary for SI response in mature stigmas.


Assuntos
Brassica/enzimologia , Brassica/metabolismo , Flores/enzimologia , Flores/metabolismo , Fosfoglucomutase/metabolismo , Proteínas de Plantas/metabolismo , Brassica/genética , Flores/genética , Fosfoglucomutase/genética , Proteínas de Plantas/genética
13.
Nutrients ; 10(6)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890681

RESUMO

Dietary broccoli is anti-inflammatory. Past studies have typically investigated raw broccoli, even though most consumers prefer cooked broccoli, where the plant myrosinase is inactivated by heat, resulting in failure of formation of the anti-inflammatory bioactive compound sulforaphane (SF). This study compareed efficacy of lightly cooked broccoli (CB) containing greatly diminished myrosinase activity, with raw broccoli (RB), in mitigating colitis in dextran sulfate sodium (DSS)-treated mice. Male C57BL/6 mice were fed for two weeks on a 10% RB, 10% CB or control diet, all based on the AIN-93M diet. Half (n = 9) of each group received drinking water, half received 2.5% DSS in water for one week, starting from Day 7 of the diet. Even with far less plant myrosinase activity, CB was essentially as effective as RB in lessening damage by DSS, evidenced by decreased disease activity index, attenuated colon length shrinkage, less endotoxin (lipopolysaccharide) leakage into blood, and less severe colon lesions as assessed by histopathology. mRNA expression of pro-inflammatory cytokines indicated that broccoli anti-inflammatory action may be through inhibition of the IL-6 trans-signaling pathway, as evidenced by reversal of the DSS-increased expression of IL-6, CCR2 and vascular cell adhesion molecule 1 (VCAM-1).


Assuntos
Brassica , Colite/prevenção & controle , Colo , Culinária , Sulfato de Dextrana , Animais , Brassica/enzimologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Estabilidade Enzimática , Glicosídeo Hidrolases/metabolismo , Temperatura Alta , Hidrólise , Interleucina-6/metabolismo , Isotiocianatos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Permeabilidade , Desnaturação Proteica , Receptores CCR2/metabolismo , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
Int J Mol Sci ; 19(5)2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29724020

RESUMO

Pectin methylesterase inhibitor genes (PMEIs) are a large multigene family and play crucial roles in cell wall modifications in plant growth and development. Here, a comprehensive analysis of the PMEI gene family in Brassicacampestris, an important leaf vegetable, was performed. We identified 100 BrassicacampestrisPMEI genes (BcPMEIs), among which 96 BcPMEIs were unevenly distributed on 10 chromosomes and nine tandem arrays containing 20 BcPMEIs were found. We also detected 80 pairs of syntenic PMEI orthologs. These findings indicated that whole-genome triplication (WGT) and tandem duplication (TD) were the main mechanisms accounting for the current number of BcPMEIs. In evolution, BcPMEIs were retained preferentially and biasedly, consistent with the gene balance hypothesis and two-step theory, respectively. The molecular evolution analysis of BcPMEIs manifested that they evolved through purifying selection and the divergence time is in accordance with the WGT data of B. campestris. To obtain the functional information of BcPMEIs, the expression patterns in five tissues and the cis-elements distributed in promoter regions were investigated. This work can provide a better understanding of the molecular evolution and biological function of PMEIs in B. campestris.


Assuntos
Brassica/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassica/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/classificação , Análise de Sequência de DNA , Análise de Sequência de Proteína , Sintenia , Sequências de Repetição em Tandem/genética
15.
Ying Yong Sheng Tai Xue Bao ; 29(1): 213-222, 2018 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-29692030

RESUMO

A novel glutathione reductase gene (GR2) was isolated from Brassica campestris Longyou 6 by rapid isolation of cDNA ends (RACE). The full-length of cDNA of GR2 was 2073 bp, with an open reading frame (ORF) of 1692 bp. GR2 encoded a protein of 563 amino acids with a deduced molecular mass of about 60.7 kDa and an isoelectric point of 7.9. The real-time quantitative PCR results showed that GR2 was expressed in the roots, stems and leaves in B. campestris, among which the expression of GR2 in leaves was the highest. The transcript levels of GR1 and GR2, and the enzyme activity of glutathione reductase (GR) increased in response to cold temperature, high temperature, drought stress, and salt stress. The results suggested that GR played an important role in coping with diverse stresses in B. campestris. When abscisic acid (ABA) pretreatment was applied before cold temperature, high temperature, drought stress, salt stress, the expression levels of GR1and GR2, and the activity level of GR all significantly increased compared with the single stress, which indicated that ABA could induce GR1 and GR2 gene transcription and GR activity. However, when MAPKK inhibitor (U0126) pretreatment was applied before the above stresses, the expression levels of GR1and GR2 and the activity level of GR significantly decreased compared with the single stress suggesting that U0126 inhibited GR1 and GR2 gene transcription and GR activity.


Assuntos
Brassica/enzimologia , Regulação da Expressão Gênica de Plantas , Glutationa Redutase/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Clonagem Molecular , Glutationa Redutase/genética , Salinidade , Temperatura
16.
Food Chem ; 254: 87-94, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29548477

RESUMO

Myrosinase is a glycosylated enzyme present in the Brassicaceae family that catalyzes the hydrolysis of glucoraphanin to yield sulforaphane, recognized as a health-promoting compound found in cruciferous foods. Broccoli myrosinase has been poorly characterized. In this work, the enzyme was purified from broccoli florets and its kinetic behaviour was analyzed. The cDNA of broccoli myrosinase was isolated and sequenced to obtain the amino acids sequence of the enzyme. A three-dimensional structural model of a broccoli myrosinase subunit was built and used to perform molecular docking simulations with glucoraphanin and other glucosinolates. Kinetic data were adjusted to the Two-Binding Sites Model that describes substrate inhibition, obtaining R2 higher than 97%. The docking simulations confirmed the existence of two substrate-binding sites in the monomer, and allowed identifying the residues that interact with the substrate in each site. Our findings will help to design strategies to better exploit the health-promoting properties of broccoli.


Assuntos
Brassica/enzimologia , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , DNA Complementar/química , DNA Complementar/isolamento & purificação , Glicosídeo Hidrolases/genética , Humanos , Hidrólise , Imidoésteres/metabolismo , Isotiocianatos/metabolismo , Cinética , Simulação de Acoplamento Molecular
17.
Sci Rep ; 8(1): 1875, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382843

RESUMO

In plants, UGTs (UDP-glycosyltransferases) glycosylate various phytohormones and metabolites in response to biotic and abiotic stresses. Little is known about stress-responsive glycosyltransferases in plants. Therefore, it is important to understand the genomic and transcriptomic portfolio of plants with regard to biotic and abiotic stresses. Here, we identified 140, 154, and 251 putative UGTs in Brassica rapa, Brassica oleracea, and Brassica napus, respectively, and clustered them into 14 major phylogenetic groups (A-N). Fourteen major KEGG pathways and 24 biological processes were associated with the UGTs, highlighting them as unique modulators against environmental stimuli. Putative UGTs from B. rapa and B. oleracea showed a negative selection pressure and biased gene fractionation pattern during their evolution. Polyploidization increased the intron proportion and number of UGT-containing introns among Brassica. The putative UGTs were preferentially expressed in developing tissues and at the senescence stage. Differential expression of up- and down-regulated UGTs in response to phytohormone treatments, pathogen responsiveness and abiotic stresses, inferred from microarray and RNA-Seq data in Arabidopsis and Brassica broaden the glycosylation impact at the molecular level. This study identifies unique candidate UGTs for the manipulation of biotic and abiotic stress pathways in Brassica and Arabidopsis.


Assuntos
Arabidopsis/genética , Brassica/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Glicosiltransferases/genética , Reguladores de Crescimento de Planta/metabolismo , Estresse Fisiológico , Arabidopsis/enzimologia , Brassica/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosilação , Glicosiltransferases/metabolismo , Filogenia
18.
Molecules ; 23(1)2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361797

RESUMO

Protein post-translational modification by phosphorylation is essential for the activity and stability of proteins in higher plants and underlies their responses to diverse stimuli. There are more than 300 leucine-rich repeat receptor-like kinases (LRR-RLKs), a major group of receptor-like kinases (RLKs) that plays an important role in growth, development, and biotic stress responses in higher plants. To analyze auto- and transphosphorylation patterns and kinase activities in vitro, 43 full-length complementary DNA (cDNA) sequences were cloned from genes encoding LRR-RLKs. Autophosphorylation activity was found in the cytoplasmic domains (CDs) of 18 LRR-RLKs; 13 of these LRR-RLKs with autophosphorylation activity showed transphosphorylation in Escherichiacoli. BRI1-Associated Receptor Kinase (BAK1), which is critically involved in the brassinosteroid and plant innate immunity signal transduction pathways, showed strong auto- and transphosphorylation with multi-specific kinase activity within 2 h of induction of Brassica oleraceae BAK1-CD (BoBAK1-CD) in E. coli; moreover, the carboxy-terminus of LRR-RLKs regulated phosphorylation and kinase activity in Arabidopsis thaliana and vegetative crops.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Brassica/enzimologia , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/genética , Biologia Computacional/métodos , Mutação , Fosforilação , Filogenia , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
19.
Plant Cell Environ ; 41(5): 1186-1200, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28425127

RESUMO

Crop plants face a multitude of diverse abiotic and biotic stresses in the farmers' fields. Although there now exists a considerable knowledge of the underlying mechanisms of response to individual stresses, the crosstalk between response pathways to various abiotic and biotic stresses remains enigmatic. Here, we investigated if the cytotoxic metabolite methylglyoxal (MG), excess of which is generated as a common consequence of many abiotic and biotic stresses, may serve as a key molecule linking responses to diverse stresses. For this, we generated transgenic rice plants overexpressing the entire two-step glyoxalase pathway for MG detoxification. Through assessment of various morphological, physiological and agronomic parameters, we found that glyoxalase-overexpression imparts tolerance towards abiotic stresses like salinity, drought and heat and also provides resistance towards damage caused by the sheath blight fungus (Rhizoctonia solani) toxin phenylacetic acid. We show that the mechanism of observed tolerance of the glyoxalase-overexpressing plants towards these diverse abiotic and biotic stresses involves improved MG detoxification and reduced oxidative damage leading to better protection of chloroplast and mitochondrial ultrastructure and maintained photosynthetic efficiency under stress conditions. Together, our findings indicate that MG may serve as a key link between abiotic and biotic stress response in plants.


Assuntos
Lactoilglutationa Liase/metabolismo , Oryza/fisiologia , Aldeído Pirúvico/metabolismo , Tioléster Hidrolases/metabolismo , Antioxidantes/metabolismo , Brassica/enzimologia , Brassica/genética , Morte Celular , Cloroplastos/ultraestrutura , Secas , Expressão Gênica , Temperatura Alta , Lactoilglutationa Liase/genética , Mitocôndrias/ultraestrutura , Oryza/enzimologia , Oryza/genética , Oryza/ultraestrutura , Fenilacetatos/toxicidade , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Aldeído Pirúvico/análise , Salinidade , Estresse Fisiológico , Tioléster Hidrolases/genética
20.
J Agric Food Chem ; 65(39): 8538-8543, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28877584

RESUMO

Modified atmosphere packaging and controlled atmosphere storage (hypoxia conditions) extend shelf lives of horticultural products by depressing the O2 uptake rate. We investigated the relationship between atmospheres and alternative oxidase (AOX) to cytochrome c oxidase (COX) activities (on the basis of oxygen isotope discrimination) and the relative amounts of two respiratory enzymes, AOX and COX, during the early stage of storage. Broccoli florets, with high O2 uptake rates, were stored under hypoxia and normoxia at 25 °C. O2 uptake rates, weight loss, and yellowing of broccoli florets were significantly lower when stored under hypoxia than when stored under normoxia. Significantly more AOX proteins were produced during storage under normoxia, but COX proteins were more consistent than those of AOX proteins. Hypoxia may depress the expression of AOX and prolong the shelf life. Oxygen isotope discrimination was elevated under hypoxia after 50.5 h. AOX production in broccoli was controlled more by changing atmospheres than by COX.


Assuntos
Brassica/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Oxigênio/análise , Consumo de Oxigênio , Isótopos de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA