Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.270
Filtrar
1.
Adv Exp Med Biol ; 1155: 391-406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468417

RESUMO

Heat stress is an environmental factor that causes severe economic loss to the current intensive breeding industry and induces huge impact on the long-term growth in livestock and poultry industry. Many animal experiments confirmed that heat stress is a major cause of heat stroke death, which is due to severe damage to endothelial cells. In order to provide a theoretical basis for the treatment or mitigation of heat stress related diseases in broilers, the effect of taurine on injury and apoptosis of aortic endothelial cells in broilers under heat stress was investigated in the present study. Ten days healthy broilers were sacrificed, then aortic tissue was used to isolate and cultivate primary broiler aortic endothelial cells. The third to the fifth generations of cells were used in the experiment. The cells were randomly divided into five groups, including control group (C), heat stress group (HS), low taurine (HS+LTau) group, mild taurine (HS+MTau) group and high taurine (HS+HTau) group. Cells in all groups were cultivated for 24 h in cell incubator (37 °C, 5% CO2). Then the heat stress group cells were cultivated in a 43 °C thermostatic water bath for 6 h under heat stress, and then re-incubated under 37 °C for 1 h. The results showed that compared with the control group, expression levels of Bax, Caspase-9, Caspase-3, Cyt-c, P53 and other pro-apoptosis factors in HS groups were significantly increased (P < 0.05), while expression levels of anti-apoptosis factor Bcl-2 showed a significant decrease (P < 0.05). Compared with HS group, expression levels of Bcl-2 in endothelial cells were significantly increased by taurine administration (P < 0.05), while expression of Bax, Caspase-9, Caspase-3, Cyt-c and P53 were significantly increased by taurine (P < 0.05). In summary, the present data indicated that taurine could protect against injury and apoptosis of aortic endothelial cells under heat stress by inhibiting the activation of mitochondria-mediated apoptotic pathways.


Assuntos
Apoptose/efeitos dos fármacos , Galinhas , Células Endoteliais/efeitos dos fármacos , Resposta ao Choque Térmico , Taurina/farmacologia , Animais , Aorta/citologia , Células Cultivadas , Células Endoteliais/citologia , Distribuição Aleatória
2.
Adv Exp Med Biol ; 1155: 675-689, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468439

RESUMO

In order to provide a theoretical basis for the amelioration of heat stress-related diseases in broilers by taurine supplementation, the effect of taurine on the viability and antioxidant ability of aortic endothelial cells in broilers under heat stress was investigated in the present study. In this experiment, 10d healthy broilers were sacrificed, then aortic tissue was used for aortic endothelial cells isolation and cultivation. Tissue patching was used to cultivate primary broiler aortic endothelial cells. The 3rd to 5th generations of cells were used and randomly divided into five groups, including the control group (C), the heat-stressed group (HS), the Tau(HS + LTau) group, the Tau(HS + MTau) group and the Tau(HS + HTau) group. Cells were cultivated for 24 h in a cell incubator (37 °C, 5%CO2). Then heat-stressed cells were placed in a 43 °C thermostatic water bath for 6 h, followed by incubation in the cell incubator under 37°Cfor 1 h. The results were as follows (1) Based on MTT colorimetry and AO/EB staining, the activity of aortic endothelial cells was decreased, but the rate of apoptosis was increased in the HS group. Compared with the HS group, the taurine groups showed significantly higher level in relative survival rates (P < 0.05), and significantly lower apoptosis rates (P < 0.05); (2) compared to control group, LDH activity and MDA content of endothelial cells in the HS group were significantly increased (P < 0.01), while the levels of T-SOD, GSH-Px and T-AOC were significantly decreased (P < 0.01). The LDH activity and MDA content of endothelial cells were significantly lower in Tau group than those of HS group (P < 0.05), while the T-SOD activity, GSH-Px activity and T-AOC of endothelial cells were significantly increased (P < 0.05) in the taurine group. The results show that HS decreases antioxidant capacity, which causes severe oxidative damage to the endothelial cells; while taurine administration prevents the decline in LDH activity and MDA content, and increases the activity of several antioxidant enzymes, including SOD, GSH-Px and T-AOC, which implies that taurine can improve the broiler aortic endothelial cells activity and antioxidant ability under heat stress.


Assuntos
Antioxidantes/metabolismo , Células Endoteliais/efeitos dos fármacos , Resposta ao Choque Térmico , Taurina/farmacologia , Animais , Células Cultivadas , Galinhas , Células Endoteliais/metabolismo , Malondialdeído
3.
Adv Exp Med Biol ; 1155: 959-975, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468460

RESUMO

Taurine is essential for the development and function of the central nervous system, retina, and cardiovascular system. It is a naturally occurring amino acid, abundantly found in the retina. It has been shown to exhibit antioxidant, neuroprotective, and osmoregulatory functions in the retina. We used conditionally immortalized rat retinal capillary endothelial cells (TR-iBRB), in vitro, to investigate the effects of oxidative stress, high glucose (HG) and hypertonic conditions on taurine transport. TR-iBRB cells pre-treated with tumor necrosis factor alpha (TNF-α) showed a significant increase in [3H]taurine uptake rate, which, however, decreased when treated with taurine (50 mM). Addition of paeonol and propranolol to TNF-α pre-treated cells had no significant effect on [3H]taurine uptake, but the addition of 10 mM taurine caused a reduction. The uptake rate decreased under HG conditions, in contrast to that under hypertonic conditions. [3H]Taurine uptake increased with pre-incubation time. Additionally, uptake of [3H]taurine and mRNA expression of taurine transporter (TauT) decreased significantly under hypertonic and HG conditions, following pre-incubation with 10 mM taurine, 1 mM paeonol, and 0.1 mM propranolol. [3H]Taurine uptake was significantly inhibited in the presence of taurine transporters such as taurine and ß-alanine. Results indicate that oxidative stress and hypertonic conditions increased taurine uptake in iBRB cell lines, whereas HG conditions reduced the uptake rate. Taurine may be useful in stabilizing the microenvironment in cells affected by oxidative stress as well as hypertonic and HG conditions. Moreover, taurine may play a key role in maintaining taurine concentrations in the taurine transporter system of retinal cells.


Assuntos
Barreira Hematorretiniana , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Taurina/farmacocinética , Animais , Transporte Biológico , Linhagem Celular , Ratos , Fator de Necrose Tumoral alfa/farmacologia
4.
Chem Biol Interact ; 311: 108773, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31351048

RESUMO

Hemangioma (HA) is tumor formed by hyper-proliferation of vascular endothelial cells. However, the potential effects of mono-(2-ethylhexyl) phthalate (MEHP) on the progression of HA are not well illustrated. Our present study revealed that MEHP exposure can significantly increase the in vitro proliferation of hemangioma-derived endothelial cells (HemECs). MEHP treatment can activate yes-associated protein (YAP), a key effector of Hippo pathway, by inhibiting its phosphorylation. The dephosphorylation of YAP induced by MEHP can promote the nuclear accumulation of YAP. Knockdown of YAP or its inhibitor can block MEHP triggered cell proliferation. MEHP can increase the levels of precursor and mature mRNA of YAP in HemECs. As well, MEHP extended the half-life of YAP protein. Mechanistically, MEHP can decrease the phosphorylation of YAP via suppressing the activity of large tumor suppressor kinase 1/2 (LATS1/2) to inhibit it induced degradation of YAP. Further, MEHP increased the expression of interferon regulatory factor 1 (IRF1), which can bind to the promoter of YAP to initiate its transcription. Collectively, we revealed that Hippo-YAP signal is involved in MEHP-induced proliferation of HA cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Dietilexilftalato/análogos & derivados , Hemangioma/patologia , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Dietilexilftalato/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hemangioma/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Estabilidade Proteica/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Genética/efeitos dos fármacos
5.
Anticancer Res ; 39(6): 2739-2747, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31177109

RESUMO

BACKGROUND/AIM: The aim of the present study was to investigate the vascular normalization effect of traditional Chinese medicine Astragalus membranaceus (AM) and Curcuma wenyujin (CW) on tumor-derived endothelial cells (TECs). MATERIALS AND METHODS: TECs were isolated from the xenografted HCC cell line HepG2 expressing red fluorescent protein (RFP). The effect of AM and CW on TECs proliferation was measured using the CCK8 assay. The vascular normalization potential of AM and CW was assessed using a tube formation assay. Immunocytochemistry was performed to assess the effect of AM and CW on the expression of angiogenic maker CD34 and hypoxia-inducible factor HIF1a. RESULTS: The isolated TECs and endothelioma (EOMA) cells did not differ with regard to the expression levels of endothelial markers CD34, VEGFR-1, VEGFR-2, PDGFR-α and PDGFR-ß. All AM, CW, AM+CW and Nintedanib (Nin) showed a dose-dependent increasing inhibition effect on either TECs or EOMA cells. AM, CW and AM+CW significantly reduced HIF1a expression, increased CD34 expression and enhanced endothelial network formation in TECs or EOMA cells compared to the control. CONCLUSION: AM and CW promoted vascular normalization in tumor-derived endothelial cells of HCC, through increased expression of CD34 and reduced expression of HIF1a.


Assuntos
Antígenos CD34/metabolismo , Carcinoma Hepatocelular/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , Animais , Astragalus propinquus/química , Carcinoma Hepatocelular/irrigação sanguínea , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcuma/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Medicina Tradicional Chinesa , Camundongos , Transplante de Neoplasias , Transdução de Sinais/efeitos dos fármacos
6.
Nat Commun ; 10(1): 2477, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171770

RESUMO

Blood vessels in the central nervous system (CNS) develop unique features, but the contribution of CNS neurons to regulating those features is not fully understood. We report that inhibiting spontaneous cholinergic activity or reducing starburst amacrine cell numbers prevents invasion of endothelial cells into the deep layers of the retina and causes blood-retinal-barrier (BRB) dysfunction in mice. Vascular endothelial growth factor (VEGF), which drives angiogenesis, and Norrin, a Wnt ligand that induces BRB properties, are decreased after activity blockade. Exogenous VEGF restores vessel growth but not BRB function, whereas stabilizing beta-catenin in endothelial cells rescues BRB dysfunction but not vessel formation. We further identify that inhibiting cholinergic activity reduces angiogenesis during oxygen-induced retinopathy. Our findings demonstrate that neural activity lies upstream of VEGF and Norrin, coordinating angiogenesis and BRB formation. Neural activity originating from specific neural circuits may be a general mechanism for driving regional angiogenesis and barrier formation across CNS development.


Assuntos
Células Amácrinas/fisiologia , Barreira Hematorretiniana/crescimento & desenvolvimento , Neurônios Colinérgicos/fisiologia , Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Células Ganglionares da Retina/fisiologia , Animais , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/inervação , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas do Olho/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Agonistas Nicotínicos/farmacologia , Oxigênio/efeitos adversos , Piridinas/farmacologia , Doenças Retinianas , Células Ganglionares da Retina/metabolismo , Neovascularização Retiniana/etiologia , Tetrodotoxina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo
7.
Int J Oncol ; 55(1): 167-178, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31180533

RESUMO

Vascular endothelial growth inhibitor (VEGI; also referred to as TNFSF15 or TL1A) is involved in the modulation of vascular homeostasis. VEGI is known to operate via two receptors: Death receptor­3 (DR3) and decoy receptor­3 (DcR3). DR3, which is thus far the only known functional receptor for VEGI, contains a death domain and induces cell apoptosis. DcR3 is secreted as a soluble protein and antagonizes VEGI/DR3 interaction. Overexpression of DcR3 and downregulation of VEGI have been detected in a number of cancers. The aim of the present study was to investigate the effects of sodium valproate (VPA), a histone deacetylase inhibitor, in combination with hydralazine hydrochloride (Hy), a DNA methylation inhibitor, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Combination treatment with Hy and VPA synergistically induced the expression of VEGI and DR3 in both OS and HMVE cells, without inducing DcR3 secretion. In addition, it was observed that the combination of VPA and Hy significantly enhanced the inhibitory effect on vascular tube formation by VEGI/DR3 autocrine and paracrine pathways. Furthermore, the VEGI/VEGF­A immune complex was pulled down by immunoprecipitation. Taken together, these findings suggest that DNA methyltransferase and histone deacetylase inhibitors not only have the potential to induce the re­expression of tumor suppressor genes in cancer cells, but also exert anti­angiogenic effects, via enhancement of the VEGI/DR3 pathway and VEGI/VEGF­A interference.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Hidralazina/farmacologia , Osteossarcoma/tratamento farmacológico , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/biossíntese , Ácido Valproico/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Osteossarcoma/irrigação sanguínea , Osteossarcoma/genética , Osteossarcoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/biossíntese , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Transcrição Genética/efeitos dos fármacos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
8.
Int J Nanomedicine ; 14: 3297-3309, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190794

RESUMO

Background: Cardiovascular disease (CVD) is the leading cause of mortality all over the world. Vascular stents are used to ameliorate vascular stenosis and recover vascular function. The application of nanotubular coatings has been confirmed to promote endothelial cell (EC) proliferation and function. However, the regulatory mechanisms involved in cellular responses to the nanotubular topography have not been defined. In the present study, a microarray analysis was performed to explore the expression patterns of long noncoding RNAs (lncRNAs) in human coronary artery endothelial cells (HCAECs) that were differentially expressed in response to nitinol-based nanotubular coatings. Materials and methods: First, anodization was performed to synthesize nitinol-based nanotubular coatings. Then, HCAECs were cultured on the samples for 24 h to evaluate cell cytoskeleton organization. Next, total RNA was extracted and synthesized into cRNA, which was hybridized onto the microarray. GO analysis and KEGG pathway analysis were performed to investigate the roles of differentially expressed messenger RNAs (mRNAs). Quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) was performed to validate the expression of randomly selected lncRNAs. Coexpression networks were created to identify the interactions among lncRNAs and the protein-coding genes involved in nanotubular topography-induced biological and molecular pathways. Independent Student's t-test was applied for comparisons between two groups with statistical significance set at p<0.05. Results: 1085 lncRNAs and 227 mRNAs were significantly differentially expressed in the nitinol-based nanotubular coating group. Bioinformatics analysis revealed that extracellular matrix receptor interactions and cell adhesion molecules play critical roles in the sensing of nitinol-based nanotubular coatings by HCAECs. The TATA-binding protein (TBP) and TBP-associated transfactor 1 (TAF1) are important molecules in EC responses to substrate topography. Conclusion: This study suggests that nanotubular substrate topography regulates ECs by differentially expressed lncRNAs involved extracellular matrix receptor interactions and cell adhesion molecules.


Assuntos
Ligas/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Vasos Coronários/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Nanotubos/química , RNA Longo não Codificante/genética , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Endoteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Análise em Microsséries , Nanotubos/ultraestrutura , Fenótipo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo
9.
BMC Complement Altern Med ; 19(1): 127, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196042

RESUMO

BACKGROUND: Xin-Ji-Er-Kang (XJEK) is a Chinese herbal formula, which has been reported to exert effective protection against cardiovascular diseases, including hypertension and myocarditis. METHODS: Cultured human umbilical vascular endothelial cells (HUVECs) were treated with angiotensin II (Ang II) and different concentrations of aqueous layer extracts (AqE). Subsequently nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) expression levels were detected. In addition, fifty Kunming mice were randomized into control, Nω-nitro-L-arginine methyl ester (L-NAME), L-NAME+AqE, L-NAME+XJEK and L-NAME+fosinopril treatment groups. Following 8 weeks of treatment, the cardiac hemodynamic index was measured, relaxation of the aorta was examined and pathological changes were observed. Colorimetric analysis and enzyme linked immunosorbent assay (ELISA) were applied to determine the relevant indicators in plasma and cardiac tissues. RESULTS: The in vitro study results demonstrated that AqE could preserve endothelial function (NO, 21.05 ± 2.03 vs. 8.64 ± 0.59; eNOS, 1.08 ± 0.17 vs.0.73 ± 0.06). In addition, the in vivo results demonstrated that compared with the control group, treatment with AqE could enhance a high hemodynamic state (left ventricular systolic pressure, 116.76 ± 9.96 vs.114.5 ± 15.16), improve endothelial function (NO, 7.98 ± 9.64 vs. 1.66 ± 3.11; eNOS, 19.78 ± 3.18 vs.19.38 ± 3.85), suppress oxidative stress (OS) (superoxide dismutase, 178.17 ± 13.78 vs. 159.38 ± 18.86; malondialdehyde, 0.77 ± 0.13 vs.1.25 ± 0.36) and reverse cardiovascular remodeling. CONCLUSION: Polysaccharide from XJEK exerts protective effects against Ang II-induced injury in HUVECs and L-NAME-induced hypertension in mice and the underlying mechanism may be attributed to improving endothelial dysfunction, OS and the inflammation status in mice.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Remodelação Vascular/efeitos dos fármacos , Angiotensina II , Animais , Aorta/efeitos dos fármacos , Arginina/análogos & derivados , Arginina/sangue , Pressão Sanguínea/efeitos dos fármacos , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Malondialdeído/sangue , Camundongos , Miocárdio/metabolismo , NG-Nitroarginina Metil Éster , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Superóxido Dismutase/sangue
10.
BMC Complement Altern Med ; 19(1): 111, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31146723

RESUMO

BACKGROUND: Atherosclerosis is a condition with the vascular accumulation of lipid plaques, and its main major contributing factor is endothelial injury induced by oxidized low-density lipoprotein (ox-LDL). Salidroside (SAL) is the primary active ingredient of Rhodiola rosea, and exhibits antioxidant properties on endothelial cells and alleviates atherosclerosis. However, the effect of SAL on autophagy in ox-LDL-induced vascular endothelial injury remains unclear. Here, we investigated the effect and underlying mechanisms of SAL on autophagy in human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs were incubated with ox-LDL to induce in vitro atherosclerosis model. The cell viability and injury were evaluated by cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release assay. The oxidative stress was evaluated by NADPH oxidase, malondialdehyde (MDA) and superoxide dismutase (SOD) activities. Immunofluorescence was performed to detect autophagy using LC3ß antibody. Quantitative real-time PCR (qRT-PCR) and western blot were performed to measure the mRNA expressions of SIRT1 and Forkhead box O1 (FOXO1). Nicotinamide (NAM) and AS1842856 were used to inhibit activities of SIRT1 and FOXO1, respectively. RESULTS: Exposure of HUVECs to ox-LDL (100 µg/mL) reduced cell viability, increased cellular MDA, and reduced SOD in a concentration-dependent manner. The pretreatment with SAL (20, 50 and 100 µM) significantly enhanced the cell viability and decreased LDH release in HUVECs exposed to ox-LDL (100 µg/mL). ox-LDL induced autophagy in HUVECs, which was further enhanced by pretreatment with SAL. However, SAL attenuated increase in oxidative stress in HUVECs induced by ox-LDL. ox-LDL reduced mRNA and protein expressions of SIRT1 and FOXO1, which could be reversed by SAL. The protective, anti-oxidative and pro-autophagic effects of SAL could be obviously abolished by cotreatment with SIRT1 inhibitor or FOXO1 inhibitor. CONCLUSION: Salidroside shows protective effect on endothelial cell induced by ox-LDL, and the mechanisms might be related to autophagy induction via increasing SIRT1 and FoxO1 expressions.


Assuntos
Autofagia/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Glucosídeos/farmacologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Rhodiola , Aterosclerose/prevenção & controle , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Glucosídeos/uso terapêutico , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipoproteínas LDL , Estresse Oxidativo/efeitos dos fármacos , Fenóis/uso terapêutico , Fitoterapia , Extratos Vegetais/uso terapêutico , Sirtuína 1/metabolismo
11.
Einstein (Sao Paulo) ; 17(3): eAO4600, 2019 Jun 03.
Artigo em Inglês, Português | MEDLINE | ID: mdl-31166411

RESUMO

OBJECTIVE: To characterize the calcium influx pathways implicated in the sustained elevation of endothelial intracellular calcium concentration, required for the synthesis and release of relaxing factors. METHODS: We evaluated the effect of the newly synthesized pyrazole derivatives, described as selective inhibitors for ORAI (BTP2/Pyr2 and Pyr6) and TRPC3 (Pyr3 and Pyr10) channels, upon endothelium- and extracellular calcium-dependent relaxations stimulated by acetylcholine and thapsigargin, in pre-constricted rat thoracic aortic rings. RESULTS: Acetylcholine and thapsigargin responses were completely reverted by Pyr2 and Pyr6 (1 to 3µM). Pyr3 (0.3 to 3µM) caused a rapid reversal of acetylcholine (6.2±0.08mg.s-1) and thapsigargin (3.9±0.25mg.s-1) relaxations, whereas the more selective TRPC3 blocker Pyr10 (1 to 3µM) had no effect. The recently described TRPC4/5 selective blocker, ML204 (1 to 3µM), reverted completely acetylcholine relaxations, but minimally thapsigargin induced ones. Noteworthy, relaxations elicited by GSK1016790A (TRPV4 agonist) were unaffected by pyrazole compounds or ML204. After Pyr2 and Pyr6 pre-incubation, acetylcholine and thapsigargin evoked transient relaxations similar in magnitude and kinetics to those observed in the absence of extracellular calcium. Sodium nitroprusside relaxations as well as phenylephrine-induced contractions (denuded aorta) were not affected by any of pyrazole compounds (1 to 3µM). CONCLUSION: These observations revealed a previously unrecognized complexity in rat aorta endothelial calcium influx pathways, which result in production and release of nitric oxide. Pharmacologically distinguishable pathways mediate acetylcholine (ORAI/TRPC other than TRPC3/TRPC4 calcium-permeable channels) and thapsigargin (TRPC4 not required) induced calcium influx.


Assuntos
Acetilcolina/farmacologia , Cálcio/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores Relaxantes Dependentes do Endotélio/metabolismo , Óxido Nítrico/metabolismo , Tapsigargina/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Masculino , Ratos Wistar , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Fatores de Tempo , Vasodilatadores/farmacologia
12.
Parasit Vectors ; 12(1): 315, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234915

RESUMO

BACKGROUND: Angiogenesis can occur under pathological conditions when stimuli such as inflammation, vascular obstruction or hypoxia exist. These stimuli are present in cardiopulmonary dirofilariosis (Dirofilaria immitis). The aim of this study was to analyze the capacity of D. immitis antigens to modify the expression of angiogenic factors and trigger the formation of pseudocapillaries (tube-like structures) in an in vitro model of endothelial cells. METHODS: The expression of VEGF-A, sFlt, mEndoglin and sEndoglin in cultures of canine microvascular endothelial cells stimulated with extract of adult worms of D. immitis obtained from an untreated dog (DiSA) and from a dog treated for 15 days with doxycycline (tDiSA), was determined by using commercial kits. The capacity of pseudocapillary formation was evaluated analyzing cell connections and cell groups in Matrigel cell cultures stimulated with DiSA and tDiSA. In both cases non-stimulated cultures were used as controls. RESULTS: First, we demonstrated that worms obtained from the dog treated with doxycycline showed a significantly lower amount of Wolbachia (less than 60%) than worms removed from the untreated dog. Only DiSA was able to significantly increase the expression of the proangiogenic factor VEGF-A in the endotelial cells cultures. None of the D. immitis extracts modified the expression of sFlt. tDiSA extract was able to modify the expression of the endoglins, significantly decreasing the expression of the pro-angiogenic mEndoglin and increasing the anti-angiogenic sEndoglin. The formation of pseudocapillaries was negatively influenced by tDiSA, which reduced the organization and number of cellular connections. CONCLUSIONS: The ability of antigens from adult D. immitis worms to modify the expression of pro and anti-angiogenic factors in endotelial cell cultures was demonstrated, as well as the trend to form pseudocapillaries in vitro. The capacity of stimulation may be linked to the amount of Wolbachia present in the antigenic extracts.


Assuntos
Antígenos de Helmintos/farmacologia , Dirofilaria immitis/química , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Antígenos de Bactérias/farmacologia , Capilares/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dirofilaria immitis/microbiologia , Cães , Inflamação , Wolbachia/química , Wolbachia/genética
13.
Life Sci ; 232: 116591, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228513

RESUMO

AIMS: Calreticulin (CRT) is a multifunctional protein that protects endothelial cells by alleviating actin cytoskeleton injury, but the underlying mechanism remains unclear. CRT was recently identified as a novel acyltransferase; acetylation at the N-terminus of actin monomers strengthens actin polymerization. This study was undertaken to determine whether CRT protects human microvascular endothelial cells (HMECs) against microwave radiation through actin acetylation. MATERIALS AND METHODS: We prepared a eukaryotic-derived recombinant CRT and incubated the HMECs with it prior to microwave exposure. We then assessed cell injury and endothelial function, detected actin polymerization and acetylation after HMECs exposure to S-band high-power microwaves. Coimmunoprecipitation, pull-down, and ex vitro acetylation reaction were performed to determine whether actin is a novel substrate of CRT acyltransferase. Finally, we employed the mutant experiments to demonstrate the acetylation sites contributing to CRT acetyltransferase activity. KEY FINDINGS: Microwave radiation induced severe cell injury and endothelial contact dysfunction, reduced the polymerization of actin filaments, and destroyed the actin arrangement, ultimately reducing acetylated actin expression. CRT treatment upregulated actin acetylation levels, promoted polymerization, and facilitated thicker and longer F-actin stress fibre formation. Pre-incubation with CRT rescued microwave-induced cell injury, decreased actin acetylation, and rendered the actin cytoskeleton radiation-retardant. The level of acetyl-actin was positively correlated with actin polymerization. Actin was identified as a novel substrate of CRT, being acetylated mainly through the CRT P-domain at lys-206 and -207. SIGNIFICANCE: This work provides a better understanding of the underlying mechanism of CRT-induced cytoprotection, and suggests a novel therapeutic target for microwave radiation-related diseases with endothelial dysfunction.


Assuntos
Actinas/metabolismo , Calreticulina/farmacologia , Microvasos/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Linhagem Celular , Citoproteção , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Microvasos/efeitos da radiação , Micro-Ondas , Substâncias Protetoras , Processamento de Proteína Pós-Traducional , Transdução de Sinais
14.
Mol Med Rep ; 19(6): 4753-4760, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059085

RESUMO

Increased plasma levels of homocysteine (Hcy) can cause severe damage to vascular endothelial cells. Hcy­induced endothelial cell dysfunction contributes to the occurrence and development of human cerebrovascular diseases (CVDs). Our previous studies have revealed that astaxanthin (ATX) exhibits novel cardioprotective activity against Hcy­induced cardiotoxicity in vitro and in vivo. However, the protective effect and mechanism of ATX against Hcy­induced endothelial cell dysfunction requires further investigation. In the present study, treatment of human umbilical vascular endothelial cells (HUVECs) with Hcy inhibited the migration, invasive and tube formation potentials of these cells in a dose­dependent manner. Hcy treatment further induced a time­dependent increase in the production of reactive oxygen species (ROS), and downregulated the expression of vascular endothelial growth factor (VEGF), phosphorylated (p)­Tyr­VEGF receptor 2 (VEGFR2) and p­Tyr397­focal adhesion kinase (FAK). On the contrary, ATX pre­treatment significantly inhibited Hcy­induced cytotoxicity and increased HUVEC migration, invasion and tube formation following Hcy treatment. The mechanism of action may involve the effective inhibition of Hcy­induced ROS generation and the recovery of FAK phosphorylation. Collectively, our findings suggested that ATX could inhibit Hcy­induced endothelial dysfunction by suppressing Hcy­induced activation of the VEGF­VEGFR2­FAK signaling axis, which indicates the novel therapeutic potential of ATX in treating Hcy­mediated CVD.


Assuntos
Células Endoteliais/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Homocisteína/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Células Endoteliais/patologia , Quinase 1 de Adesão Focal/metabolismo , Humanos , Fosforilação , Xantofilas/antagonistas & inibidores
15.
Int J Mol Sci ; 20(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071929

RESUMO

(1) The beneficial effects of hydrogen sulfide (H2S) on the cardiovascular and nervous system have recently been re-evaluated. It has been shown that lanthionine, a side product of H2S biosynthesis, previously used as a marker for H2S production, is dramatically increased in circulation in uremia, while H2S release is impaired. Thus, lanthionine could be classified as a novel uremic toxin. Our research was aimed at defining the mechanism(s) for lanthionine toxicity. (2) The effect of lanthionine on H2S release was tested by a novel lead acetate strip test (LAST) in EA.hy926 cell cultures. Effects of glutathione, as a redox agent, were assayed. Levels of sulfane sulfur were evaluated using the SSP4 probe and flow cytometry. Protein content and glutathionylation were analyzed by Western Blotting and immunoprecipitation, respectively. Gene expression and miRNA levels were assessed by qPCR. (3) We demonstrated that, in endothelial cells, lanthionine hampers H2S release; reduces protein content and glutathionylation of transsulfuration enzyme cystathionine-ß-synthase; modifies the expression of miR-200c and miR-423; lowers expression of vascular endothelial growth factor VEGF; increases Ca2+ levels. (4) Lanthionine-induced alterations in cell cultures, which involve both sulfur amino acid metabolism and calcium homeostasis, are consistent with uremic dysfunctional characteristics and further support the uremic toxin role of this amino acid.


Assuntos
Alanina/análogos & derivados , Cálcio/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Sulfetos/farmacologia , Uremia/tratamento farmacológico , Alanina/química , Alanina/farmacologia , Aminoácidos Sulfúricos/efeitos dos fármacos , Aminoácidos Sulfúricos/metabolismo , Linhagem Celular , Cistationina beta-Sintase/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , MicroRNAs/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Oxirredução , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Sulfetos/química , Uremia/genética , Uremia/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
16.
J Toxicol Sci ; 44(5): 317-326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068537

RESUMO

The purpose of this study was to explore whether renal endothelial cell injury is associated with oxidative stress in trichloroethylene (TCE)-induced immune kidney damage by detecting adhesion molecules and oxidative stress indexes. In this study, a mouse model of skin sensitization with the antioxidant Tempol was used to explore the mechanism. Blood urea nitrogen (BUN), creatinine (Cre), and histological examination were used for kidney function evaluation. Kidney homogenates were used for detecting renal nitric oxide (NO), nitric oxide synthase (NOS), superoxide dismutase (SOD) and malondialdehyde (MDA). Renal endothelial nitric oxide synthase (eNOS), E-selectin, vascular cell adhesion molecule (VCAM-1) and intercellular adhesion molecule (ICAM-1) protein levels were measured by immunohistochemical and Western blot. We found that BUN and Cre levels increased in the TCE sensitization positive group and the TCE+Tempol sensitization positive group. In the TCE sensitization positive group, a partial area of vacuolar degeneration and lysed epithelial cells were observed in renal tubules. In TCE+Tempol sensitization positive group, small areas were also found to be vacuolar degenerated and renal tubules were dissolved. Renal NO, NOS, SOD and eNOS levels decreased and MDA levels increased, renal E-selectin, VCAM-1and ICAM-1 protein levels increased in the TCE sensitization positive group and the TCE+Tempol sensitization positive group. Tempol attenuated TCE induced up-regulation of MDA, E-selectin, VCAM-1and ICAM-1 and down-regulation of NO, NOS, SOD and eNOS. In conclusion, trichloroethylene-sensitized mice renal immune injury is associated with the renal endothelial cells' oxidative stress state.


Assuntos
Células Endoteliais/efeitos dos fármacos , Haptenos/toxicidade , Nefropatias/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Solventes/toxicidade , Tricloroetileno/toxicidade , Animais , Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Dermatite Alérgica de Contato/metabolismo , Dermatite Alérgica de Contato/patologia , Selectina E/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Molécula 1 de Adesão Intercelular/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Malondialdeído/metabolismo , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Marcadores de Spin , Superóxido Dismutase/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
17.
J Toxicol Sci ; 44(5): 327-333, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068538

RESUMO

Metallothionein (MT) is a low-molecular-weight, cysteine-rich, and metal-binding protein that protects cells from the cytotoxic effects of heavy metals and reactive oxygen species. Previously, we found that transcriptional induction of endothelial MT-1A was mediated by not only the metal-regulatory transcription factor 1 (MTF-1)-metal responsive element (MRE) pathway but also the nuclear factor-erythroid 2-related factor 2 (Nrf2)-antioxidant response element/electrophile responsive element (ARE) pathway, whereas that of MT-2A was mediated only by the MTF-1-MRE pathway, using the organopnictogen compounds tris(pentafluorophenyl)stibane, tris(pentafluorophenyl)arsane, and tris(pentafluorophenyl)phosphane as molecular probes in vascular endothelial cells. In the present study, we investigated the binding sites of MTF-1 and Nrf2 in the promoter regions of MTs in cultured bovine aortic endothelial cells treated with these organopnictogen compounds. We propose potential mechanisms underlying transcriptional induction of endothelial MT isoforms. Specifically, both MRE activation by MTF-1 and that of ARE in the promoter region of the MT-2A gene by Nrf2 are involved in transcriptional induction of MT-1A, whereas only MRE activation by MTF-1 or other transcriptional factor(s) is required for transcriptional induction of MT-2A in vascular endothelial cells.


Assuntos
Células Endoteliais/efeitos dos fármacos , Metalotioneína/genética , Fosfinas/toxicidade , Animais , Aorta/citologia , Bovinos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Fator 2 Relacionado a NF-E2/genética , Isoformas de Proteínas/genética , Fatores de Transcrição/genética , Transcrição Genética
18.
Mol Med Rep ; 19(6): 5291-5300, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059055

RESUMO

Atherosclerosis (AS) is an inflammatory disease that occurs in the arterial wall and is characterized by progressive lipid accumulation within the intima of large arteries, leading to the dysfunction of endothelial cells and further destruction of the endothelial barrier and vascular tone. Arterial intima injury accelerates the adhesion and activation of platelets at the injury site. The activation of platelets results in the secretion of growth factors, leading to the migration and proliferation of vascular smooth muscle cells (VSMCs), promoting the formation of plaque, resulting in the formation of thrombus. The present study found that vorapaxar could alleviate the inflammatory response induced by a high concentration of cholesterol stimulation and increase the release of nitric oxide (NO) via the protein kinase B (AKT) signaling pathway and regulation of the intracellular concentration of Ca2+ ([Ca2+]i). We also found that vorapaxar could reduce the damage of DNA caused by cholesterol stimulation and regulate the cell cycle via the AKT/JNK signaling pathway and its downstream molecules glycogen synthase kinase 3ß (GSK­3ß) and connexin 43, maintaining the integrity of the endothelial barrier and proliferation of endothelial cells, serving a protective role in endothelial cells.


Assuntos
Lactonas/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colesterol/farmacologia , Conexina 43/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Permeabilidade/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Korean J Parasitol ; 57(2): 101-115, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31104402

RESUMO

The pathogenesis of cerebral malaria is biologically complex and involves multi-factorial mechanisms such as microvascular congestion, immunopathology by the pro-inflammatory cytokine and endothelial dysfunction. Recent data have suggested that a pleiotropic T-cell immunomodulatory protein (TIP) could effectively mediate inflammatory cytokines of mammalian immune response against acute graft-versus-host disease in animal models. In this study, we identified a conserved homologue of TIP in Plasmodium berghei (PbTIP) as a membrane protein in Plasmodium asexual stage. Compared with PBS control group, the pathology of experimental cerebral malaria (ECM) in rPbTIP intravenous injection (i.v.) group was alleviated by the downregulation of pro-inflammatory responses, and rPbTIP i.v. group elicited an expansion of regulatory T-cell response. Therefore, rPbTIP i.v. group displayed less severe brain pathology and feverish mice in rPbTIP i.v. group died from ECM. This study suggested that PbTIP may be a novel promising target to alleviate the severity of ECM.


Assuntos
Fatores Imunológicos/administração & dosagem , Malária Cerebral/prevenção & controle , Proteínas de Membrana/administração & dosagem , Plasmodium berghei/imunologia , Proteínas de Protozoários/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Administração Intravenosa , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Fatores Imunológicos/isolamento & purificação , Ativação Linfocitária , Malária Cerebral/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmodium berghei/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Linfócitos T Reguladores/efeitos dos fármacos , Resultado do Tratamento
20.
Carbohydr Polym ; 217: 152-159, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31079672

RESUMO

Composite biomaterials offer a new approach for engineering novel, minimally-invasive scaffolds with properties that can be modified for a range of soft tissue applications. In this study, a new way of controlling the gelation of alginate hydrogels using Ga-based glass particles is presented. Through a comprehensive analysis, it was shown that the setting time, mechanical strength, stiffness and degradation properties of this composite can all be tailored for various applications. Specifically, the hydrogel generated through using a glass particle, wherein toxic aluminium is replaced with biocompatible gallium, exhibited enhanced properties. The material's stiffness matches that of soft tissues, while it displays a slow and tuneable gelation rate, making it a suitable candidate for minimally-invasive intra-vascular injection. In addition, it was also found that this composite can be tailored to deliver ions into the local cellular environment without affecting platelet adhesion or compromising viability of vascular cells in vitro.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Gálio/química , Vidro/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Alginatos/isolamento & purificação , Alginatos/toxicidade , Animais , Aorta/citologia , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/toxicidade , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva , Módulo de Elasticidade , Células Endoteliais/efeitos dos fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Hidrogel de Polietilenoglicol-Dimetacrilato/toxicidade , Miócitos de Músculo Liso/efeitos dos fármacos , Engenharia Tecidual/métodos , Tecidos Suporte/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA