Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.857
Filtrar
1.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361563

RESUMO

The consumption of plant-based food is important for health promotion, especially regarding the prevention and management of chronic diseases such as diabetes. We investigated the effects of a lemon extract (LE), containing ≥20.0% total flavanones and ≥1.0% total hydroxycinnamic acids, on insulin signaling in murine 3T3-L1 adipocytes treated with TNF-α, which was used to mimic in vitro the insulin resistance condition that characterizes diabetes mellitus. Our results showed LE increased PPARγ, GLUT4 and DGAT-1 levels, demonstrating the potential of this lemon extract in the management of insulin resistance conditions associated with TNF-α pathway activation. LE treatment further decreased the release of interleukin 6 (IL-6) and restored triglyceride synthesis, which is the main feature of a healthy adipocyte.


Assuntos
Adipócitos/metabolismo , Citrus/química , Resistência à Insulina , Compostos Fitoquímicos , Extratos Vegetais , Fator de Necrose Tumoral alfa/efeitos adversos , Células 3T3-L1 , Animais , Camundongos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
2.
Nat Commun ; 12(1): 4718, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354069

RESUMO

Phospholipid synthesis and fat storage as triglycerides are regulated by lipin phosphatidic acid phosphatases (PAPs), whose enzymatic PAP function requires association with cellular membranes. Using hydrogen deuterium exchange mass spectrometry, we find mouse lipin 1 binds membranes through an N-terminal amphipathic helix, the Ig-like domain and HAD phosphatase catalytic core, and a middle lipin (M-Lip) domain that is conserved in mammalian and mammalian-like lipins. Crystal structures of the M-Lip domain reveal a previously unrecognized protein fold that dimerizes. The isolated M-Lip domain binds membranes both in vitro and in cells through conserved basic and hydrophobic residues. Deletion of the M-Lip domain in lipin 1 reduces PAP activity, membrane association, and oligomerization, alters subcellular localization, diminishes acceleration of adipocyte differentiation, but does not affect transcriptional co-activation. This establishes the M-Lip domain as a dimeric protein fold that binds membranes and is critical for full functionality of mammalian lipins.


Assuntos
Fosfatidato Fosfatase/química , Células 3T3-L1 , Adipogenia , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Sequência Conservada , Cristalografia por Raios X , Células HEK293 , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Genética
3.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443613

RESUMO

Adipogenesis is a complex process in which cell commitment and mitotic clonal expansion (MCE) are in-sequence crucial events leading to terminal adipocyte differentiation. The molecules able to block some key signals in this cascade can hamper adipogenesis becoming promising agents to counteract hyperplasia and hypertrophy of adipose tissue. Mono- and di-caffeoylquinic acid isomers are biologically active polyphenols, displaying in vitro and in vivo antioxidant, hepatoprotective, anti-diabetic and anti-obesity properties. Among these isomers, 3,5-dicaffeoylquinic acid (DCQA) has been reported to inhibit lipid accumulation in adipose cells more successfully than others. Thus, we investigated DCQA effects and molecular mechanisms on 3T3-L1 pre-adipocytes induced to differentiate with a hormonal cocktail (MDI). Oil Red O incorporation assessed that DCQA pre-treatment inhibited lipid accumulation in 3T3-L1 cells induced to differentiate for 10 days. At this time, an increased phosphorylation of both AMP-activated kinase and acetyl-CoA carboxylase, as well as a strong decrease in fatty acid synthase protein level, were registered by immunoblotting, thereby suggesting that DCQA treatment can reduce fatty acid anabolism in 3T3-L1 adipocytes. Furthermore, BrdU incorporation assay, performed 48 h after hormonal stimulation, revealed that DCQA treatment was also able to hinder the 3T3-L1 cell proliferation during the MCE, which is an essential step in the adipogenic process. Thus, we focused our attention on early signals triggered by the differentiation stimuli. In the first hours after hormonal cocktail administration, the activation of ERK1/2 and Akt kinases, or CREB and STAT3 transcription factors, was not affected by DCQA pre-treatment. Whereas 24 h after MDI induction, DCQA pre-treated cells showed increased level of the transcription factor Nrf2, that induced the expression of the antioxidant enzyme heme oxygenase 1 (HO-1). In control samples, the expression level of HO-1 was reduced 24 h after MDI induction in comparison with the higher amount of HO-1 protein found at 2 h. The HO-1 decrease was functional by allowing reactive oxygen species to boost and allowing cell proliferation induction at the beginning of MCE phase. Instead, in DCQA-treated cells the HO-1 expression was maintained at high levels for a further 24 h; in fact, its expression decreased only 48 h after MDI stimulation. The longer period in which HO-1 expression remained high led to a delay of the MCE phase, with a subsequent inhibition of both C/EBP-α expression and adipocyte terminal differentiation. In conclusion, DCQA counteracting an excessive adipose tissue expansion may become an attractive option in obesity treatment.


Assuntos
Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ácido Clorogênico/análogos & derivados , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Mitose/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Ácido Clorogênico/farmacologia , Camundongos
4.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443331

RESUMO

KD025, a ROCK2 isoform-specific inhibitor, has an anti-adipogenic activity which is not mediated by ROCK2 inhibition. To identify the target, we searched binding targets of KD025 by using the KINOMEscanTM screening platform, and we identified casein kinase 2 (CK2) as a novel target. KD025 showed comparable binding affinity to CK2α (Kd = 128 nM). By contrast, CK2 inhibitor CX-4945 and ROCK inhibitor fasudil did not show such cross-reactivity. In addition, KD025 effectively inhibited CK2 at a nanomolar concentration (IC50 = 50 nM). We examined if the inhibitory effect of KD025 on adipocyte differentiation is through the inhibition of CK2. Both CX-4945 and KD025 suppressed the generation of lipid droplets and the expression of proadipogenic genes Pparg and Cebpa in 3T3-L1 cells during adipocyte differentiation. Fasudil exerted no significant effect on the quantity of lipid droplets, but another ROCK inhibitor Y-27632 increased the expression of Pparg and Cebpa. Both CX-4945 and KD025 acted specifically in the middle stage (days 1-3) but were ineffective when treated at days 0-1 or the late stages, indicating that CX-4945 and KD025 may regulate the same target, CK2. The mRNA and protein levels of CK2α and CK2ß generally decreased in 3T3-L1 cells at day 2 but recovered thereafter. Other well-known CK2 inhibitors DMAT and quinalizarin inhibited effectively the differentiation of 3T3-L1 cells. Taken together, the results of this study confirmed that KD025 inhibits ROCK2 and CK2, and that the inhibitory effect on adipocyte differentiation is through the inhibition of CK2.


Assuntos
Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Caseína Quinase II/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Células 3T3-L1 , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos
5.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361783

RESUMO

Amber-the fossilized resin of trees-is rich in terpenoids and rosin acids. The physiological effects, such as antipyretic, sedative, and anti-inflammatory, were used in traditional medicine. This study aims to clarify the physiological effects of amber extract on lipid metabolism in mouse 3T3-L1 cells. Mature adipocytes are used to evaluate the effect of amber extract on lipolysis by measuring the triglyceride content, glucose uptake, glycerol release, and lipolysis-related gene expression. Our results show that the amount of triacylglycerol, which is stored in lipid droplets in mature adipocytes, decreases following 96 h of treatment with different concentrations of amber extract. Amber extract treatment also decreases glucose uptake and increases the release of glycerol from the cells. Moreover, amber extract increases the expression of lipolysis-related genes encoding perilipin and hormone-sensitive lipase (HSL) and promotes the activity of HSL (by increasing HSL phosphorylation). Amber extract treatment also regulates the expression of other adipocytokines in mature adipocytes, such as adiponectin and leptin. Overall, our results indicate that amber extract increases the expression of lipolysis-related genes to induce lipolysis in 3T3-L1 cells, highlighting its potential for treating various obesity-related diseases.


Assuntos
Adipócitos/efeitos dos fármacos , Âmbar/farmacologia , Misturas Complexas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipolipemiantes/farmacologia , Lipólise/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Âmbar/química , Animais , Diferenciação Celular , Misturas Complexas/química , Etanol/química , Glucose/metabolismo , Glicerol/metabolismo , Hipolipemiantes/química , Leptina/genética , Leptina/metabolismo , Gotículas Lipídicas/química , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Camundongos , Perilipina-1/genética , Perilipina-1/metabolismo , Fosforilação/efeitos dos fármacos , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
6.
J Agric Food Chem ; 69(32): 9299-9312, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342980

RESUMO

Ginsenoside F2 (GF2) is a protopanaxdiol saponin from Panax ginseng leaves and possesses many potential pharmacological properties. GF2 may prevent obesity by directly binding to the peroxisome proliferator-activated receptor-γ (PPARγ) and inhibiting adipocyte differentiation. However, the mechanism by which GF2 alleviates obesity is unknown. We therefore explored the anti-adipogenesis and anti-obesity effects of GF2 in vitro and in vivo. GF2 inhibited differentiation and reduced the triglyceride (TG) content of 3T3-L1 preadipocytes in the early stage of adipogenesis. Administration of GF2 (50 and 100 mg/kg) to obese mice for 4 weeks reduced the body weight gain, weight of adipose tissues, adipocyte size, and total cholesterol, TG, and AST levels in serum. RNA sequencing and real-time quantitative PCR indicated that GF2 decreased the expression levels of adipokines, including PPARγ, fatty acid synthase, and adiponectin. KEGG enrichment and western blot analyses demonstrated that GF2 accelerated the phosphorylation of AMPK and ACC in vitro and in vivo. Moreover, GF2 promoted the biosynthesis of mitochondria in 3T3-L1 adipocytes and increased the expression of antioxidant enzymes such as SOD and GSH-Px in the liver of obese mice. Therefore, GF2 suppressed adipogenesis and obesity by regulating the expression of adipokines and activating the AMPK pathway. Hence, the findings suggest that GF2 may have potential therapeutic implications to treat obesity.


Assuntos
Adipogenia , Fármacos Antiobesidade , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Adipogenia/genética , Animais , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Ginsenosídeos , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/genética , PPAR gama/genética
7.
Molecules ; 26(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299508

RESUMO

Although the hypoglycemic potential of brewer's yeast extract has been reported, there is limited information pertaining to the hypoglycemic ingredients of Saccharomyces pastorianus extract and their mechanisms of action available. This study aimed to investigate the in vivo and in vitro hypoglycemic effect of S. pastorianus extract and to elucidate its molecular mechanisms. S. pastorianus extract was mainly composed of proteins followed by carbohydrates. In diabetic rats, oral administration of S. pastorianus extract significantly reduced the levels of plasma glucose and enhanced the activity of hepatic glucose-6-phosphatase dehydrogenase. Treatment with S. pastorianus extract increased the localization of type 4 glucose transporter (GLUT4), PTP, and insulin receptor at 3T3-L1 cell membranes and raised the levels of P38 MAPK, PI3K, and AKT in the cytosol. In agreement with these results, pretreatment of 3T3-L1 cells with inhibitors of PTP, PI3K, Akt/PKB, and p38 MAPK inhibited glucose uptake induced by application of S. pastorianus extract. Most importantly, a 54 kDa protein with hypoglycemic activity was identified and suggested as the major ingredient contributing to the hypoglycemic activity of S. pastorianus extract. In summary, these results clearly confirm the hypoglycemic activity of S. pastorianus extract and provide critical insights into the underlying molecular mechanisms.


Assuntos
Hipoglicemiantes/farmacologia , Saccharomyces/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Proteínas de Transporte de Monossacarídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Molecules ; 26(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299620

RESUMO

Type 2 diabetes mellitus (T2DM) is linked to insulin resistance and a loss of insulin sensitivity, leading to millions of deaths worldwide each year. T2DM is caused by reduced uptake of glucose facilitated by glucose transporter 4 (GLUT4) in muscle and adipose tissue due to decreased intracellular translocation of GLUT4-containing vesicles to the plasma membrane. To treat T2DM, novel medications are required. Through a fluorescence microscopy-based high-content screen, we tested more than 600 plant extracts for their potential to induce GLUT4 translocation in the absence of insulin. The primary screen in CHO-K1 cells resulted in 30 positive hits, which were further investigated in HeLa and 3T3-L1 cells. In addition, full plasma membrane insertion was examined by immunostaining of the first extracellular loop of GLUT4. The application of appropriate inhibitors identified PI3 kinase as the most important signal transduction target relevant for GLUT4 translocation. Finally, from the most effective hits in vitro, four extracts effectively reduced blood glucose levels in chicken embryos (in ovo), indicating their applicability as antidiabetic pharmaceuticals or nutraceuticals.


Assuntos
Glicemia/efeitos dos fármacos , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetulus , Diabetes Mellitus Tipo 2 , Transportador de Glucose Tipo 4/metabolismo , Células HeLa , Humanos , Resistência à Insulina/fisiologia , Camundongos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
J Agric Food Chem ; 69(28): 8038-8049, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34236846

RESUMO

Appropriately increasing intramuscular fat content can help improve meat quality, so it is necessary to explore the internal molecular mechanism of preadipocyte differentiation. The role of heme oxygenase 1 (HO1) in cell oxidative stress, energy metabolism, cell proliferation, and differentiation has gradually been revealed. Here, we used 3'RACE to identify the full-length 3' untranslated region (3'UTR) of HO1 and found that a very short 3'UTR variant was produced by alternative polyadenylation (APA). HO1 with a long 3'UTR variant was identified as a direct target of miR155-5P and miR377-3P. Our experimental results verified the inhibitory effect of HO1 on preadipocyte differentiation. In addition, our research confirms that by escaping microRNA inhibitory effects, the HO1 3'UTR short variant produced by APA has a higher level of expression. Thus, the HO1 3'UTR short variant has a stronger inhibitory effect on the preadipocyte differentiation than the HO1 3'UTR long variants in 3T3-L1.


Assuntos
MicroRNAs , Poliadenilação , Regiões 3' não Traduzidas , Células 3T3-L1 , Adipogenia/genética , Animais , Heme Oxigenase-1/genética , Proteínas de Membrana , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo
10.
Chem Biol Interact ; 346: 109595, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34302803

RESUMO

Glycyrrhizic acid (GA), a major constituent of the root of licorice (Glycyrrhiza glabra), and has various biological activities, including anti-obesity property. However, the molecular mechanism of anti-adipogenic effect of GA is still unclear. In this study, we investigated the anti-adipogenic effects of GA in mouse adipocytic 3T3-L1 cells and elucidated its underlying molecular mechanism. GA decreased the intracellular triglyceride level. The expression levels of the adipogenic and lipogenic genes were lowered by treatment with GA in a concertation-dependent manner. In contrast, GA did not affect the lipolytic gene expression and the released glycerol level. GA suppressed the early stage of adipogenesis when it was added for 0-3 h after initiation of adipogenesis. Moreover, GA reduced the mRNA levels of CCAAT/enhancer binding protein (C/EBP) ß and C/EBPδ, both of which activate the early stage of adipogenesis. Furthermore, GA decreased phosphorylation of extracellular signal-regulated kinase [ERK: p44/42 mitogen-activated protein kinase (MAPK)] in the early stage of adipogenesis. In addition, a MAPK kinase (MEK) inhibitor, PD98059 reduced the C/EBPß and C/EBPδ gene expression. These results indicate that GA suppressed the early stage of adipogenesis through repressing the MEK/ERK-mediated C/EBPß and C/EBPδ expression in 3T3-L1 cells. Thus, GA has an anti-adipogenic ability and a possible agent for treatment of obesity.


Assuntos
Adipogenia/efeitos dos fármacos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Ácido Glicirrízico/farmacologia , Células 3T3-L1 , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/genética , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Lipólise/efeitos dos fármacos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Triglicerídeos/metabolismo
11.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199668

RESUMO

Obesity is characterized by elevated infiltration of macrophages into adipose tissue, leading to the development of insulin resistance. The black soybean seed coat is a rich source of anthocyanins with antioxidative and anti-inflammatory activities. This study investigated the effects of black soybean anthocyanin extract (BSAn) on obesity-induced oxidative stress, the inflammatory response, and insulin resistance in a coculture system of hypertrophied 3T3-L1 adipocytes and RAW264 macrophages. Coculture of adipocytes with macrophages increased the production of reactive oxygen species and inflammatory mediators and cytokines (NO, MCP-1, PGE2, TNFα, and IL-6) and the release of free fatty acids but reduced anti-inflammatory adiponectin secretion. BSAn treatment (12.5, 25, 50, and 100 µg/mL) alleviated the coculture-induced changes (p < 0.001) and inhibited coculture-induced activation of JNK and ERK signaling (p < 0.01). BSAn also blocked the migration of RAW264.7 macrophages toward 3T3-L1 adipocytes. In addition, treatment with BSAn increased PPARγ expression and glucose uptake in response to insulin in hypertrophied 3T3-L1 adipocyte and RAW264.7 macrophage coculture (p < 0.01). These results demonstrate that BSAn attenuates inflammatory responses and improves adipocyte metabolic function in the coculture of hypertrophied 3T3-L1 adipocytes and RAW264.7 macrophages, suggesting the effectiveness of BSAn for obesity-induced insulin resistance.


Assuntos
Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Hipoglicemiantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Soja/química , Células 3T3-L1 , Animais , Comunicação Celular/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina , Camundongos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
12.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198827

RESUMO

The objective of this study was to investigate molecular mechanisms underlying the ability of carnosic acid to attenuate an early increase in reactive oxygen species (ROS) levels during MDI-induced adipocyte differentiation. The levels of superoxide anion and ROS were determined using dihydroethidium (DHE) and 2'-7'-dichlorofluorescin diacetate (DCFH-DA), respectively. Both superoxide anion and ROS levels peaked on the second day of differentiation. They were suppressed by carnosic acid. Carnosic acid attenuates the translation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4), p47phox, and p22phox, and the phosphorylation of nuclear factor-kappa B (NF-κB) and NF-κB inhibitor (IkBa). The translocation of NF-κB into the nucleus was also decreased by carnosic acid. In addition, carnosic acid increased the translation of heme oxygenase-1 (HO-1), γ-glutamylcysteine synthetase (γ-GCSc), and glutathione S-transferase (GST) and both the translation and nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, these results indicate that carnosic acid could down-regulate ROS level in an early stage of MPI-induced adipocyte differentiation by attenuating ROS generation through suppression of NF-κB-mediated translation of Nox4 enzyme and increasing ROS neutralization through induction of Nrf2-mediated translation of phase II antioxidant enzymes such as HO-1, γ-GCS, and GST, leading to its anti-adipogenetic effect.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Abietanos/farmacologia , DNA Helicases/genética , Heme Oxigenase-1/genética , Proteínas de Membrana/genética , NADPH Oxidase 4/genética , Inibidor de NF-kappaB alfa/genética , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Grupo dos Citocromos b/genética , Etídio/análogos & derivados , Etídio/farmacologia , Fluoresceínas/farmacologia , Glutationa Transferase/genética , Camundongos , NADPH Oxidases/genética , Biossíntese de Proteínas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
13.
Aging (Albany NY) ; 13(13): 17489-17498, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232916

RESUMO

BACKGROUND AND PURPOSE: Obesity is becoming a major global health issue and is mainly induced by the accumulation of adipose tissues mediated by adipogenesis, which is reported to be regulated by peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT enhancer-binding protein α (C/EBPα). Trichostatin A (TSA) is a novel histone deacetylase inhibitor (HDACI) that was recently reported to exert multiple pharmacological functions. The present study will investigate the inhibitory effect of TSA on adipogenesis, as well as the underlying mechanism. METHODS: The adipogenesis of 3T3-L1 cells was induced by stimulation with a differentiation cocktail (DMI) medium for 8 days. MTT assay was used to measure the cell viability and Oil Red O staining was used to evaluate the adipogenesis of 3T3-L1 cells. The total level of triglyceride and released glycerol were detected to evaluate the lipolysis during 3T3-L1 adipogenesis. The expression levels of Leptin, fatty acid-binding protein 4 (FABP4), and sterol regulatory element-binding protein (SREBP1C) were determined by qRT-PCR. qRT-PCR assay was utilized to detect the expression levels of PPARγ and C/EBPα in 3T3-L1 cells. A high-fat diet (HFD) was used to construct an obese mice model, followed by the treatment with TSA. HE staining was conducted to evaluate the pathological state of adipose tissues. Body weights and the weights of adipose tissues were recorded to evaluate the anti-obesity property of TSA. RESULTS: Firstly, the promoted lipid accumulation induced by DMI incubation was significantly reversed by the treatment with TSA in a dose-dependent manner. The elevated expression levels of Leptin, FABP4, SREBP1C, PPARγ, and C/EBPα induced by the stimulation with DMI incubation were dramatically inhibited by the introduction of TSA, accompanied by the upregulation of phosphorylated AMP-activated protein kinase (p-AMPK). Secondly, the inhibitory effect of TSA against the expression level of PPARγ and lipid accumulation was greatly abolished by an AMPK inhibitor. Lastly, the increased body weights and visceral adipocyte tissue weight, as well as the enlarged size of adipocytes induced by HFD were pronouncedly reversed by the administration of TSA. CONCLUSION: TSA inhibited adipogenesis in 3T3-L1 preadipocytes by activating the AMPK pathway.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Células 3T3-L1 , Tecido Adiposo/patologia , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Proteínas de Ligação a Ácido Graxo/genética , Glicerol/metabolismo , Leptina/metabolismo , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Obesos , Obesidade/genética , Triglicerídeos/metabolismo
14.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201755

RESUMO

Diabetes mellitus is a debilitating disease, plaguing a significant number of people around the globe. Attempts to develop new drugs on well-defined atoxic metalloforms, which are capable of influencing fundamental cellular processes overcoming insulin resistance, has triggered an upsurge in molecular research linked to zinc metallodrugs. To that end, meticulous efforts were launched toward the design and synthesis of materials with insulin mimetic potential. Henceforth, trigonelline and N-(2-hydroxyethyl)-iminodiacetic acid (HEIDAH2) were selected as organic substrates seeking binding to zinc (Zn(II)), with new crystalline compounds characterized by elemental analysis, FT-IR, X-rays, thermogravimetry (TGA), luminescence, NMR, and ESI-MS spectrometry. Physicochemical characterization was followed by in vitro biochemical experiments, in which three out of the five zinc compounds emerged as atoxic, exhibiting bio-activity profiles reflecting enhanced adipogenic potential. Concurrently, well-defined qualitative-quantitative experiments provided links to genetic loci responsible for the observed effects, thereby unraveling their key involvement in signaling pathways in adipocyte tissue and insulin mimetic behavior. The collective results (a) signify the quintessential role of molecular studies in unearthing unknown facets of pathophysiological events in diabetes mellitus II, (b) reflect the close associations of properly configured molecular zincoforms to well-defined biological profiles, and (c) set the stage for further physicochemical-based development of efficient zinc antidiabetic metallodrugs.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia , Insulina/farmacologia , Compostos Organometálicos/farmacocinética , Zinco/química , Células 3T3-L1 , Animais , Hipoglicemiantes/farmacologia , Camundongos , Transdução de Sinais
15.
Fitoterapia ; 153: 104979, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34182053

RESUMO

Phytochemical investigation of the leaves and twigs of Croton yanhuii led to the isolation of seven highly modified nor-clerodane diterpenoids (1-7), including three new ones, croyanoids A-C (1-3), along with four known analogues (4-7). Compound 1 incorporates a 5,12-epoxy ring, forming a unique cage-like, 6/6/6/5-fused tetracyclic ring system. Their structures were established by extensive spectroscopic analysis, and the absolute configurations of 1-4 were determined by a combination of circular dichroism (CD) analysis and single-crystal X-ray diffraction. All compounds were tested in an array of bioassays, but were inactive. Crotoeurin A (7), a nor-clerodane dimer with a high yield of 0.2‰ isolated in current study, was considered as a chemotaxonomic marker for this species.


Assuntos
Croton/química , Diterpenos Clerodânicos/química , Células 3T3-L1 , Células A549 , Animais , China , Diterpenos Clerodânicos/isolamento & purificação , Humanos , Camundongos , Estrutura Molecular , Óxido Nítrico , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Folhas de Planta/química , Células RAW 264.7
16.
Molecules ; 26(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063700

RESUMO

Momordica charantia is a popular vegetable associated with effective complementary and alternative diabetes management in some parts of the world. However, the molecular mechanism is less commonly investigated. In this study, we investigated the association between a major cucurbitane triterpenoid isolated from M. charantia, 3ß,7ß,25-trihydroxycucurbita-5,23(E)-dien-19-al (THCB) and peroxisome proliferator activated receptor gamma (PPARγ) activation and its related activities using cell culture and molecular biology techniques. In this study, we report on both M. charantia fruit crude extract and THCB in driving the luciferase activity of Peroxisome Proliferator Response Element, associated with PPARγ activation. Other than that, THCB also induced adipocyte differentiation at far less intensity as compared to the full agonist rosiglitazone. In conjunction, THCB treatment on adipocytes also resulted in upregulation of PPAR gamma target genes expression; AP2, adiponectin, LPL and CD34 at a lower magnitude compared to rosiglitazone's induction. THCB also induced glucose uptake into muscle cells and the mechanism is via Glut4 translocation to the cell membrane. In conclusion, THCB acts as one of the many components in M. charantia to induce hypoglycaemic effect by acting as PPARγ ligand and inducing glucose uptake activity in the muscles by means of Glut4 translocation.


Assuntos
Momordica/química , PPAR gama/metabolismo , Triterpenos/química , Células 3T3-L1 , Adipócitos/citologia , Animais , Diferenciação Celular , Membrana Celular/metabolismo , Glucose/metabolismo , Hepatócitos/citologia , Hipoglicemia/tratamento farmacológico , Insulina/química , Ligantes , Camundongos , Células Musculares/citologia , Domínios Proteicos , Rosiglitazona/farmacologia , Triterpenos/farmacologia
17.
Cell Prolif ; 54(8): e13083, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165214

RESUMO

OBJECTIVES: Nodakenin (NK) is a coumarin glucoside that is found in the roots of Angelicae gigas. A limited number of studies have been conducted on the pharmacological activities of NK. Although NK is an important natural resource having anti-inflammatory and antioxidant effects, no investigation has been conducted to examine the effects of NK on obesity and obesity-induced inflammation. MATERIALS AND METHODS: The present study investigated the therapeutic effects of NK treatment on obesity and its complications, and its mechanism of action using differentiated 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese mice. Oil red O staining, western blot assay, qRT-PCR assay, siRNA transfection, enzyme-linked immunosorbent assay, H&E staining, immunohistochemistry, molecular docking and immunofluorescence staining were utilized. RESULTS: Treatment with NK demonstrated anti-adipogenesis effects via the regulation of adipogenic transcription factors and genes associated with triglyceride synthesis in differentiated 3T3-L1 adipocytes. Compared with the control group, the group administered NK showed a suppression in weight gain, dyslipidaemia and the development of fatty liver in HFD-induced obese mice. In addition, NK administration inhibited adipogenic differentiation and obesity-induced inflammation and oxidative stress via the suppression of the VLDLR and MEK/ERK1/2 pathways. This is the first study that has documented the interaction between NK and VLDLR structure. CONCLUSION: These results demonstrate the potential of NK as a natural product-based therapeutic candidate for the treatment of obesity and its complications by targeting adipogenesis and adipose tissue inflammation-associated markers.


Assuntos
Cumarínicos/farmacologia , Glucosídeos/farmacologia , Receptores de LDL/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Colesterol/sangue , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Obesidade/patologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de LDL/antagonistas & inibidores , Receptores de LDL/genética , Ganho de Peso/efeitos dos fármacos
18.
Stem Cell Res Ther ; 12(1): 364, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174964

RESUMO

BACKGROUND: Obesity is a metabolic disorder syndrome characterized by excessive fat accumulation that is related to many diseases. Human amniotic mesenchymal stem cells (hAMSCs) have a great potential for cell-based therapy due to their characteristics such as pluripotency, low immunogenicity, no tumorigenicity, potent paracrine effects, and no ethical concern. Recently, we observed that both hAMSCs and their conditioned medium (hAMSCs-CM) efficiently repaired skin injury, inhibited hepatocellular carcinoma, and alleviated high-fat diet (HFD)-induced diabetes. However, the effects and the underlying mechanisms of hAMSCs-CM on high-fat diet (HFD)-induced obesity were not explored. METHODS: The characteristics of hAMSCs were confirmed by flow cytometry, RT-PCR, and immunofluorescence. Obese mice were induced by administrating HFD for 15 weeks and simultaneously, the mice were intraperitoneally injected with hAMSCs-CM weekly to evaluate the effects of hAMSCs-CM on HFD-induced obesity. GTT and ITT assays were used to assess the effects of hAMSCs-CM on HFD-induced glucose tolerance and insulin resistance. The lipid accumulation and adipocytes hypertrophy in mouse adipose tissues were determined by histological staining, in which the alterations of blood lipid, liver, and kidney function were also examined. The role of hAMSCs-CM in energy homeostasis was monitored by examining the oxygen consumption (VO2), carbon dioxide production (VCO2), and food and water intake in mice. Furthermore, the expressions of the genes related to glucose metabolism, fatty acid ß oxidation, thermogenesis, adipogenesis, and inflammation were determined by western blot analysis, RT-PCR, and immunofluorescence staining. The roles of hAMSCs-CM in adipogenesis and M1/M2 macrophage polarization were investigated with 3T3-L1 preadipocytes or RAW264.7 cells in vitro. RESULTS: hAMSCs-CM significantly restrained HFD-induced obesity in mice by inhibiting adipogenesis and lipogenesis, promoting energy expenditure, and reducing inflammation. The underlying mechanisms of the anti-obesity of hAMSCs-CM might be involved in inhibiting PPARγ and C/EBPα-mediated lipid synthesis and adipogenesis, promoting GLUT4-mediated glucose metabolism, elevating UCP1/PPARα/PGC1α-regulated energy expenditure, and enhancing STAT3-ARG1-mediated M2-type macrophage polarization. CONCLUSION: Our studies demonstrated that hAMSCs significantly alleviated HFD-induced obesity through their paracrine effects. Obviously, our results open up an attractive therapeutic modality for the prevention and treatment of obesity and other metabolic disorders clinically. The cytokines, exosomes, or micro-vesicles secreted from hAMSCs significantly inhibited HFD-induced obesity in mice by inhibiting lipid production and adipogenesis, promoting energy consumption, and reducing inflammation.


Assuntos
Dieta Hiperlipídica , Células-Tronco Mesenquimais , Células 3T3-L1 , Adipogenia , Animais , Meios de Cultivo Condicionados/farmacologia , Dieta Hiperlipídica/efeitos adversos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/terapia
19.
FASEB J ; 35(7): e21730, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34110631

RESUMO

Adipose tissue macrophages (ATMs) represent the most abundant leukocytes in adipose tissue (AT). An increase in number and a phenotypical switch of ATMs during the development of obesity contribute to chronic inflammation and metabolic disorders, which have been regarded as potential therapeutic targets to restore AT homeostasis. Emodin has been shown to exert strong anti-inflammatory property via acting on macrophages in a range of disease models. However, whether emodin exerts a beneficial effect on obesity via modulating ATMs has not been reported. In high-fat diet (HFD)-induced obese mice, emodin significantly inhibited the increase of body weight and lipid accumulation in ATs. Emodin apparently reduced glucose and insulin levels and ameliorated serum lipid profiles in HFD-fed mice. Moreover, the local and systemic inflammation was dramatically alleviated by emodin. We next discovered that M2 macrophage percentage was greatly increased by emodin although total ATMs was not altered, which resulted in a net increase of M2 macrophages in AT. In vitro studies confirmed that emodin promoted the polarization of macrophages towards M2. Gene ontology (GO) analysis showed that myeloid leukocyte differentiation and activation were among the most significant biological processes in emodin-treated ATMs. We further identified that TREM2 was the most dramatically upregulated molecule by emodin and emodin-induced M2 macrophage polarization was dependent on TREM2. Furthermore, silencing TREM2 apparently abrogated the effect of emodin on AT inflammation and adipogenesis. We, for the first time, disclosed that emodin inhibited obesity by promoting M2 macrophage polarization via TREM2, suggesting that emodin may be explored as a clinical and translational candidate in preventing obesity and its related metabolic diseases.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Emodina/farmacologia , Inflamação/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/fisiologia , Macrófagos/efeitos dos fármacos , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Linhagem Celular , Dieta Hiperlipídica , Inflamação/metabolismo , Insulina/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo
20.
FASEB J ; 35(7): e21728, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34110658

RESUMO

Proliferation and differentiation of preadipocytes, and other cell types, is accompanied by an increase in glucose uptake. Previous work showed that a pulse of high glucose was required during the first 3 days of differentiation in vitro, but was not required after that. The specific glucose metabolism pathways required for adipocyte differentiation are unknown. Herein, we used 3T3-L1 adipocytes as a model system to study glucose metabolism and expansion of the adipocyte metabolome during the first 3 days of differentiation. Our primary outcome measures were GLUT4 and adiponectin, key proteins associated with healthy adipocytes. Using complete media with 0 or 5 mM glucose, we distinguished between developmental features that were dependent on the differentiation cocktail of dexamethasone, insulin, and isobutylmethylxanthine alone or the cocktail plus glucose. Cocktail alone was sufficient to activate the capacity for 2-deoxglucose uptake and glycolysis, but was unable to support the expression of GLUT4 and adiponectin in mature adipocytes. In contrast, 5 mM glucose in the media promoted a transient increase in glucose uptake and glycolysis as well as a significant expansion of the adipocyte metabolome and proteome. Using genetic and pharmacologic approaches, we found that the positive effects of 5 mM glucose on adipocyte differentiation were specifically due to increased expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key regulator of glycolysis and the ancillary glucose metabolic pathways. Our data reveal a critical role for PFKFB3 activity in regulating the cellular metabolic remodeling required for adipocyte differentiation and maturation.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Fosfofrutoquinase-2/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adiponectina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Dexametasona/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Xantinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...