Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.234
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Monit Assess ; 191(9): 540, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31378832

RESUMO

In this work, we present the results of the investigation of trace elements (Fe, Mg, Ni, Zn, Cu, Cr, Co, Cd, Pb) accumulation potential of Noccaea kovatsii (Heuff.) F. K. Mey., from the Balkan Peninsula. The study included eight populations from ultramafic soils, six from Bosnia and Herzegovina, and two from Serbia. Principal component analysis (PCA) was used to reveal relationships of elements in soil, and Pearson's correlation coefficients for analysing associations of available quantities of elements in soil and those in roots and shoots of N. kovatsii. Uptake and translocation efficiency was assessed by using bioconcentration (BCF) and translocation factors (TF). All the analysed populations of N. kovatsii emerged as strong Ni accumulators, with the highest shoot concentrations of 12,505 mg kg-1. Even thought contents of Zn in plant tissues of N. kovatsii were under the hyperaccumulation level (602 mg kg-1 and 1120 mg kg-1 respectively), BCF was up to 667, indicating that certain surveyed populations have strong accumulative potential for this element.


Assuntos
Brassicaceae/metabolismo , Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , Bósnia e Herzegóvina , Brassicaceae/química , Monitoramento Ambiental , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Análise de Componente Principal , Sérvia , Poluentes do Solo/metabolismo , Oligoelementos/metabolismo
2.
J Photochem Photobiol B ; 197: 111550, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31330424

RESUMO

The plant species of the genus Epimedium L. are well-known traditional Chinese medicinal herbs with special therapeutic effects on human beings and animals in invigorating sexuality and strengthening muscles and bones. In large-scale cultivating Epimedium that is a typical shade plant species, they are arbitrarily covered with black colored shade nets. However, their optimal growth conditions, especially light, are still less understood. During the investigation of different light qualities on the growth of Epimedium pseudowushanense, it was found that, all the values of plant growth characteristics (except shoot number) and photosynthetic characteristics were lower under red, yellow, or blue light treatment than under white light treatment. However, yellow light treatment had beneficial effects on shoot number, dry biomass (per plant) as well as net photosynthesis rate (Pn) and maximal apparent quantum efficiency (AQY) in E. pseudowushanense when compared with red or blue light treatment. More importantly, we found that E. pseudowushanense accumulated higher levels of bioactive flavonoids under yellow light treatment than under white, red, or blue light treatment. Furthermore, both RNAseq and qPCR analyses revealed that yellow light could highly up-regulate the expression levels of flavonoid biosynthetic genes, in particular CHS1, F3H1, PT_5, and raGT_5 that possibly contributed to the enhanced accumulation of bioactive flavonoids in E. pseudowushanense. Taken together, our study revealed that yellow light is the optimal light for the growth of E. pseudowushanense. Our results provided key information on how to improve the cultivation condition and concurrently enhance the accumulation of bioactive flavonoids in E. pseudowushanense.


Assuntos
Epimedium/metabolismo , Flavonoides/metabolismo , Luz , Biomassa , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas , Epimedium/crescimento & desenvolvimento , Epimedium/efeitos da radiação , Flavonoides/análise , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/efeitos da radiação , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Transcriptoma/efeitos da radiação
3.
J Chem Ecol ; 45(8): 684-692, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31289990

RESUMO

Herbivore-induced plant volatiles (HIPVs) are important cues for natural enemies to find their hosts. HIPVs are usually present as blends and the effects of combinations of individual components are less studied. Here, we investigated plant volatiles in a tritrophic system, comprising the parasitoid wasp Lytopylus rufipes Nees (Hymenoptera: Braconidae), the Oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae), and Japanese pear, Pyrus pyrifolia 'Kosui', so as to elucidate the effects of single components and blends on wasp behaviors. Bioassays in a four-arm olfactometer, using either shoots or their isolated volatiles collected on adsorbent, revealed that female wasps preferred volatiles from host-infested shoots over those from intact shoots. Analyses identified (Z)-3-hexenyl acetate (H), linalool (L), (E)-ß-ocimene (O), (E)-3,8-dimethyl-1,4,7-nonatriene (D), and (E,E)-α-farnesene (F). Among them, only F was induced by infestation with G. molesta. When tested singly, only O and D elicited positive responses by L. rufipes. Binary blends of HO and DF elicited a positive response, but that of HD elicited a negative one, even though D alone elicited a positive response. Remarkably, wasps did not prefer either the ODF or HL blends, but showed a highest positive response to a quinary blend (HLODF). These results show that synergism among volatiles released from host-infested plants is necessary for eliciting high behavioral responses in L. rufipes, enabling L. rufipes to find its host efficiently.


Assuntos
Comportamento de Busca por Hospedeiro/efeitos dos fármacos , Pyrus/química , Compostos Orgânicos Voláteis/farmacologia , Vespas/fisiologia , Alcenos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Herbivoria , Mariposas/fisiologia , Brotos de Planta/química , Brotos de Planta/metabolismo , Brotos de Planta/parasitologia , Pyrus/metabolismo , Pyrus/parasitologia , Sesquiterpenos/farmacologia , Compostos Orgânicos Voláteis/química
4.
Biol Res ; 52(1): 39, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358053

RESUMO

In the growth condition(s) of plants, numerous secondary metabolites (SMs) are produced by them to serve variety of cellular functions essential for physiological processes, and recent increasing evidences have implicated stress and defense response signaling in their production. The type and concentration(s) of secondary molecule(s) produced by a plant are determined by the species, genotype, physiology, developmental stage and environmental factors during growth. This suggests the physiological adaptive responses employed by various plant taxonomic groups in coping with the stress and defensive stimuli. The past recent decades had witnessed renewed interest to study abiotic factors that influence secondary metabolism during in vitro and in vivo growth of plants. Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.


Assuntos
Reguladores de Crescimento de Planta/metabolismo , Fenômenos Fisiológicos Vegetais , Metabolismo Secundário/fisiologia , Estresse Fisiológico/fisiologia , Técnicas de Cultura de Células , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas/metabolismo , Transdução de Sinais
5.
J Plant Physiol ; 239: 18-27, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31177027

RESUMO

DNA methylation is a process of epigenetic modification that can alter the functionality of a genome. Using whole-genome bisulfite sequencing, this study quantify the level of DNA methylation in the epigenomes of two diploid apple (Malus x domestica) scion cultivars ('McIntosh' and 'Húsvéti rozmaring') derived from three environmental conditions: in vivo mother plants in an orchard, in vitro culture, and acclimatized in vitro plants. The global DNA methylation levels were not dependent on the source of plant material, and the average level of DNA methylation was 49.77%, 34.65% and 8.77% in CpG, CHG and CHH contexts, respectively. Significant differences in DNA methylation were identified in 586 (specifically 334, 201 and 131 in CpG, CHG and CHH contexts, respectively) out of 45,116 genes, including promoter and coding sequences. These were classified as differentially methylated genes (DMGs). This is a 1.3% difference in the level of DNA methylation of genes in response to a change in the environment. Differential methylation was visualised by MA plots and functional genomic maps were established for biological processes, molecular functions and cellular components. When the DMGs were considered, in vitro tissue culture resulted in the highest level of methylation, but it was lower in acclimatized in vitro plants which was similar to that in the mother tree. Methylation patterns of the two scions differed, indicating cultivar-specific epigenetic regulation of gene expression during adaptation to various environments. After selecting genes that displayed differences larger than ±10% in CpG and CHG contexts, or larger than ±1.35% in the CHH context from among the DMGs, they were annotated in Blast2 GO v5.1.12 for Gene Ontology. DMGs identified as MD07G1113000 (protein transport), MD08G1041600 (extracellular space), MD09G1054800 (phosphatidic acid binding), and MD10G1265800 (not annotated) were methylated in all three contexts in in vitro shoots. These DNA methylation results suggest that epigenetic changes may contribute to the adaptation of apple to environmental changes by modifying the epigenome and thereby gene expression.


Assuntos
Aclimatação , Metilação de DNA/fisiologia , Genoma de Planta , Malus/genética , Técnicas de Cultura de Células , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Brotos de Planta/metabolismo
6.
Plant Physiol Biochem ; 141: 306-314, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31207491

RESUMO

Prosopis strombulifera (Lam.) Benth. is a halophytic shrub found in highly saline soils in Argentina, with high tolerance against NaCl but strong growth inhibition by Na2SO4. In the present study, the differences in the physiological responses caused by these salts and an iso-osmotic combination thereof on photosynthesis, mineral composition and metabolism were analyzed. Na2SO4 treated plants were the most affected by salinity, showing a significant decrease in several photosynthetic parameters. Proline and cysteine accumulated significantly in the plants in response to salt stress. These results show by the first time that the SO42- anion is triggering damage in the photosynthetic apparatus and consequently affecting the photosynthetic process, which may explain the strong growth inhibition in these plants at high salinity. Moreover, the SO42- anion provoke challenges in the incorporation of nutrients, decreasing the levels of K, Ca, P and Mg, and inducing a strong antioxidant activity in P. strombulifera.


Assuntos
Fotossíntese , Prosopis/metabolismo , Cloreto de Sódio/química , Sulfatos/química , Ânions , Argentina , Cálcio/química , Clorofila/química , Grupo dos Citocromos b/metabolismo , Magnésio/química , Osmose/efeitos dos fármacos , Fósforo/química , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Potássio/química , Prosopis/efeitos dos fármacos , Ligação Proteica , Salinidade , Sódio/química
7.
Plant Physiol Biochem ; 141: 466-476, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31252252

RESUMO

The present study was aimed to investigate adaptation in physiology and biochemistry of Solanum lycopersicum seedlings under NaCl (NaCl0; 0.0 g NaCl kg-1 sand, NaCl1; 0.3 g NaCl/kg sand and NaCl2; 0.5 g NaCl/kg sand) stress, simultaneously supplemented with different (deprived; 0 mg/kg sand, LN; 105 mg/kg sand, MN; 210 mg/kg sand and HN; 270 mg/kg sand) levels of nitrogen (N). NaCl at both doses caused significant loss in growth, K+ content, K+/Na+ ratio, total chlorophyll and photosynthetic oxygen evolution. Further, N supplementation influences growth of test seedlings, that attained maximum growth in HN followed by MN, LN and deprived N conditions. N at HN level significantly declined Na+ accumulation in the cell and enhanced level of K+. NaCl treatment enhanced level of oxidative stress biomarkers: superoxide radical (O2•-), hydrogen peroxide (H2O2), MDA equivalents contents and electrolyte leakage in leaf as well as root despite enhanced activity of SOD, POD, CAT and GST, and enzymes participating in the ascorbate-glutathione cycle (AsA-GSH cycle) viz. APX, DHAR and GR. At the same time, higher contents of total AsA (AsA + DHA) and total GSH (GSH + GSSG), and maintained ratios of AsA/DHA and GSH/GSSG in HN fed seedlings were observed. Overall, the results suggest that HN supplementation was able in alleviating NaCl induced toxicity in test seedlings which was mainly due to the up-regulation of the AsA-GSH cycle, K+ and K+/Na+ ratio, which resulted into better growth performance of HN fed seedlings under NaCl stress while reverse was noticed for LN and deprive N conditions.


Assuntos
Lycopersicon esculentum/metabolismo , Nitrogênio/química , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Biomarcadores/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Fotossíntese , Pigmentação , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Potássio/química , Plântula/metabolismo , Cloreto de Sódio/química
8.
Environ Sci Pollut Res Int ; 26(23): 24132-24142, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31228062

RESUMO

Mining tailing areas may contain metal minerals such as Cu, Pb, Zn, Cr, and Cd at high concentrations and low nutrients for the growth of plants. This kind of conditions of the area, as well as lack of tailing structure, may limit the development of plants on these areas. Thus, the present study determined the metal, macronutrient, and micronutrient concentrations in the tissues of the roots and shoots of the Solanum viarum Dunal species as well as it evaluated the potential use of the plant for phytoremediation of mining tailing areas contaminated with heavy metals. The macronutrients, micronutrients, and heavy metals in the roots and shoots were determined by the digestion method with nitric and perchloric acid (HNO3-HClO4) and quantified by the ICP-OES. In S. viarum, the average concentrations of the metals presented in the dry biomass varied between the shoots and roots, being higher in the roots for metals such as Cu (229 mg kg-1), Zn (232 mg kg-1), Mn (251 mg kg-1), Cr (382 mg kg-1), Ni (178 mg kg-1), Pb (33 mg kg-1), and Ba (1123 mg kg-1). S. viarum indicates the possibility of a potential application in phytoremediation and treatment of areas contaminated with heavy metals.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/análise , Mineração , Poluentes do Solo/análise , Solanum/química , Biodegradação Ambiental , Biomassa , Brasil , Metais Pesados/farmacocinética , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Poluentes do Solo/farmacocinética , Solanum/efeitos dos fármacos , Solanum/metabolismo , Distribuição Tecidual
9.
J Agric Food Chem ; 67(26): 7232-7242, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31184888

RESUMO

In the present study, the effect of imidacloprid uptake from contaminated soils on the growth of leaf vegetable Shanghaiqing was investigated. The result showed that during 35-day exposure, the concentration of imidacloprid (IMI) was in the order of vegetable shoots > vegetable roots > soil, indicating that IMI was more readily concentrated in vegetable shoots than in roots. Moreover, the biomass of IMI-treated vegetable shoots was comparable to that of the controls with early exposure, but was higher than that of the controls after 7-day exposure, showing that the test concentration of IMI could stimulate vegetable growth. The plant metabolic analysis of vegetable shoots using LC-QTOF/MS revealed that IMI may cause oxidative stress to the plant shoots with early exposure; however, the stressful situation of IMI seems to be relieved with the increase of some substances (such as spermidine and phenylalanine) with late exposure. Moreover, the upregulation of N-rich amino acids (glutamine, aspartate, and arginine) suggested that the process of fixing inorganic nitrogen in the plant should be enhanced, possibly contributing to enhanced growth rates. Additionally, four IMI's metabolites were identified by using MS-FINDER software, and the distribution of three metabolites in vegetable tissues was compared.


Assuntos
Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Poluentes do Solo/farmacologia , Verduras/efeitos dos fármacos , Aminoácidos/metabolismo , Transporte Biológico/efeitos dos fármacos , Inseticidas/análise , Espectrometria de Massas , Neonicotinoides/análise , Nitrocompostos/análise , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Solo/química , Poluentes do Solo/análise , Verduras/química , Verduras/crescimento & desenvolvimento , Verduras/metabolismo
10.
Plant Sci ; 285: 1-13, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203874

RESUMO

Bioactive gibberellins (GAs) play multiple roles in plant development and stress responses. GA2-oxidases (GA2oxs) are a class of 2-oxoglutarate-dependent dioxygenases that regulate the deactivation of bioactive GAs. In this study, we investigated the phylogeny and domain structures of the seven GA2ox genes present in the Arabidopsis thaliana genome. Comprehensive expression analysis using translational reporter lines showed that the seven GA2ox genes are differentially expressed during Arabidopsis growth and development: GA2ox1 is specifically expressed in the hypocotyl and lateral root primordium; GA2ox2 is highly expressed in aboveground tissues; GA2ox3 is expressed in the chalazal endosperm of the early embryo sac and inflorescences; GA2ox4 is expressed in the shoot apical meristem and during lateral root initiation; GA2ox6 is expressed in the maturation zone, but not in the meristem or elongating zone of the root; GA2ox7 is constitutively expressed during almost all developmental stages; and GA2ox8 is exclusively expressed in stomatal cells. Overexpression of each of these GA2ox genes inhibited high temperature-induced hypocotyl elongation in both wild-type and elongated hypocotyl 5 plants, which have an elongated hypocotyl phenotype, suggesting that these genes negatively regulate hypocotyl elongation by reducing bioactive GA levels. This study provides a valuable resource for further elucidating the roles of GA2ox genes during different stages of development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas/fisiologia , Giberelinas/metabolismo , Oxirredutases/genética , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Giberelinas/fisiologia , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Oxirredutases/metabolismo , Oxirredutases/fisiologia , Filogenia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Transcriptoma
11.
Plant Sci ; 285: 91-98, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203897

RESUMO

The Arabidopsis oligopeptide transporter AtOPT6 is membrane transport protein that mediated transport of glutathione in both the reduced (GSH) and oxidized (GSSG) forms. In this study, the role of AtOPT6 in glutathione distribution throughout the plant was investigated. We found that transgenic Arabidopsis overexpressing AtOPT6 under the control of a phloem-specific promoter of sucrose-proton symporter 2 (pSUC2), remarkably increased AtOPT6 transcript levels, ranging from 30- to 40-fold in shoots and 6- to 10-fold in roots, relative to the wild type. AtOPT6-overexpressing lines could elevate the foliar glutathione content; however, glutathione content in the phloem did not change. We observed that the ratio of shoot glutathione content to total glutathione content increased in AtOPT6-overexpressing lines, but not in transgenic Arabidopsis with elevated foliar GSH synthesis. These results indicate the possibility that loading and unloading of glutathione in phloem tissues are enhanced in AtOPT6-overexpressing lines under the control of pSUC2. The results of heavy metal analysis revealed that transgenic Arabidopsis overexpressing AtOPT6 under the control of pSUC2 could promote the transport of Zn into shoots as effectively as transgenic Arabidopsis with elevated foliar GSH synthesis, or wild-type plants with exogenous foliar application of GSH.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Floema/metabolismo , Brotos de Planta/metabolismo , Simportadores/fisiologia , Zinco/metabolismo , Aminoácidos/metabolismo , Glutationa/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
12.
J Food Sci ; 84(7): 1746-1757, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31206686

RESUMO

'Anji Baicha' (Camellia sinensis) is a low-temperature-sensitive tea variety. During the development of young shoots, the leaves of 'Anji Baicha' exhibit periodic albinism. The quality of 'Anji Baicha' is closely related to the color of the fresh leaves, with whiter leaves affording a higher amino acid content and superior sensory quality after processing. However, the metabolic mechanism of its quality formation is still unclear. In this study, we analyzed the metabolomic changes of young shoots of 'Anji Baicha' and screened for metabolic markers that may be involved in the periodic albinism. Positive- and negative-mode UPLC-QTOF-MS was applied to the metabolomic analysis of young leaves of 'Anji Baicha' during three developmental stages (i.e., the pre-albescent, albescent, and regreening stages). The results revealed significant differences in the metabolic profiles of the young leaves at the three stages. The differential metabolites were mainly related to the pathways of flavonoid, phenylpropanoid, and amino acid biosynthesis. The concentrations of several amino acids (primarily l-theanine, l-glutamate, N2 -acetyl-l-ornithine, l-aspartic acid, d-proline, l-glutamine, l-leucine, and pyroglutamic acid) and 12-OPDA were significantly higher in the albescent stage. In contrast, during the albescent stages, the concentrations of several carbohydrates (d-fructose, ß-d-galactopyranose, 3-O-fucopyranosyl-2-acetamido-2-deoxyglucopyranose, galactose-ß-1, 4-xylose acetyl-maltose, and 2-fucosyllactose) were significantly lower. Moreover, catechins (mainly epigallocatechin and catechin derivatives), dimeric catechins (primarily proanthocyanidins), and flavonol and flavonol/flavone glycosides (mainly kaempferol, myricetin, quercetin, cyanidin, and delphinidin glycosides) were detected at the highest levels in the regreening or pre-albescent stages. The obtained results enhance the current understanding of the metabolic mechanisms of periodic albinism and quality development formation in 'Anji Baicha'. PRACTICAL APPLICATION: The obtained results not only provide information regarding differential metabolites but also advance the understanding of the mechanism of periodic albinism in 'Anji Baicha' at the metabolite level and open up new possibilities for the genetic improvement of tea cultivars.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Aminoácidos/análise , Aminoácidos/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Catequina/análogos & derivados , Catequina/análise , Catequina/metabolismo , Cromatografia Líquida , Glutamatos/análise , Glutamatos/metabolismo , Glicosídeos/análise , Quempferóis/análise , Quempferóis/metabolismo , Metaboloma , Metabolômica , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/química , Brotos de Planta/metabolismo , Espectrometria de Massas em Tandem
13.
Chemosphere ; 233: 300-308, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31176131

RESUMO

The extensive use of poly- and perfluoroalkyl substances (PFAS) has led to perfluoroalkyl acids (PFAAs) contamination in various environmental matrices. To remove PFAAs from contaminated water, this study investigated plant uptake of PFAAs by a native wetland plant species in the US, Juncus effusus. The results showed that J. effusus translocated selected PFAAs, including perfluoropentanoic acid (PFPA), perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS). During the 21-day experimental period, the uptake of PFAAs increased with increasing PFAAs exposure concentration and time. PFOS was largely accumulated in the roots with limited upward translocation. PFAAs with shorter carbon chain length were taken up by J. effusus roots and tended to accumulate in plant shoots. The highest removal efficiency (11.4%) of spiked PFAAs by J. effusus was achieved when it was exposed to PFAAs at around 4.6 mg/L for 21 days. The exposure to PFAAs stimulated the antioxidative defense system in J. effusus shoots but inhibited the superoxide dismutase (SOD) and catalase (CAT) activities and damaged the antioxidative defense system in J. effusus roots. These results warrant further studies to evaluate J. effusus's long-term performance in a PFAAs contaminated environment.


Assuntos
Fluorcarbonetos/farmacocinética , Fluorcarbonetos/toxicidade , Magnoliopsida/efeitos dos fármacos , Magnoliopsida/metabolismo , Antioxidantes/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Fluorcarbonetos/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Tempo , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade , Áreas Alagadas
14.
Int J Mol Sci ; 20(9)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035580

RESUMO

In vitro plant regeneration addresses basic questions of molecular reprogramming in the absence of embryonic positional cues. The process is highly dependent on the genotype and explant characteristics. However, the regulatory mechanisms operating during organ differentiation from in vitro cultures remain largely unknown. Recently, miRNAs have emerged as key regulators during embryogenic callus induction, plant differentiation, auxin responses and totipotency. Here, we explored how development-related miRNA switches the impact on their target regulation depending on physiological and molecular events taking place during maize Tuxpeño VS-535 in vitro plant regeneration. Three callus types with distinctive regeneration potential were characterized by microscopy and histological preparations. The embryogenic calli (EC) showed higher miRNA levels than non-embryogenic tissues (NEC). An inverse correlation for miR160 and miR166 targets was found during EC callus induction, whereas miR156, miR164 and miR394 displayed similar to their targets RNA accumulation levels. Most miRNA accumulation switches took place early at regenerative spots coincident with shoot apical meristem (SAM) establishment, whereas miR156, miR160 and miR166 increased at further differentiation stages. Our data uncover particular miRNA-mediated regulation operating for maize embryogenic tissues, supporting their regulatory role in early SAM establishment and basipetala growth during the in vitro regeneration process.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Interferência de RNA , Regeneração/genética , Zea mays/genética , Zea mays/metabolismo , Especificidade de Órgãos/genética , Fenótipo , Desenvolvimento Vegetal/genética , Brotos de Planta/genética , Brotos de Planta/metabolismo
15.
Plant Sci ; 283: 211-223, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128691

RESUMO

Drought resistance is a crucial attribute of plants and to properly decipher its mechanisms, a valuable plant model is required. Lolium multiflorum is a forage grass characterized by a low level of abiotic stress resistance, whereas Festuca arundinacea is recognized as a species with drought resistance, including both stress avoidance and tolerance strategies. These two species can be crossed with each other. Two closely related L. multiflorum/F. arundinacea introgression forms with distinct levels of field drought resistance were involved, thus enabling the dissection of this complex trait into its crucial components. The processes occurring in roots were shown to be the most significant for the expression of drought resistance. Thus, the analysis was focused on the root architecture and the accumulation of selected hormones, primary metabolites and glycerolipids in roots. The introgression form, with a higher resistance to field water deficit was characterized by a deeper soil penetration by its roots, and it had a higher accumulation level of primary metabolites, including well recognized osmoprotectants, such as proline, sucrose or maltose, and an increase in phosphatidylcholine to phosphatidylethanolamine ratio compared to the low resistant form. A comprehensive model of root performance under water deficit conditions is presented here for the first time for the grass species of the Lolium-Festuca complex.


Assuntos
Festuca/anatomia & histologia , Lolium/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Desidratação , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Metabolismo dos Lipídeos , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Água/metabolismo
16.
Plant Sci ; 283: 416-423, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128713

RESUMO

Glutathione (GSH) is a vital compound involved in several plant metabolic pathways. Our previous study indicated that foliar GSH application can increase zinc (Zn) levels in leafy vegetables. The objective of this study was to determine the mode of action of GSH as it relates to Zn transport from roots to shoots. Two types of transgenic Arabidopsis plants with genes for GSH synthesis, including StGCS-GS or AtGSH1 driven by the leaf-specific promoter of chlorophyll a/b-binding protein (pCab3) gene were generated. Both types of transgenic Arabidopsis plants showed significant increases in shoot GSH concentrations compared to the wild type (WT). Monitoring 65Zn movement by positron-emitting tracer imaging system (PETIS) analysis indicated that the 65Zn amount in the shoots of both types of transgenic Arabidopsis plants were higher than that in the WT. GSH concentration in phloem sap was increased significantly in WT with foliar applications of 10 mM GSH (WT-GSH), but not in transgenic Arabidopsis with elevated foliar GSH synthesis. Both types of transgenic Arabidopsis with elevated foliar GSH synthesis and WT-GSH exhibited increased shoot Zn concentrations and Zn translocation ratios. These results suggest that enhancement of endogenous foliar GSH synthesis and exogenous foliar GSH application affect root-to-shoot transport of Zn.


Assuntos
Arabidopsis/metabolismo , Glutationa/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Zinco/metabolismo , Arabidopsis/genética , Transporte Biológico , Genes de Plantas/genética , Floema/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real
17.
Plant Sci ; 283: 424-434, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128714

RESUMO

Glutathione is a tripeptide involved in diverse aspects of plant metabolism. We investigated how the reduced form of glutathione, GSH, applied site-specifically to plants, affects zinc (Zn) distribution and behavior in oilseed rape plants (Brassica napus) cultured hydroponically. Foliar-applied GSH significantly increased the Zn content in shoots and the root-to-shoot Zn translocation ratio; furthermore, this treatment raised the Zn concentration in the cytosol of root cells and substantially enhanced Zn xylem loading. Notably, microarray analysis revealed that the gene encoding pectin methylesterase was upregulated in roots following foliar GSH treatment. We conclude that certain physiological signals triggered in response to foliar-applied GSH were transported via sieve tubes and functioned in root cells, which, in turn, increased Zn availability in roots by releasing Zn from their cell wall. Consequently, root-to-shoot translocation of Zn was activated and Zn accumulation in the shoot was markedly increased.


Assuntos
Brassica napus/efeitos dos fármacos , Glutationa/farmacologia , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Zinco/metabolismo , Transporte Biológico/efeitos dos fármacos , Brassica napus/metabolismo , Cromatografia Líquida de Alta Pressão , Análise de Sequência com Séries de Oligonucleotídeos , Floema/metabolismo , Folhas de Planta/metabolismo , Xilema/metabolismo
18.
Planta ; 250(2): 667-674, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31104129

RESUMO

MAIN CONCLUSION: Mercury accumulation in Arabidopsis shoots is accelerated by endodermis specific expression of fusion proteins of a bacterial mercury transporter MerC and a plant SNARE SYP121 under control of SCARECROW promoter. We previously demonstrated that the CaMV 35S RNA promoter (p35S)-driven ubiquitous expression of a bacterial mercury transporter MerC, fused with SYP121, an Arabidopsis SNARE protein increases mercury accumulation of Arabidopsis. To establish an improved fine-tuned mercury transport system in plants for phytoremediation, the present study generated and characterized transgenic Arabidopsis plants expressing MerC-SYP121 specifically in the root endodermis, which is a crucial cell type for root element uptake. We generated four independent transgenic Arabidopsis lines expressing a transgene encoding mCherry-MerC-SYP121 under the control of the endodermis-specific SCARECROW promoter (hereafter pSCR lines). Quantitative real-time PCR analysis showed that expression levels of the transgene in roots of the pSCR lines were 3-23% of the p35S driven-overexpressing line. Confocal microscopy analysis showed that mCherry-MerC-SYP121 was dominantly expressed in the endodermis of the meristematic zone as well as in the mature zone of the pSCR roots. Mercury accumulation in shoots of the pSCR lines exposed to inorganic mercury was overall higher than the wild-type and comparable to the p35S over-expressing line. These results suggest that endodermis-specific expression of the MerC-SYP121 fusion proteins in plant roots sufficiently enhances mercury uptake and accumulation into shoots, which would be an ideal phenotype for phytoremediation of mercury-contaminated environments.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Mercúrio/metabolismo , Proteínas Qa-SNARE/metabolismo , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Meristema/genética , Meristema/metabolismo , Especificidade de Órgãos , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Qa-SNARE/genética , Proteínas Recombinantes de Fusão
19.
J Plant Res ; 132(4): 521-529, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115708

RESUMO

Shoots of the aquatic eudicot family, Podostemaceae, exhibit unusual organogenesis with mixed leaf and stem identities. New shoots arise at the base of the older shoot with shoot apical meristem (SAM) identity but the entire SAM differentiates into a "leaf" as it develops in the Podostemoideae subfamily. The "leaves" are tightly arranged in a zigzag manner to form an apparent distichous shoot as a whole. Although previous studies have suggested that Podostemoideae shoots have evolved by modifying the ancestral sympodial branching system in the basal Tristichoideae subfamily, this evolutionary scenario requires elucidation at the molecular level. To confirm that the shoots arise as axillary shoots, in the present study, we examined gene expression patterns in plumular shoots of Zeylanidium tailichenoides using CUP-SHAPED COTYLEDON 3 (CUC3) and SHOOT MERISTEMLESS (STM) orthologs, which are involved in the determination of axils and meristem formation in model plants. Expression of the CUC3 ortholog was detected at the adaxial base of cotyledons and parental shoots where the new shoots are initiated, while STM ortholog was expressed at the initiation site and in the young shoot primordia throughout early shoot development. The results demonstrate that each Z. tailichenoides shoot arises as an axillary bud in a manner similar to axillary meristem formation in model plants involving CUC3 and STM genes. Considering that each of the two cotyledons produces an axillary bud that in turn continues to form its own axillary bud independently, the apparent distichous shoot in Z.tailichenoides is not a single shoot, but a composite of two sympodially branched shoots.


Assuntos
Proteínas de Arabidopsis/fisiologia , Malpighiales/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Fatores de Transcrição/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Malpighiales/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Homologia de Sequência , Fatores de Transcrição/genética
20.
Environ Sci Pollut Res Int ; 26(20): 20866-20878, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31111391

RESUMO

The establishment of phytoextraction crops on highly contaminated soils can be limited by metal toxicity. A recent proposal has suggested establishing support crops during the critical initial phase by metal immobilization through soil amendments followed by subsequent mobilization using elemental sulphur to enhance phytoextraction efficiency. This 'combined phytoremediation' approach is tested for the first time in a pot experiment with a highly contaminated soil. During a 14-week period, relatively metal-tolerant maize was grown in a greenhouse under immobilization (before sulphur (S) application) and mobilization (after S application) conditions with soil containing Cd, Pb and Zn contaminants. Apart from the control (C) sample, the soil was amended with activated carbon (AC), lignite (Lig) or vermicompost (VC) all in two different doses (dose 1~45 g additive kg-1 soil and dose 2~90 g additive kg-1 soil). Elemental S was added as a mobilization agent in these samples after 9 weeks. Biomass production, nutrient and metal bioavailability in the soil were determined, along with their uptake by plants and the resulting remediation factors. Before S application, Cd and Zn mobility was reduced in all the AC, Lig and VC treatments, while Pb mobility was increased only in the Lig1 and VC1 treatments. Upon sulphur application, Fe, Mn, Cd, Pb and Zn mobility was not significantly affected in the C, AC and VC treatments, nor total Cd, Pb and Zn contents in maize shoots. Increased sulphate, Mn, Cd, Pb and Zn mobilities in soil together with related higher total S, Mn, Pb and Zn contents in shoots were observed in investigated treatments in the last sampling period. The highest biomass production and the lowest metal toxicity were seen in the VC treatments. These results were associated with effective metal immobilization and showed the trend of steady release of some nutrients. The highest remediation factors and total elemental content in maize shoots were recorded in the VC treatments. This increased phytoremediation efficiency by 400% for Cd and by 100% for Zn compared to the control. Considering the extreme metal load of the soil, it might be interesting to use highly metal-tolerant plants in future research. Future investigations could also explore the effect of carbonaceous additives on S oxidation, focusing on the specific microorganisms and redox reactions in the soil. In addition, the homogeneous distribution of the S rate in the soil should be considered, as well as longer observation times.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/farmacocinética , Poluentes do Solo/farmacocinética , Enxofre , Zea mays/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Biomassa , Carvão Vegetal/química , Compostagem , Metais Pesados/análise , Fósforo/farmacocinética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Solo/química , Poluentes do Solo/análise , Enxofre/farmacocinética , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA