Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.357
Filtrar
1.
J Sci Food Agric ; 102(1): 417-424, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34143904

RESUMO

BACKGROUND: Thiamethoxam is widely used to control pests in Chinese kale, popularly consumed leafy vegetables. The potential risk to the environment and human health has aroused much public concern. Therefore, it is important to investigate the degradation behavior, residue distribution and dietary risk assessment of thiamethoxam in Chinese kale. RESULTS: A sensitive analytical method for determination of thiamethoxam and its metabolite clothianidin residue in Chinese kale was established and validated through a quick, easy, cheap, effective, rugged, and safe (QuEChERS) technique with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The recoveries were 85.4-101.2% for thiamethoxam and 79.5-108.1% for clothianidin, with the relative standard deviations (RSDs) of 0.9-10.2% and 1.8-6.0%, respectively. For the dissipation kinetics, the data showed that thiamethoxam in Chinese kale was degraded with the half-lives of 4.1 to 4.5 days. In the terminal residue experiments, the residues of thiamethoxam were 0.017-0.357 mg kg-1 after application 2-3 times with a preharvest interval (PHI) of 7 days under the designed dosages. The chronic and acute dietary exposure assessment risk quotient (RQ) values of thiamethoxam in Chinese kale for different Chinese consumers were 0.08-0.19% and 0.05-0.12%, respectively, and those of clothianidin were 0.01-0.04% and 0.02-0.04%, respectively, all of the RQ values were lower than 100%. CONCLUSION: Thiamethoxam in Chinese kale was rapidly degraded following first-order kinetics models. The dietary risk of thiamethoxam and clothianidin through Chinese kale was negligible to consumers. The results from this study are important reference for Chinese governments to developing criteria for the safe and rational use of thiamethoxam, setting maximum residue levels (MRLs), monitoring the quality safety of agricultural products and protecting consumer health. © 2021 Society of Chemical Industry.


Assuntos
Brassica/química , Cromatografia Líquida/métodos , Guanidinas/metabolismo , Neonicotinoides/metabolismo , Resíduos de Praguicidas/química , Resíduos de Praguicidas/metabolismo , Espectrometria de Massas em Tandem/métodos , Tiametoxam/química , Tiametoxam/metabolismo , Tiazóis/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brassica/metabolismo , Criança , Pré-Escolar , China , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Feminino , Contaminação de Alimentos/análise , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Medição de Risco , Verduras/química , Verduras/metabolismo , Adulto Jovem
2.
J Sci Food Agric ; 102(1): 198-205, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34061358

RESUMO

BACKGROUND: Kale and arugula are leafy green vegetables whose sensory properties have not been extensively explored. The objective was to assess the sensory properties and consumer acceptability of commercially available kale and arugula while also discovering drivers of consumer liking and barriers to consumer acceptance. Descriptive analysis and consumer testing were completed. The trained panellists (n = 11) were trained for 15 h to evaluate 11 sensory properties relating to the aroma, taste and texture of the kale and arugula. The consumer testing (n = 108) evaluated the leafy greens for overall liking and their liking of taste, aroma, texture and appearance. RESULTS: Results were analyzed using ANOVA, Tukey's HSD and external preference mapping. Approximately half of the attributes for the kale samples were found to be significantly different. Similarly, significant differences in sensory properties were found in most of the arugula samples. Consumers liked the kale and arugula varieties that were sweet and nutty. Also, they preferred arugula that was described as spicy. CONCLUSION: The majority of consumers preferred sweet and nutty leafy greens. Organic growing methods did not affect consumer liking; however, organic labels do positively affect hedonic ratings of a consumer's overall liking of the product. This study also identified that 'Baby' leafy greens are well liked by consumers, and this area of produce should be expanded. © 2021 Society of Chemical Industry.


Assuntos
Brassica/metabolismo , Brassicaceae/metabolismo , Comportamento do Consumidor , Odorantes/análise , Brassica/química , Brassica/economia , Brassicaceae/química , Preferências Alimentares , Humanos , Folhas de Planta/química , Folhas de Planta/metabolismo , Paladar
3.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34639187

RESUMO

Fenitrothion is an insecticide belonging to the organophosphate family of pesticides that is widely used around the world in agriculture and living environments. Today, it is one of the most hazardous chemicals that causes severe environmental pollution. However, detection of fenitrothion residues in the environment is considered a significant challenge due to the small molecule nature of the insecticide and lack of molecular recognition elements that can detect it with high specificity. We performed in vitro selection experiments using the SELEX process to isolate the DNA aptamers that can bind to fenitrothion. We found that newly discovered DNA aptamers have a strong ability to distinguish fenitrothion from other organophosphate insecticides (non-specific targets). Furthermore, we identified a fenitrothion-specific aptamer; FenA2, that can interact with Thioflavin T (ThT) to produce a label-free detection mode with a Kd of 33.57 nM (9.30 ppb) and LOD of 14 nM (3.88 ppb). Additionally, the FenA2 aptamer exhibited very low cross-reactivity with non-specific targets. This is the first report showing an aptamer sensor with a G4-quadruplex-like structure to detect fenitrothion. Moreover, these aptamers have the potential to be further developed into analytical tools for real-time detection of fenitrothion from a wide range of samples.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Brassica/metabolismo , Fenitrotion/análise , Inseticidas/análise , Extratos Vegetais/análise , Técnica de Seleção de Aptâmeros/métodos , Brassica/efeitos dos fármacos , Fenitrotion/toxicidade , Inseticidas/toxicidade
4.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638781

RESUMO

Cabbage (Brassica oleracea L. var. capitata L.) is an important vegetable crop cultivated around the world. Previous studies of cabbage gene transcripts were primarily based on next-generation sequencing (NGS) technology which cannot provide accurate information concerning transcript assembly and structure analysis. To overcome these issues and analyze the whole cabbage transcriptome at the isoform level, PacBio RS II Single-Molecule Real-Time (SMRT) sequencing technology was used for a global survey of the full-length transcriptomes of five cabbage tissue types (root, stem, leaf, flower, and silique). A total of 77,048 isoforms, capturing 18,183 annotated genes, were discovered from the sequencing data generated through SMRT. The patterns of both alternative splicing (AS) and alternative polyadenylation (APA) were comprehensively analyzed. In total, we detected 13,468 genes which had isoforms containing APA sites and 8978 genes which underwent AS events. Moreover, 5272 long non-coding RNAs (lncRNAs) were discovered, and most exhibited tissue-specific expression. In total, 3147 transcription factors (TFs) were detected and 10 significant gene co-expression network modules were identified. In addition, we found that Fusarium wilt, black rot and clubroot infection significantly influenced AS in resistant cabbage. In summary, this study provides abundant cabbage isoform transcriptome data, which promotes reannotation of the cabbage genome, deepens our understanding of their post-transcriptional regulation mechanisms, and can be used for future functional genomic research.


Assuntos
Processamento Alternativo , Brassica , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Transcriptoma , Brassica/genética , Brassica/metabolismo
5.
BMC Plant Biol ; 21(1): 404, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488625

RESUMO

BACKGROUND: Brassica carinata (A) Braun has recently gained increased attention across the world as a sustainable biofuel crop. B. carinata is grown as a summer crop in many regions where high temperature is a significant stress during the growing season. However, little research has been conducted to understand the mechanisms through which this crop responds to high temperatures. Understanding traits that improve the high-temperature adaption of this crop is essential for developing heat-tolerant varieties. This study investigated lipid remodeling in B. carinata in response to high-temperature stress. A commercial cultivar, Avanza 641, was grown under sunlit-controlled environmental conditions in Soil-Plant-Atmosphere-Research (SPAR) chambers under optimal temperature (OT; 23/15°C) conditions. At eight days after sowing, plants were exposed to one of the three temperature treatments [OT, high-temperature treatment-1 (HT-1; 33/25°C), and high-temperature treatment-2 (HT-2; 38/30°C)]. The temperature treatment period lasted until the final harvest at 84 days after sowing. Leaf samples were collected at 74 days after sowing to profile lipids using electrospray-ionization triple quadrupole mass spectrometry. RESULTS: Temperature treatment significantly affected the growth and development of Avanza 641. Both high-temperature treatments caused alterations in the leaf lipidome. The alterations were primarily manifested in terms of decreases in unsaturation levels of membrane lipids, which was a cumulative effect of lipid remodeling. The decline in unsaturation index was driven by (a) decreases in lipids that contain the highly unsaturated linolenic (18:3) acid and (b) increases in lipids containing less unsaturated fatty acids such as oleic (18:1) and linoleic (18:2) acids and/or saturated fatty acids such as palmitic (16:0) acid. A third mechanism that likely contributed to lowering unsaturation levels, particularly for chloroplast membrane lipids, is a shift toward lipids made by the eukaryotic pathway and the channeling of eukaryotic pathway-derived glycerolipids that are composed of less unsaturated fatty acids into chloroplasts. CONCLUSIONS: The lipid alterations appear to be acclimation mechanisms to maintain optimal membrane fluidity under high-temperature conditions. The lipid-related mechanisms contributing to heat stress response as identified in this study could be utilized to develop biomarkers for heat tolerance and ultimately heat-tolerant varieties.


Assuntos
Brassica/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Folhas de Planta/metabolismo , Estresse Fisiológico , Temperatura Alta
6.
BMC Genomics ; 22(1): 687, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551703

RESUMO

BACKGROUND: Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. RESULTS: According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. CONCLUSIONS: Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Temperatura , Transcriptoma
7.
BMC Plant Biol ; 21(1): 438, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583634

RESUMO

BACKGROUND: Chlorophyll (Chl) is a vital photosynthetic pigment involved in capturing light energy and energy conversion. In this study, the color conversion of inner-leaves from green to yellow in the new wucai (Brassica campestris L.) cultivar W7-2 was detected under low temperature. The W7-2 displayed a normal green leaf phenotype at the seedling stage, but the inner leaves gradually turned yellow when the temperature was decreased to 10 °C/2 °C (day/night), This study facilitates us to understand the physiological and molecular mechanisms underlying leaf color changes in response to low temperature. RESULTS: A comparative leaf transcriptome analysis of W7-2 under low temperature treatment was performed on three stages (before, during and after leaf color change) with leaves that did not change color under normal temperature at the same period as a control. A total of 67,826 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analysis revealed that the DEGs were mainly enriched in porphyrin and Chl metabolism, carotenoids metabolism, photosynthesis, and circadian rhythm. In the porphyrin and chlorophyll metabolic pathways, the expression of several genes was reduced [i.e. magnesium chelatase subunit H (CHLH)] under low temperature. Almost all genes [i.e. phytoene synthase (PSY)] in the carotenoids (Car) biosynthesis pathway were downregulated under low temperature. The genes associated with photosynthesis [i.e. photosystem II oxygen-evolving enhancer protein 1 (PsbO)] were also downregulated under LT. Our study also showed that elongated hypocotyl5 (HY5), which participates in circadian rhythm, and the metabolism of Chl and Car, is responsible for the regulation of leaf color change and cold tolerance in W7-2. CONCLUSIONS: The color of inner-leaves was changed from green to yellow under low temperature in temperature-sensitive mutant W7-2. Physiological, biochemical and transcriptomic studies showed that HY5 transcription factor and the downstream genes such as CHLH and PSY, which regulate the accumulation of different pigments, are required for the modulation of leaf color change in wucai under low temperature.


Assuntos
Brassica/genética , Brassica/metabolismo , Clorofila/metabolismo , Resposta ao Choque Frio/fisiologia , Pigmentação/genética , Pigmentação/fisiologia , Folhas de Planta/metabolismo , Clorofila/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma
8.
BMC Plant Biol ; 21(1): 394, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418959

RESUMO

BACKGROUND: To understand the mechanism of glucosinolates (GSs) accumulation in the specific organs, combined analysis of physiological change and transcriptome sequencing were applied in the current study. Taking Chinese kale as material, seeds and silique walls were divided into different stages based on the development of the embryo in seeds and then subjected to GS analysis and transcriptome sequencing. RESULTS: The main GS in seeds of Chinese kale were glucoiberin and gluconapin and their content changed with the development of the seed. During the transition of the embryo from torpedo- to the early cotyledonary-embryo stage, the accumulation of GS in the seed was accompanied by the salient decline of GS in the corresponding silique wall. Thus, the seed and corresponding silique wall at these two stages were subjected to transcriptomic sequencing analysis. 135 genes related to GS metabolism were identified, of which 24 genes were transcription factors, 81 genes were related to biosynthetic pathway, 25 genes encoded catabolic enzymes, and 5 genes matched with transporters. The expression of GS biosynthetic genes was detected both in seeds and silique walls. The high expression of FMOGS-OX and AOP2, which is related to the production of gluconapin by side modification, was noted in seeds at both stages. Interestingly, the expression of GS biosynthetic genes was higher in the silique wall compared with that in the seed albeit lower content of GS existed in the silique wall than in the seed. Combined with the higher expression of transporter genes GTRs in silique walls than in seeds, it was proposed that the transportation of GS from the silique wall to the seed is an important source for seed GS accumulation. In addition, genes related to GS degradation expressed abundantly in the seed at the early cotyledonary-embryo stage indicating its potential role in balancing seed GS content. CONCLUSIONS: Two stages including the torpedo-embryo and the early cotyledonary-embryo stage were identified as crucial in GS accumulation during seed development. Moreover, we confirmed the transportation of GS from the silique wall to the seed and proposed possible sidechain modification of GS biosynthesis may exist during seed formation.


Assuntos
Brassica/genética , Brassica/metabolismo , Glucosinolatos/genética , Glucosinolatos/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
9.
Biomolecules ; 11(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34439856

RESUMO

The effects of elicitors on broccoli (Brassica oleracea L. var. Italica) and radish (Raphanus sativus L.) sprouts were evaluated. Seeds and then sprouts were soaked daily for 30 min over 6 days in water (control) or a mixture of FeEDTA and sodium silicate or sodium silicate alone. The contents of the flavonoids and phenolic acids (free, esters, and glycosides) were determined using HPLC-ESI-MS/MS. Phenolic compounds were released from the esters after acid hydrolysis and from the glycosides using alkaline hydrolysis. Quercetin, kaempferol, (‒)-epicatechin, naringenin, apigenin, and luteolin derivatives were found in broccoli and radish sprouts, while derivatives of iso-rhamnetin, orientin, and vitexin were not present at measurable levels. The flavonoid contents, especially derivatives of quercetin, were considerably higher in the broccoli sprouts than in the radish sprouts. The quantitatively major phenolic acid content in the sprouts of both species was found to be p-hydroxybenzoic acid. Its content in the radish sprouts was several times higher than in the broccoli sprouts. The total flavonoid content of broccoli sprouts was 507-734 µg/g DW, while that of the radish sprouts ranged from 155 µg/g DW to 211 µg/g DW. In contrast, total phenolic acids were higher in radish sprouts, ranging from 11,548 to 13,789 µg/g DW, while in broccoli sprouts, they ranged from 2652 to 4527 µg/g DW, respectively. These differences resulted radish sprouts having higher antioxidant activity compared to broccoli sprouts. The applied elicitors increased the content of the total phenolic acids and the antioxidant activity of radish and broccoli sprouts, while they decreased the level of the total flavonoids in broccoli sprouts.


Assuntos
Brassica/metabolismo , Ácido Edético/metabolismo , Polifenóis/biossíntese , Raphanus/metabolismo , Silicatos/metabolismo , Sementes/metabolismo
10.
J Photochem Photobiol B ; 222: 112263, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339994

RESUMO

The biosynthesis of polyphenolic compounds in cabbage waste, outer green leaves of white head cabbage (Brassica oleracea L. var. capitata subvar. alba), was stimulated by postharvest irradiation with UVB lamps or sunlight. Both treatments boosted the content of kaempferol and quercetin glycosides, especially in the basal leaf zone, as determined by the HPLC analysis of leaf extracts and by a non-destructive optical sensor. The destructive analysis of samples irradiated by the sun for 6 days at the end of October 2015 in Skierniewice (Poland) showed an increase of leaf flavonols by 82% with respect to controls. The treatment by a broadband UVB fluorescent lamp, with irradiance of 0.38 W m-2 in the 290-315 nm range (and 0.59 W m-2 in the UVA region) for 12 h per day at 17 °C along with a white light of about 20 µmol m-2 s-1, produced a flavonols increase of 58% with respect to controls. The kinetics of flavonols accumulation in response to the photochemical treatments was monitored with the FLAV non-destructive index. The initial FLAV rate under the sun was proportional to the daily radiation doses with a better correlation for the sun global irradiance (R2 = 0.973), followed by the UVA (R2 = 0.965) and UVB (R2 = 0.899) irradiance. The sunlight turned out to be more efficient than the UVB lamp in increasing the flavonols level of waste leaves, because of a significant role played by UVA and visible solar radiation in the regulation of the flavonoid accumulation in cabbage. The FLAV index increase induced on the adaxial leaf side was accompanied by a lower but still significant FLAV increase on the unirradiated abaxial side, likely due to a systemic signaling by mean of the long-distance movement of macromolecules. Our present investigation provides useful data for the optimization of postharvest photochemical protocols of cabbage waste valorization. It can represent a novel and alternative tool of vegetable waste management for the recovery of beneficial phytochemicals.


Assuntos
Brassica/efeitos da radiação , Luz , Brassica/química , Brassica/metabolismo , Clorofila/química , Cromatografia Líquida de Alta Pressão , Flavonóis/análise , Flavonóis/metabolismo , Armazenamento de Alimentos , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Espectrometria de Fluorescência , Raios Ultravioleta
11.
J Food Sci ; 86(9): 3884-3895, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34333772

RESUMO

Chinese kale is one of the most popular vegetables in southern China and Asia, but it has a short shelf-life. The effect of high oxygen atmospheric packaging (HOAP) treatment on the respiration rate as well as chlorophyll content and the expression of their metabolism-related genes of the soluble proteins in Chinese kale during storage were assessed. The results showed that Chinese kale subjected to HOAP treatment showed stimulated respiration rate and regulated expression of chlorophyll metabolism-related genes, such as BrChlases, BrPPH (pheophytin pheophorbide hydrolase), BrPAO (pheidea oxygenase gene), BrRCCR (red chlorophyll catabolite reductase), and BrSAG12 (senescence-associated gene), compared to the Chinese kale in the control. The activities of chlorophyll enzymes, that is, Chlase and Mg-dechelatase, were also influenced by HOAP treatment during storage. Furthermore, the total content of soluble proteins was stimulated to accumulate, and the intensity of protein bands, detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiling, increased in HOAP-treated samples. Based on the current results, as well as the results of our previous study regarding HOAP treatment of other vegetables, we speculate that HOAP may function by regulating the respiration rate and the accumulation of functional proteins, especially chlorophyll catabolic and antioxidant enzymes, to maintain the freshness of Chinese kale during storage. PRACTICAL APPLICATION: HOAP treatment could be a potential method for delaying quality changes and extending the shelf-life of Chinese kale after harvest.


Assuntos
Brassica , Embalagem de Alimentos , Oxigênio , Brassica/química , Brassica/efeitos dos fármacos , Brassica/metabolismo , China , Clorofila/análise , Embalagem de Alimentos/métodos , Embalagem de Alimentos/normas , Oxigênio/farmacologia
12.
BMC Genomics ; 22(1): 455, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34139990

RESUMO

BACKGROUND: Anthocyanin, chlorophyll, and carotenoid pigments are widely distributed in plants, producing various colors. Ornamental kale (Brassica oleracea var. acephala DC) which has colorful inner leaves is an ideal plant to explore how these three pigments contribute to leaf color. The molecular mechanisms of the coloration in ornamental kale could provide reference for exploring the mechanisms of pigmentation in other plants. RESULTS: In this study, we sequenced the transcriptome and determined the pigment contents of an unusual cultivar of ornamental kale with three different types of leaf coloration: pink (C3), light pink (C2), and variegated pink-green (C1). A total of 23,965 differentially expressed genes were detected in pairwise comparisons among the three types of leaves. The results indicate that Bo9g058630 coding dihydroflavonol 4-reductase (DFR) and Bo3g019080 coding shikimate O-hydroxycinnamoyltransferase (HCT) acted in anthocyanin biosynthesis in pink leaves. Bo1g053420 coding pheophorbidase (PPD) and Bo3g012430 coding 15-cis-phytoene synthase (crtB) were identified as candidate genes for chlorophyll metabolism and carotenoid biosynthesis, respectively. The transcription factors TT8, MYBL2, GATA21, GLK2, and RR1 might participate in triggering the leaf color change in ornamental kale. Anthocyanin content was highest in C3 and lowest in C1. Chlorophyll and carotenoid contents were lowest in C2 and highest in C1. CONCLUSIONS: Based on these findings, we suspected that the decrease in anthocyanin biosynthesis and the increase in chlorophyll and carotenoid biosynthesis might be the reason for the leaf changing from pink to variegate pink-green in this unusual cultivar. Our research provides insight into the molecular mechanisms of leaf coloration in ornamental kale, contributing to a theoretical foundation for breeding new varieties.


Assuntos
Antocianinas , Brassica , Brassica/genética , Brassica/metabolismo , Carotenoides , Clorofila , Regulação da Expressão Gênica de Plantas , Pigmentação/genética , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071404

RESUMO

Broccoli microgreens have shown potential health benefits due to their high glucosinolate (GL) levels. Previously, we observed that postharvest UVB treatment did not have much effect on increasing GLs in broccoli microgreens. In this study, we investigated the influence of preharvest UVB irradiation on GL levels in broccoli microgreens. UHPLC-ESI/ITMS analysis showed that preharvest UVB treatments with UVB 0.09 and 0.27 Wh/m2 significantly increased the glucoraphanin (GLR), glucoerucin (GLE), and total aliphatic GL levels by 13.7 and 16.9%, respectively, in broccoli microgreens when measured on harvest day. The nutritional qualities of UVB-treated microgreens were stable during 21-day storage, with only small changes in their GL levels. Broccoli microgreens treated before harvest with UVB 0.27 Wh/m2 and 10 mM CaCl2 spray maintained their overall quality, and had the lowest tissue electrolyte leakage and off-odor values during the storage. Furthermore, preharvest UVB 0.27 Wh/m2 treatment significantly increased GL biosynthesis genes when evaluated before harvest, and reduced the expression level of myrosinase, a gene responsible for GL breakdown during postharvest storage. Overall, preharvest UVB treatment, together with calcium chloride spray, can increase and maintain health-beneficial compound levels such as GLs and prolong the postharvest quality of broccoli microgreens.


Assuntos
Brassica/metabolismo , Glucosinolatos/química , Raios Ultravioleta , Antioxidantes/química , Cálcio/química , Cloreto de Cálcio/química , Cromatografia Líquida de Alta Pressão , Glucose/análogos & derivados , Glucose/química , Imidoésteres/química , Valor Nutritivo , Estresse Oxidativo , Oximas/química , Fenol , Sementes , Espectrometria de Massas por Ionização por Electrospray , Sulfóxidos/química
14.
Sci Rep ; 11(1): 11900, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099785

RESUMO

In this study, we report a facile green-synthesis route for the fabrication of reduced graphene oxide (rGO) using biomass of Brassica oleracea var. gongylodes (B. oleracea). In addition, we have attempted to provide a green synthesis approach to prepare Gold nanoparticles (Au NPs) on the surface of rGO by using stem extract of B. oleracea. The synthesized Au/rGO nanocomposite was evaluated using UV-visible and FTIR spectroscopy, XRD, Raman, FE-SEM, EDX, AFM and DLS techniques. The obtained results demonstrated that the synthesized Au NPs on the surface of rGO was spherical with sizes ranging about 12-18 nm. The Au/rGO NC was, also, developed as photo-synthesizer system for the photothermal therapy (PTT) of MCF7 breast cancer cells. The near-infrared (NIR) photothermal properties of Au/rGO NCs was evaluated using a continuous laser at 808 nm with power densities of 1 W.cm-2. Their photothermal efficacy on MCF7 breast cancer cells after optimizing the proper concentration of the NCs were evaluated by MTT assay, Cell cycle and DAPI staining. In addition, the potential of the synthesized Au/rGO NCs on reactive oxygen species generating and antioxidant activity were assessed by DPPH. Au/rGO NCs possess high capacity to light-to-heat conversion for absorption in range NIR light, and it is able to therapeutic effects on MCF7 cells at a low concentration. The maximum amount of cell death is 40.12% which was observed in treatment groups that received a combination of Au/rGO NCs and laser irradiation. The results demonstrate that the nanomaterials synthesized by green approach lead to efficient destruction of cancer cell and might thus serve as an excellent theranostic agent in Photothermal therapy applications.


Assuntos
Brassica/metabolismo , Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Nanocompostos/química , Neoplasias/terapia , Biomassa , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Química Verde/métodos , Humanos , Células MCF-7 , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanocompostos/administração & dosagem , Nanocompostos/ultraestrutura , Oxirredução , Fototerapia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
15.
New Phytol ; 231(6): 2186-2199, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34043823

RESUMO

Selection for yield during B. rapa breeding may have unintended consequences for other traits, such as flavour. LYH-type (light yellow head) Chinese cabbage (Brassica rapa ssp. pekinensis) and wucai (Brassica rapa L. ssp. chinensis var. rosularis) varieties are becoming popular because of their unique flavour and yellow leaves. However, the molecular mechanism underlying the interplay for these traits remains unknown. We conducted a fine mapping and genome-wide exploration analysis of the leaf yellowing of LYH and wucai, including transgenic plants, to identify causal genes. We identified that BrHISN2, a rate-limiting enzyme in histidine biosynthesis, causes leaf yellowing by destroying LYH chloroplasts. Normal growing Brhisn2 mutant plants became etiolated and senesced at the cotyledon-seedling stage. Sequence variations in the promoter confers cold-dependent expression on BrHISN2, probably resulting in leaf yellowing in LYH and wucai. Insertions of two DRE cis elements and the subsequent recruitment of two CBF2 proteins by the DREs to the promoter provided the cold-induced expression plasticity of BrHISN2 in plants. Both LYH and wucai are farmed in the fall, in which the temperature gradually decreases, therefore the CBF2-BrHISN2 module probably maximises the benefits of gene-environment interaction for breeding. We determined the mechanistic connections of chlorophyll synthesis and the growth-flavour trade-off in these B. rapa varieties.


Assuntos
Brassica rapa , Brassica , Brassica/metabolismo , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
BMC Genomics ; 22(1): 258, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845769

RESUMO

BACKGROUND: Leaf color mutants are the ideal materials to explore the pathways of chlorophyll (Chl) metabolism, chloroplast development, and photosynthesis system. In this study, a spontaneous yellow-green leaf wucai (Brassica campestris L.) mutant "WY16-13" was identified, which exhibited yellow-green leaf color during its entire growth period. However, current understanding of the molecular mechanism underlying Chl metabolism and chloroplast development of "WY16-13" is limited. RESULTS: Total Chl and carotenoid content in WY16-13 was reduced by 60.92 and 58.82%, respectively, as compared with its wild type parental line W16-13. Electron microscopic investigation revealed fewer chloroplasts per cell and looser stroma lamellae in WY16-13 than in W16-13. A comparative transcriptome profiling was performed using leaves from the yellow-green leaf type (WY16-13) and normal green-leaf type (W16-13). A total of 54.12 million (M) (WY16-13) and 56.17 M (W16-13) reads were generated. A total of 40,578 genes were identified from the mapped libraries. We identified 3882 differentially expressed genes (DEGs) in WY16-13 compared with W16-13 (i.e., 1603 upregulated genes and 2279 downregulated genes). According to the Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, these DEGs are involved in porphyrin and Chl metabolism [i.e., chlorophyllase (CLH), heme oxygenase (HO), chlorophyll (ide) b reductase (NYC), and protochlorophyllide oxidoreductase (POR) genes], carbohydrate metabolism, photosynthesis, and carbon fixation in photosynthetic organisms. Moreover, deficiency in Chl biosynthetic intermediates in WY16-13 revealed that the formation of the yellow-green phenotype was related to the disorder of heme metabolism. CONCLUSIONS: Our results provide valuable insights into Chl deficiency in the yellow-green leaf mutant and a bioinformatics resource for further functional identification of key allelic genes responsible for differences in Chl content.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Clorofila , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma
17.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924035

RESUMO

The nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family is the largest group of plant disease resistance (R) genes widespread in response to viruses, bacteria, and fungi usually involved in effector triggered immunity (ETI). Forty members of the Chinese cabbage CC type NBS-LRR family were investigated in this study. Gene and protein characteristics, such as distributed locations on chromosomes and gene structures, were explored through comprehensive analysis. CC-NBS-LRR proteins were classified according to their conserved domains, and the phylogenetic relationships of CC-NBS-LRR proteins in Brassica rapa, Arabidopsis thaliana, and Oryza sativa were compared. Moreover, the roles of BrCC-NBS-LRR genes involved in pathogenesis-related defense were studied and analyzed. First, the expression profiles of BrCC-NBS-LRR genes were detected by inoculating with downy mildew and black rot pathogens. Second, sensitive and resistant Chinese cabbage inbred lines were screened by downy mildew and black rot. Finally, the differential expression levels of BrCC-NBS-LRR genes were monitored at 0, 1, 3, 6, 12 and 24 h for short and 0, 3, 5, 7, 10 and 14 days for long inoculation time. Our study provides information on BrCC-NBS-LRR genes for the investigation of the functions and mechanisms of CC-NBS-LRR genes in Chinese cabbage.


Assuntos
Brassica/metabolismo , Brassica/microbiologia , Doenças das Plantas/microbiologia , Arabidopsis/microbiologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oryza/microbiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Food Chem ; 356: 129704, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831827

RESUMO

The postharvest senescence accompanied by yellowing limited the shelf-life of broccoli. In this study, we developed a novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil and applied it to broccoli for preservation. Results showed that double emulsion prepared by whey protein concentrate-high methoxyl pectin (1:3) exhibited best storage stability with largest particle size (581.30 nm), lowest PDI (0.23) and zeta potential (-40.31 mV). This double emulsion also exhibited highest encapsulation efficiency of brassinolide (92%) and cinnamon essential oil (88%). The broccoli coated with double emulsion maintained higher chlorophyll contents and activities of chlorophyllase and magnesium-dechelatase were reduced by 9% and 24%, respectively. The energy metabolic enzymes (SDH, CCO, H+-ATPase, Ca2+-ATPase) were also activated, inducing higher level of ATP and energy charge. These results demonstrated W/O/W double emulsion co-delivering brassinolide and cinnamon essential delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism.


Assuntos
Brassica/metabolismo , Brassinosteroides/química , Clorofila/metabolismo , Emulsões/química , Metabolismo Energético , Óleos Voláteis/química , Esteroides Heterocíclicos/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Brassica/efeitos dos fármacos , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/metabolismo , Cinnamomum zeylanicum/metabolismo , Emulsões/metabolismo , Metabolismo Energético/efeitos dos fármacos , Enzimas/química , Armazenamento de Alimentos/métodos , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Tamanho da Partícula , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacologia , Viscosidade
19.
Food Microbiol ; 98: 103573, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875193

RESUMO

Chinese Sichuan Paocai (CSP) is one of the world's best-known fermented vegetables with a large presence in the Chinese market. The dynamic microbial community is the main contributor to Paocai fermentation. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the Paocai fermentation process. Enterobacter, Leuconostoc, and Lactobacillus dominated the three-fermentation stages (Pre-, Mid- and Lat-), respectively. Carbon metabolism was the most abundant pathway. GH (glycoside hydrolase) and GT (lycosyl transferase) were the two most highly expressed carbohydrate-active enzymes. The most highly differentially expressed genes were grouped in the biosynthesis of amino acids, followed by glycolysis. Meta-pathways in the Sichuan Paocai fermentation ecosystem were reconstructed, Lactobacillaceae and Enterobacteriaceae were the two most important metabolic contributors. In addition, the nrfA and nirB were two genes referred to distinct nitrite reductase enzymes and 9 specialized genes, such as eclo, ron and ent were expressed to produce autoinducer 2 (AI-2) kinase in response to population density. The present study revealed functional enzymes and meta-pathways of the active microbial communities, which provide a deeper understanding of their contribution to CSP products.


Assuntos
Brassica/microbiologia , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/metabolismo , Alimentos e Bebidas Fermentados/microbiologia , Lactobacillaceae/isolamento & purificação , Microbiota , Verduras/microbiologia , Brassica/metabolismo , China , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Fermentação , Microbiologia de Alimentos , Lactobacillaceae/classificação , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Metagenômica , Transcriptoma , Verduras/metabolismo
20.
Food Chem ; 356: 129550, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819785

RESUMO

Glucosinolates (GSLs) are well known for plant defense and human nutrition. In this study, broccoli seedlings were illuminated under different LED light, including white, red, blue, and 75% red + 25% blue (200 mmol·m-2·s-1) for 4 weeks to investigate the effects of LED light on GSLs and sulforaphane biosynthesis. Results showed that red light promoted GSL biosynthesis and sulforaphane accumulation because red light could induce SOT18 expression to advance aliphatic GSLs biosynthesis, whereas the high tryptophan content and the upregulation of CYP79B2, CYP79B3, and CYP83B1 were attributed to indole GSL biosynthesis. Low-level methionine content and downregulated SOT18 were the main factors inhibiting GSLs and sulforaphane accumulation under blue LED illumination. BoHY5 gene expression was induced significantly and the yeast one-hybrid assay demonstrated BoHY5 could bind to SOT18 promoter. Consequently, BoHY5 inhibited SOT18 expression, and played a negative role in the GSL biosynthetic network.


Assuntos
Brassica/metabolismo , Glucosinolatos/metabolismo , Isotiocianatos/metabolismo , Plântula/metabolismo , Sulfóxidos/metabolismo , Brassica/efeitos da radiação , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Iluminação , Plântula/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...