Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.197
Filtrar
1.
J Environ Sci (China) ; 99: 239-248, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183701

RESUMO

In this study, a high-efficiency cationic flocculant, P(DAC-MAPTAC-AM), was successfully prepared using UV-induced polymerization technology. The monomer Acrylamide (AM): Acryloxyethyl Trimethyl ammonium chloride (DAC): methacrylamido propyl trimethyl ammonium chloride (MAPTAC) ratio, monomer concentration, photoinitiator concentration, urea content, and cationic monomer DAC:MAPTAC ratio, light time, and power of high-pressure mercury lamp were studied. The characteristic groups, characteristic diffraction peaks, and characteristic proton peaks of P(DAC-MAPTAC-AM) were confirmed by fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), 1H nuclear magnetic resonance spectrometer (1H NMR), and scanning electron microscopy (SEM). The effects of dosage, pH value, and velocity gradient (G) value on the removal efficiencies of turbidity, COD, ammonia nitrogen, and total phenol by poly aluminum ferric chloride (PAFC), P(DAC-MAPTAC-AM), and PAFC/P(DAC-MAPTAC-AM) in the flocculation treatment of coal chemical wastewater were investigated. Results showed that the optimal conditions for the flocculation of coal chemical wastewater using P(DAC-MAPTAC-AM) alone are as follows: dosage of 8-12 mg/L, G value of 100-250 s - 1, and pH value of 4-8. The optimal dosage of PAFC is 90-150 mg/L with a pH of 2-12. The optimal dosage for PAFC/P(DAC-MAPTAC-AM) is as follows: PAFC dosage of 90-150 mg/L, P(DAC-MAPTAC-AM) dosage of 8-12 mg/L, and pH range of 2-6. When P(DAC-MAPTAC-AM) was used alone, the optimal removal efficiencies of turbidity, COD, ammonia nitrogen, and total phenol were 81.0%, 35.0%, 75.0%, and 80.3%, respectively. PAFC has good tolerance to wastewater pH and good pH buffering. Thus, the flocculation treatment of coal chemical wastewater using the PAFC/P(DAC-MAPTAC-AM) compound also exhibits excellent resistance and buffering capacity.


Assuntos
Carvão Mineral , Águas Residuárias , Acrilamida , Cátions , Floculação
2.
Folia Biol (Praha) ; 66(3): 91-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33069188

RESUMO

The most recent genome-editing system called CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat system with associated protein 9-nuclease) was employed to delete four non-essential genes (i.e., Caeco1, Caidh1, Carom2, and Cataf10) individually to establish their gene functionality annotations in pathogen Candida albicans. The biological roles of these genes were investigated with respect to the cell wall integrity and biogenesis, calcium/calcineurin pathways, susceptibility of mutants towards temperature, drugs and salts. All the mutants showed increased vulnerability compared to the wild-type background strain towards the cell wall-perturbing agents, (antifungal) drugs and salts. All the mutants also exhibited repressed and defective hyphal growth and smaller colony size than control CA14. The cell cycle of all the mutants decreased enormously except for those with Carom2 deletion. The budding index and budding size also increased for all mutants with altered bud shape. The disposition of the mutants towards cell wall-perturbing enzymes disclosed lower survival and more rapid cell wall lysis events than in wild types. The pathogenicity and virulence of the mutants was checked by adhesion assay, and strains lacking rom2 and eco1 were found to possess the least adhesion capacity, which is synonymous to their decreased pathogenicity and virulence.


Assuntos
Candida albicans/fisiologia , Proteínas Fúngicas/fisiologia , Genes Fúngicos , Acetiltransferases/deficiência , Acetiltransferases/genética , Acetiltransferases/fisiologia , Antifúngicos/farmacologia , Sistemas CRISPR-Cas , Cálcio/fisiologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/patogenicidade , Cátions/farmacologia , Adesão Celular , Ciclo Celular , Parede Celular/efeitos dos fármacos , Quitinases/farmacologia , Dano ao DNA , Proteínas Fúngicas/genética , Deleção de Genes , Glucana Endo-1,3-beta-D-Glucosidase/farmacologia , Hifas/crescimento & desenvolvimento , Isocitrato Desidrogenase/deficiência , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/fisiologia , Fases de Leitura Aberta , Reprodução Assexuada , Fatores Associados à Proteína de Ligação a TATA/deficiência , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Virulência/genética
3.
Water Sci Technol ; 82(7): 1261-1271, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33079707

RESUMO

Floc structure plays an important role in the separation of coal wastewater. In this study, a camera-based method is used to evaluate quantitatively the structural characteristics of flocs generated by different coagulants and flocculants. The correlations between particle size, settlement velocity and effective density of coal tailings flocs are analysed. The results show that the statistical settling velocity increases linearly with floc size, while the effective density decreases with increase in floc size. Different flocculation mechanisms lead to diverse growth abilities of flocs. When the flocculant is used alone, the quality of the flocs generated by the flocculants, cationic polyacrylamide (CPAM) and non-ionic polyacrylamide (NPAM), is better than that generated by anionic polyacrylamide (APAM). However, the combination of trivalent cations and APAM yields a much better effect than that obtained using CPAM and NPAM. Flocs become larger and more compact when treated with a coagulant combined with a flocculant.


Assuntos
Carvão Mineral , Águas Residuárias , Cátions , Floculação , Tamanho da Partícula
4.
Water Sci Technol ; 82(7): 1350-1369, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33079715

RESUMO

A hydrophobically associating cationic polyacrylamide (HACPAM) was prepared by using a micellar polymerization method with V-50 (azobisisobutyramidine hydrochloride) as the initiator and acrylamide, acryloyloxyethyl trimethylammonium chloride and butyl methacrylate as substrates under ultraviolet light irradiation. Structural analysis using Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and X-ray photoelectron spectroscopy analyses showed that the substrates were successfully polymerized. HACPAM was used to condition sludge to improve its dewatering performance, and the results showed that as the amount of HACPAM increases, the sludge dewatering performance is significantly improved, and 3.532 kg/t dry solids of HACPAM is regarded as the optimal amount. Compared with the commercially available cationic polyacrylamide (CPAM), HACPAM has a stronger hydrophobic group association effect, with better promotion of the conversion of bound water in sludge flocs into free water, thereby improving the sewage dewatering performance. The 3D spatial structure of dewatered sludge cakes analyzed by computed tomography technology showed that the number of pores of the dewatered sludge cake treated by HACPAM 3 was smaller than that of the cake treated by CPAM, with a reduction in the porosity of 68.8%, resulting in a better hydrophobic effect. In addition, the mechanism of HACPAM improving the dewatering performance is discussed.


Assuntos
Resinas Acrílicas , Esgotos , Cátions , Polimerização
5.
Yakugaku Zasshi ; 140(10): 1225-1233, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32999201

RESUMO

This article describes our stereoselective and site-selective chemical methods for exploiting cationic heterocycles as electron-withdrawing groups (EWGs). We envisioned that the phosphoramide N-H proton of a pyridyl phosphoramide 3 would be activated by the cationic pyridinium moiety that is formed upon protonation. The resulting imide-like N-H proton and the acidic pyridinium proton of the pyridinium phosphoramide 3⋅HX cooperate together, making 3⋅HX a highly acidic dual Brønsted acid. The catalytic ability of 3⋅HX was demonstrated in the development of the first asymmetric Diels-Alder reaction between 1-amide dienes and maleimides. Focusing on the activation of N-bromosuccinimide (NBS) because of its structural similarity to maleimides, the enantioselective bromolactonization of trisubstituted olefinic acids was accomplished utilizing pyridyl phosphoramide 3f as a Brønsted base catalyst bearing an acidic N-H proton. Lastly, our strategy for the site-selective acylation of polyol compounds is described. In our system, a pyridine aldoxime ester 10, used as a mild acylating reagent, was activated by a catalytic amount of Lewis acid via the inductive effect of the cationic pyridinium moiety. The resulting metal complex preferentially attracted the alcohol with a Lewis basic site, thereby facilitating selective acylation via a template effect. This metal-template-driven strategy allowed for the site-selective acylation of diverse α-hydroxyamides, including unprotected N-glycolyl aminosugars.


Assuntos
Cátions/química , Cátions/síntese química , Química Orgânica/métodos , Desenvolvimento de Medicamentos/métodos , Elétrons , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Acilação , Amidas/química , Catálise , Complexos de Coordenação/química , Reação de Cicloadição , Ésteres/química , Compostos de Pralidoxima/química , Estereoisomerismo
6.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3883-3889, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893585

RESUMO

Shotgun based proteomics and peptidomics analysis were used to investigate the proteins and peptides in marine traditional Chinese medicine(TCM) Sepiae Endoconcha(cuttlebone). Peptides were extracted from cuttlebone by acidified methanol, and then strong cation exchange(SCX) resin was used to enrich those peptides. Also, proteins from cuttlebone were extracted and digested by trypsin. nano-LC Q Exactive Orbitrap mass spectrometry was used to analyze proteins and peptides from cuttlebone. As a result, a total of 16 proteins and 168 peptides were identified by protein database search, and 328 peptides were identified by De novo sequencing. The identified proteins were hemocyanin, enolase, myosin, actin, calmodulin, etc., and the identified peptides were derived from actin, histone, and tubulin. All these proteins and peptides were important components in cuttlebone, which would provide important theoretical and research basis for marine TCM cuttlebone investigations.


Assuntos
Peptídeos , Proteômica , Cátions , Bases de Dados de Proteínas , Espectrometria de Massas
7.
Chemosphere ; 254: 126918, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957302

RESUMO

The increasing application of various surfactants nowadays, may lead to the contamination of the natural environment and represent potential threat to terrestrial higher plants. In this article, the effect of 13 surfactants, with dodecyl alkyl chain and various aromatic (imidazolium, pyridinium, thiazolium) and aliphatic (guanidinium, ammonium, thiosemicarbazidium) polar heads, on germination, development and growth of wheat and cucumber was investigated. The study aimed to prove how changes in lipophilicity of surfactants and their various structural modifications (existence of the aliphatic or aromatic polar group, the introduction of oxygen and sulfur) influence toxicity towards investigated plants. The calculated lipophilic parameter (AlogP) is shown to be a useful parameter for predicting potential toxicity of the compound. The strategy of using surfactants with aliphatic polar heads instead of aromatic prove to be a promising strategy in reducing harmful effect, as well as the introduction of polar groups in the structure of cation. From all investigated compounds, surfactants with imidazolium polar head displayed the most harmful effect towards wheat and cucumber. The cucumber seeds were more sensitive to the addition of surfactants comparing to wheat. All obtained experimental results were additionally investigated using computational methods, simulating the transport of surfactants through a lipid bilayer. The influence of cation tendency to fit in lipid bilayer structure was correlated with toxicity. For the first time, it is concluded that cation ability to mimic the structure of bilayer have less harmful effect on plant development.


Assuntos
Cucumis sativus/efeitos dos fármacos , Imidazóis/toxicidade , Compostos de Piridínio/toxicidade , Tensoativos/toxicidade , Triticum/efeitos dos fármacos , Cátions , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Cucumis sativus/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Imidazóis/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Relação Estrutura-Atividade , Tensoativos/química , Triticum/crescimento & desenvolvimento
8.
Ecotoxicol Environ Saf ; 205: 111346, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977285

RESUMO

It is a daunting challenge to predict toxicity and accumulation of rare earth metals (REMs) in different exposure scenarios (e.g., varying water chemistry and metal combinations). Herein, we investigated the toxicity and uptake of La and Ce in the presence of various levels of Ca, Mg, Na, K, and at different pH values, as well as the combined effects of La and Ce in wheat Triticum aestivum. Major cations (Ca2+ and Mg2+) significantly mitigated the toxicity and accumulation of La3+/Ce3+. Toxicity and uptake of La, Ce, and La-Ce mixtures could be well quantified by the multi-metal biotic ligand model (BLM) and by the Langmuir-type uptake model with the consideration of the competitive effects of Ca2+ and Mg2+, with more than 85.1% of variations explained. The derived binding constants of Ca, Mg, La, and Ce to wheat root were respectively 3.87, 3.59, 6.97, and 6.48 on the basis of toxicity data, and 3.23, 2.84, 6.07, and 5.27 on the basis of uptake data. The use of the alternative WHAM-Ftox approach, requiring fewer model parameters than the BLM but with similar Akaike information criterion (AIC) values, successfully predicted the toxicity and accumulation of La/Ce as well as toxicity of La-Ce mixtures, with at least 76.4% of variations explained. However, caution should be taken when using this approach to explain the uptake of La-Ce mixtures. Our results provided promising tools for delineating REMs toxicity/uptake in the presence of other toxicity-modifying factors or in mixture scenarios.


Assuntos
Metais Terras Raras/toxicidade , Triticum/fisiologia , Disponibilidade Biológica , Cátions/farmacologia , Ligantes , Metais/farmacologia , Modelos Biológicos , Sódio , Triticum/efeitos dos fármacos
9.
Chemosphere ; 261: 127736, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32750618

RESUMO

A novel p(AA)-g-GO material was prepared by grafting polymerization of acrylic acid (AA) onto graphene oxide (GO) skeleton, presenting efficient removal of dyes from wastewater, because the layer spacing of GO is expanded and successfully introduced numerous polar carboxyl groups. The study revealed a rapid adsorption kinetic process and the adsorption capacity for methylene blue (MB) increases with pH, contact time, initial dye concentration and temperature. The maximum adsorption capacity is about 1448.2 mg/g at 25 °C for MB according to the Langmuir isotherm. More importantly, the adsorbent maintains excellent adsorption capacity after five cycles of adsorption-desorption and has remarkable selective separability for methylene blue/methyl orange mixed solution at pH = 10. Furthermore, the equilibrium adsorption capacities for other cationic dyes as malachite green (MG), basic fuchsin (BF) and rhodamine B (RhB) reached 582.1, 571.7 and 437.1 mg/g, respectively. Additionally, the mechanism analysis indicated that electrostatic interactions, π-π conjugation and hydrogen bonding are the predominant forces for adsorbing cationic dyes. Therefore, p(AA)-g-GO is an outstanding adsorbent and has a potential application prospect in the treatment of dye wastewater.


Assuntos
Acrilatos/química , Corantes/isolamento & purificação , Grafite/química , Águas Residuárias/química , Purificação da Água/métodos , Adsorção , Cátions , Azul de Metileno/isolamento & purificação , Corantes de Rosanilina/isolamento & purificação
10.
Environ Res ; 188: 109872, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32846651

RESUMO

A comprehensive analysis of the chemical composition of precipitation was performed on rainwater samples collected between 1978 and 2017 over the conterminous US. A total of 86470 data records downloaded from the National Atmospheric Deposition Program were statistically analyzed and assessed in terms of precipitation chemistry. The ion abundance followed the Cl⁻ > Na⁺ > SO42⁻ > Ca2⁺ > H⁺ > NH4⁺ > NO3⁻ > Mg2⁺ > HCO3⁻ > K⁺ downward trend, showing that chloride and sodium were the most dominant among anions and cations. Ca2+, SO42- and NH4+ concentrations were notable in desert areas or in regions with significant anthropogenic activity. Frequency analysis of pH values showed that the 87.90% of the pH is acidic, exhibiting values under 5.6. According to the acidifying and neutralization potential, rainwater pH is mostly alkaline in the Western region, presenting acidic values in highly industrialized areas, in the Central and Eastern Regions. Fractional acidity showed that in the majority of the studied sampling sites 61% of the acidity in precipitation is neutralized, due to the presence of the main neutralizing agents (NH4+, Ca2+, Na+), fact sustained by the neutralization factor values. The relationship between acidic and alkaline components was thoroughly examined by ionic ratios and the ammonium availability index. Wet deposition rates of major ions confirmed the dominance of acidic species over neutralizing ones, as well as the significant imprint of regional climate and heavily industrialized areas on the precipitation chemistry. The complex major ion source apportionment, including marine and crustal enrichment factors, sea salt and non-sea salt fractions, Spearman's rank correlation analysis and Principal Component Analysis, showed that anthropogenic influences are the most significant, including coal-fired power plants, oil refineries, major industries and agricultural activities. Crustal and marine sources also presented a prominent imprint on the rainwater chemistry of the conterminous US.


Assuntos
Poluentes Atmosféricos , Chuva , Poluentes Atmosféricos/análise , Ânions/análise , Cátions , Cloretos , Monitoramento Ambiental , Estações do Ano , Estados Unidos
11.
J Chromatogr A ; 1628: 461479, 2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32822997

RESUMO

In this study, the thermodynamics of binding of two industrial mAbs to multimodal cation exchange systems was investigated over a range of buffer and salt conditions via a van't Hoff analysis of retention data. Isocratic chromatography was first employed over a range of temperature and salt conditions on three multimodal resins and the retention data were analyzed in both the low and high salt regimes. While mAb retention decreased with salt for all resins at low salts, retention increased at high salts for two of the resins, suggesting a shift from electrostatic to more hydrophobic driven interactions. The retention data at various temperatures were then employed to generate non-linear van't Hoff plots which were fit to the quadratic form of the van't Hoff equation. At low salts, retention of both mAbs decreased with increasing temperature and the van't Hoff plots were concave downward on Capto MMC and Nuvia cPrime, while being concave upward on Capto MMC ImpRes. Different trends were observed on some of the resins with respect to both the concavity of the van't Hoff plots as well as the impact of temperature on the favorable enthalpies in the low salt regime. Interestingly, while increasingly favorable enthalpy with temperature was observed with Capto MMC and Nuvia cPrime at low salt, favorable enthalpy decreased with temperature for Capto MMC ImpRes. At high salts, binding of both mAbs on the two Capto resins were consistently entropically driven, consistent with desolvation. While the negative heat capacity data at low salts indicated that desolvation of polar/charged groups were important in Capto MMC and Nuvia cPrime, the positive data suggested that desolvation of non-polar groups were more important with Capto MMC ImpRes. Finally, the data at high salts indicated that desolvation of non-polar groups was the major driver for binding of both mAbs to the Capto resins under these conditions.


Assuntos
Anticorpos Monoclonais/química , Cromatografia por Troca Iônica/métodos , Adsorção , Cátions , Interações Hidrofóbicas e Hidrofílicas , Dinâmica não Linear , Eletricidade Estática , Termodinâmica
12.
J Vis Exp ; (162)2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32831304

RESUMO

Several negatively charged tissues in the body, like cartilage, present a barrier to the targeted drug delivery due to their high density of negatively charged aggrecans and, therefore, require improved targeting methods to increase their therapeutic response. Because cartilage has a high negative fixed charge density, drugs can be modified with positively charged drug carriers to take advantage of electrostatic interactions, allowing for enhanced intra-cartilage drug transport. Studying the transport of drug carriers is, therefore, crucial towards predicting the efficacy of drugs in inducing a biological response. We show the design of three experiments which can quantify the equilibrium uptake, depth of penetration and non-equilibrium diffusion rate of cationic peptide carriers in cartilage explants. Equilibrium uptake experiments provide a measure of the solute concentration within the cartilage compared to its surrounding bath, which is useful for predicting the potential of a drug carrier in enhancing therapeutic concentration of drugs in cartilage. Depth of penetration studies using confocal microscopy allow for the visual representation of 1D solute diffusion from the superficial to deep zone of cartilage, which is important for assessing whether solutes reach their matrix and cellular target sites. Non-equilibrium diffusion rate studies using a custom-designed transport chamber enables the measurement of the strength of binding interactions with the tissue matrix by characterizing the diffusion rates of fluorescently labeled solutes across the tissue; this is beneficial for designing carriers of optimal binding strength with cartilage. Together, the results obtained from the three transport experiments provide a guideline for designing optimally charged drug carriers which take advantage of weak and reversible charge interactions for drug delivery applications. These experimental methods can also be applied to evaluate the transport of drugs and drug-drug carrier conjugates. Further, these methods can be adapted for the use in targeting other negatively charged tissues such as meniscus, cornea and the vitreous humor.


Assuntos
Cartilagem/metabolismo , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/farmacocinética , Animais , Cartilagem/efeitos dos fármacos , Cátions/química , Difusão , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Peptídeos/administração & dosagem , Peptídeos/química , Eletricidade Estática
13.
J Environ Radioact ; 222: 106364, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32791375

RESUMO

The activity concentrations of radiocesium (137Cs) in wild mushrooms are reported to vary according to species, genus or ecological types. In addition, the concentration fluctuates among the same species collected within the same area. Therefore, we investigated whether the 137Cs concentration of wild mushrooms would be (1) spatially biased, or (2) influenced by the 137Cs or exchangeable potassium concentrations in the soils below. We set two survey plots 300 m apart in a Himalayan cedar forest in Tsukuba, Japan, where ca. 30 kBq/m2 of 137Cs was deposited after the Fukushima Nuclear Power Plant accident. From these plots, we collected fruit-bodies (fungal structures for spore production) of co-occurring Boletus hiratsukae, a mycorrhizal species, as well as from the soil below. The mean 137Cs concentrations in the fruit-bodies were significantly different between the two plots, but no difference was observed in the soil 137Cs concentration between the plots. Significant spatial autocorrelation was observed in the 137Cs concentration in the organic layer for both sites, but no significant spatial autocorrelation was observed in the 137Cs of fruit-bodies. Therefore, the variation in the 137Cs concentrations of co-occurred B. hiratsukae was not explained by spatial bias or radioactivity in the below soil. In contrast, the exchangeable potassium concentration in the soil was negatively correlated with the 137Cs in the fruit-bodies. Our results suggest that the 137Cs absorption of wild mushrooms would be suppressed by the competitive effect of exchangeable potassium in the surrounding soils.


Assuntos
Agaricales , Radioisótopos de Césio , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Agaricales/química , Cátions , Radioisótopos de Césio/análise , Japão , Solo
14.
J Environ Manage ; 272: 111082, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32854887

RESUMO

The remediation of a real textile wastewater aiming its reuse in the textile industry was carried out by integrating two processes: (i) a chemical or electrochemical advanced oxidation process (AOP or EAOP) based on Fenton's reaction for organics degradation, and (ii) a cation exchange process using marine macroalgae for removal of the iron acting in the Fenton's reaction based processes. Four AOPs/EAOPs at acidic pH 2.8 were tested: Fenton, photo-Fenton with ultraviolet A (UVA) radiation (PF/UVA), electro-Fenton (EF) and photoelectro-Fenton with UVA radiation (PEF/UVA). These processes provided very high color removals. After a running time of 45 min, the color removals were 68-95% for the Fenton process, 76-94% for the EF process, 80-98% for the PF/UVA process and 85-100% for the PEF/UVA process. In contrast, the mineralization was negligible for all the processes, indicating the generation/presence of persistent colorless compounds. The PF process was selected as first treatment stage due to its ability for color removal and related lower costs. A set of six marine macroalgae (Gracilaria caudata, Gracilaria cervicornis, Ascophyllum nodosum, Fucus spiralis, Laminaria hyperborea and Pelvetia canaliculata) were tested for iron uptake. Laminaria hyperborea showed the highest ion exchange capacity and affinity for iron species. Its application allowed the removal of all the iron acting in the PF process (3.4 mg/L). The textile wastewater resulting from the application of PF process followed by cation exchange with Laminaria hyperborea was successfully reused in scouring, bleaching and dyeing processes.


Assuntos
Águas Residuárias , Poluentes Químicos da Água/análise , Cátions , Peróxido de Hidrogênio , Oxirredução , Têxteis , Água
15.
J Chromatogr A ; 1626: 461348, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32797828

RESUMO

Solid-phase extraction (SPE) is a widely-used and very well-established sample preparation technique for liquid samples. An area of on-going focus for innovation in this field concerns the development of new and improved SPE sorbents that can enhance the sensitivity and/or the selectivity of SPE processes. In this context, mixed-mode ion-exchange sorbents have been developed and commercialised, thereby allowing enhanced capacity and selectivity to be offered by one single material. The ion-selectivity of these materials is such that either anion-exchange or cation-exchange is possible, however one limitation to their use is that more than one sorbent type is required to capture both anions and cations. In this paper, we disclose the design, synthesis and exploitation of a novel SPE sorbent based on microporous polymer microspheres with amphoteric character. We show that it is possible to switch the ion-exchange retention mechanism of the sorbent simply by changing the pH of the loading solution; anion-exchange dominates at low pH, cation-exchange dominates at high pH, and both mechanisms can contribute to retention when the polymer-bound amphoteric species, which are based on the α-amino acid sarcosine (N-methylglycine), are in a zwitterionic state. This is an interesting and useful feature, since it allows distinctly different groups of analytes (acids and bases) to be fractionated using one single amphoteric sorbent with dual-functionality. The sarcosine-based sorbent was applied to the SPE of acidic, basic and amphoteric analytes from ultrapure water, river water and effluent wastewater samples. Under optimised conditions (loading 100 mL of sample at pH 6, washing with 1 mL of MeOH and eluting with an acidic or basic additive in MeOH) the recoveries for most of the compounds were from 57% to 87% for river water and from 61% to 88% for effluent wastewater. We anticipate that these results will lay the basis for the development of a new family of multifunctional sorbents, where two or more separation mechanisms can be embedded within one single, bespoke material optimised for application to challenging chemical separations to give significant selectivity advantages over essentially all other state-of-the-art SPE sorbents.


Assuntos
Ácidos/química , Microesferas , Polímeros/química , Extração em Fase Sólida/métodos , Adsorção , Cátions , Concentração de Íons de Hidrogênio , Troca Iônica , Porosidade , Rios/química , Solventes/química , Águas Residuárias/química , Poluentes Químicos da Água/análise
16.
J Chromatogr A ; 1626: 461350, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32797830

RESUMO

In ionexchange chromatography, the pH gradient mode becomes more and more popular today for the analysis of therapeutic proteins as this mode can provide higher or alternative selectivity to the commonly used salt gradient mode. Ideally, a linear pH response is expected when performing linear gradients. However up to now, only a very few buffer systems have been developed and are commercially available which can perform nearly linear pH responses when flowing through a given column. It is also known that a selected buffer system (mobile phase) can work well on one column but can fail on other column. The goal of this study was to practically evaluate the effects that ionexchange columns (weak and strong exchangers) might have on effluent pH, when performing linear pH gradient separations of therapeutic monoclonal antibodies. To attain this objective, the pH was monitored on-line at the column outlet using a specific setup. To make comprehensive observations of the phenomenon, four different mobile phase conditions and five cation exchange columns (weak and strong exchangers) were employed. The obtained pH responses were systematically compared to responses measured in the absence of the columns. From this work, it has become clear that both the column and mobile phase can have significant effects on pH gradient chromatography and that their combination must be considered when developing a new method. Phase systems (column + mobile phase) providing linear pH responses are indeed the most suitable for separating mAbs with different isoelectric points and, with them, it is possible to elute mAbs across wide retention time ranges and with high selectivity.


Assuntos
Cromatografia por Troca Iônica/métodos , Anticorpos Monoclonais/análise , Cátions/química , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Troca Iônica , Força Próton-Motriz , Hidróxido de Sódio/química , Taurina/análogos & derivados , Taurina/química
17.
Int J Nanomedicine ; 15: 5873-5899, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848395

RESUMO

Supramolecular vesicles are the most popular smart nano-drug delivery systems (SDDs) because of their unique cavities, which have high loading carrying capacity and controlled-release action in response to specific stimuli. These vesicles are constructed from amphiphilic molecules via host-guest complexation, typically with targeted stimuli-responsive units, which are particularly important in biotechnology and biomedicine applications. Amphiphilic pillar[n]arenes, which are novel and functional macrocyclic host molecules, have been widely used to construct supramolecular vesicles because of their intrinsic rigid and symmetrical structure, electron-rich cavities and excellent properties. In this review, we first explain the synthesis of three types of amphiphilic pillar[n]arenes: neutral, anionic and cationic pillar[n]arenes. Second, we examine supramolecular vesicles composed of amphiphilic pillar[n]arenes recently used for the construction of SDDs. In addition, we describe the prospects for multifunctional amphiphilic pillar[n]arenes, particularly their potential in novel applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Compostos de Amônio Quaternário/química , Animais , Cátions/química , Humanos , Compostos de Amônio Quaternário/síntese química
18.
Ecotoxicol Environ Saf ; 205: 111187, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853869

RESUMO

Ionic liquids have been becoming new 'green solvent' because of the low saturation vapor pressure, less volatilization and more recycling utilization. Since most ILs are soluble in water, it should be indispensable to evaluate the ecotoxicology effect of ILs on aquatic environment before using them widely. Based on the concept of norm index, a set of norm descriptors were proposed for anions, cations and ILs. The whole IL structure optimization method has been used to build a predictive norm index-based quantitative structure-toxicity relationship model for the toxicity of ILs on Vibrio fischeri. Statistical results indicated that norm descriptors were reliable and robust in expressing the relationship between structural information and toxicity of ILs. Meanwhile, a series of ILs without experimental values were predicted based on this stable QSTR model. The results indicated that for imidazole-based ILs, an increase in the length of substituent in the branch could enhance the toxicity of ILs on Vibrio fischeri, and the branch contains hydroxyl group, double bond or triple bonds might reduce the toxicity of ILs. Results obtained in this present work would be valuable for the molecular design and the toxicity evaluation toward aquatic organism of ILs.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Imidazóis , Líquidos Iônicos , Modelos Teóricos , Solventes , Ânions/química , Cátions/química , Ecotoxicologia/métodos , Imidazóis/química , Imidazóis/toxicidade , Líquidos Iônicos/química , Líquidos Iônicos/toxicidade , Valor Preditivo dos Testes , Relação Quantitativa Estrutura-Atividade , Solventes/química , Solventes/toxicidade
19.
J Chromatogr A ; 1628: 461446, 2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32822985

RESUMO

Ionic liquids, as tuneable, highly soluble, non-flammable, non-volatile and reusable extractants, have attracted extensive attention in the extraction of flavonoids from plants. In the present work, novel dual-chain imidazolium-derived ionic liquids were synthesized by a simple and efficient method and characterized (NMR spectroscopy, thermal stability, viscosity, conductivity, and polarity). Then, the imidazolium ionic liquids with different cation were used in the microwave-assisted extraction of flavonoids from Pinus massoniana Lamb. The results showed that the ionic liquid [Bmbim]Br, with a relatively low viscosity, conductivity and π* as well as a relatively large ß, offered the best extraction efficiency and selectivity for flavonoids. Subsequently, the parameters of the extraction procedure for flavonoids were optimized as follows: extraction temperature of 80 °C, extraction time of 60 min, microwave power of 300 W, solid-liquid ratio of 1:20, and [Bmbim]Br solution concentration of 1.0 mol/L. The extraction yield of total flavonoids was 41.07 mg/g. Finally, a recovery method of the ionic liquid had been demonstrated, and the recovery rate of ionic liquid was 73.14%.


Assuntos
Flavonoides/isolamento & purificação , Líquidos Iônicos/síntese química , Cátions , Flavonoides/química , Micro-Ondas , Pinus/química , Extratos Vegetais/química
20.
Water Res ; 184: 116151, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682080

RESUMO

This study examined effects of aquatic and soil natural organic matter (NOM) exemplified by standard Suwannee River fulvic acid (SRFA) and Pahokee Peat fulvic acid (PPFA), respectively, on the electrochemical (EC) reactivity and mass transfer properties of the cationic organic probe toluidine blue (TB) that forms complexes with NOM. EC measurements that were carried out using the method of rotating ring-disc electrode (RRDE) showed that for disc potentials below -0.4 V vs. the standard Ag/AgCl reference electrode, TB molecules undergo EC reduction accompanied by the formation of EC-active products that undergo oxidation at the ring electrode. EC reactions of TB in the range of potentials -0.2 to -0.4 V were determined to involve free TB+ cations and TB species adsorbed on the electrode surface. The EC reduction of TB species at the disc potentials < -0.4 V was controlled by the mass transfer of the free TB+ cations and TB/NOM complexes to the electrode surface. Formation of TB/NOM complexes caused the mass transfer-controlled TB currents to undergo a consistent decrease. The observed changes were correlated with the extent of TB/NOM complexation and decreases of the diffusion coefficients of TB/NOM complexes that have higher molecular weights (MW) than the free cations. Properties of the intermediates formed upon the reduction of TB+ cations were also affected by NOM. These results demonstrate that RRDE measurements of EC reactions of TB or possibly other EC active probes allow probing the complexation of EC-active organic species with NOM and mass transfer properties of NOM complexes and ultimately NOM itself.


Assuntos
Benzopiranos , Cloreto de Tolônio , Cátions , Eletrodos , Substâncias Húmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA