Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.971
Filtrar
1.
Crit Care Resusc ; 22(3): 257-265, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32900333

RESUMO

Albumin is the most abundant and perhaps most important protein in human blood. Research has identified many of albumin's possible roles in modulating acid-base balance, modifying inflammation, maintaining vascular endothelial integrity, and binding endogenous and exogenous compounds. Albumin plays a key role in the homeostasis of vascular endothelium, offering protection from inflammation and damage to the glycocalyx. Albumin binds a diverse range of compounds. It transports, delivers and clears drugs, plus it helps with uptake, storage and disposal of potentially harmful biological products. The biological effects of albumin in critical illness are incompletely understood, but may enhance its clinical role beyond use as an intravenous fluid. In this article, we summarise the evidence surrounding albumin's biological and physiological effects beyond its use for plasma volume expansion, and explore potential mechanistic effects of albumin as a disease modifier in patients with critical illness.


Assuntos
Albuminas/farmacologia , Endotélio Vascular/efeitos dos fármacos , Glicocálix , Células Endoteliais/metabolismo , Homeostase , Humanos
2.
Nat Commun ; 11(1): 4413, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887883

RESUMO

The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovascular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation-dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which prominently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood-brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed transcriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.


Assuntos
Envelhecimento/patologia , Barreira Hematoencefálica , Encéfalo/fisiopatologia , Células Endoteliais/metabolismo , Exenatida/farmacologia , Doença de Alzheimer/fisiopatologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Capilares/metabolismo , Células Cultivadas , Humanos , Camundongos , Microglia/efeitos dos fármacos , Doenças Neurodegenerativas/fisiopatologia , Transcriptoma/efeitos dos fármacos
3.
Anticancer Res ; 40(9): 5171-5180, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878805

RESUMO

BACKGROUND/AIM: In this study, the liver sinusoidal endothelial cells (LSECs)-protective effects of beraprost sodium (BPS) were investigated using mice with monocrotaline (MCT)-induced sinusoidal obstruction syndrome (SOS). MATERIALS AND METHODS: The mice were divided into BPS, placebo and control groups. They were killed 48 h after MCT administration, and blood samples and liver tissues were evaluated. Immunostaining was performed using anti-SE-1 and anti-CD42b antibodies, whereas plasminogen activator inhibitor (PAI-1) and endothelial nitric oxide synthase (eNOS) levels were evaluated using western blot or real-time RT-PCR. RESULTS: On pathological examination, SOS-related findings were observed in zone 3 in the placebo group; however, these were significantly suppressed in the BPS group. SE-1 staining showed a consistent number of LSECs in the BPS group compared with that in the placebo group, while CD42b staining showed a significant decrease in the number of extravasated platelet aggregation (EPA) in the BPS group. PAI-1 expression was significantly lower in the BPS group than in the placebo group; however, eNOS expression was significantly higher in the BPS group than in the placebo group. CONCLUSION: Prophylactic administration of BPS is useful for suppressing the development of SOS through the protective effects of LSEC.


Assuntos
Epoprostenol/análogos & derivados , Hepatopatia Veno-Oclusiva/tratamento farmacológico , Vasodilatadores/farmacologia , Animais , Biomarcadores , Biópsia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Epoprostenol/farmacologia , Feminino , Hepatopatia Veno-Oclusiva/diagnóstico , Hepatopatia Veno-Oclusiva/etiologia , Hepatopatia Veno-Oclusiva/metabolismo , Imuno-Histoquímica , Transplante de Fígado , Camundongos , Avaliação de Sintomas
4.
Adv Exp Med Biol ; 1267: 101-115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894479

RESUMO

Pathogenic bacteria colonize or disseminate into cells and tissues by inducing large-scale remodeling of host membranes. The physical phenomena underpinning these massive membrane extension and deformation are poorly understood. Invasive strategies of pathogens have been recently enriched by the description of a spectacular mode of opening of large transendothelial cell macroaperture (TEM) tunnels correlated to the dissemination of EDIN-producing strains of Staphylococcus aureus via a hematogenous route or to the induction of gelatinous edema triggered by the edema toxin from Bacillus anthracis. Remarkably, these highly dynamic tunnels close rapidly after they reach a maximal size. Opening and closure of TEMs in cells lasts for hours without inducing endothelial cell death. Multidisciplinary studies have started to provide a broader perspective of both the molecular determinants controlling cytoskeleton organization at newly curved membranes generated by the opening of TEMs and the physical processes controlling the dynamics of these tunnels. Here we discuss the analogy between the opening of TEM tunnels and the physical principles of dewetting, stemming from a parallel between membrane tension and surface tension. This analogy provides a broad framework to investigate biophysical constraints in cell membrane dynamics and their diversion by certain invasive microbial agents.


Assuntos
Bactérias/patogenicidade , Membrana Celular/microbiologia , Membrana Celular/patologia , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Molhabilidade , Membrana Celular/metabolismo , Edema/metabolismo , Edema/microbiologia , Edema/patologia , Células Endoteliais/metabolismo , Humanos , Tensão Superficial
5.
Anticancer Res ; 40(10): 5463-5469, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988868

RESUMO

BACKGROUND/AIM: Periostin exists as an extracellular matrix protein in several carcinomas and is related to metastasis and poor prognosis. It is mainly secreted from cancer associated fibroblasts, and not from carcinoma cells. As a tumor microenvironment component, periostin usually mediates tumor cell stemness, metastasis, angiogenesis and lymphangiogenesis. This study aimed to examine the role of periostin in chondrosarcoma. MATERIALS AND METHODS: To evaluate the effect of periostin on the proliferation of chondrosarcoma cells, MTT assay was performed on SW1353 cells and periostin knockdown SW1353 cells. Migration activity was examined using Boyden chamber. RESULTS: Periostin, secreted from chondrosarcoma cells, was found to support proliferation, and maintain stemness and migration of chondrosarcoma cells. Periostin also induced proliferation and migration of lymphatic endothelial cells. CONCLUSION: Periostin plays an important role in chondrosarcoma development and disease progression.


Assuntos
Moléculas de Adesão Celular/genética , Proliferação de Células/genética , Condrossarcoma/genética , Neovascularização Patológica/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Condrossarcoma/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Linfangiogênese/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/patologia , Microambiente Tumoral/genética
6.
Nat Commun ; 11(1): 3812, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732889

RESUMO

Vascular endothelial cell (EC) dysfunction plays a key role in diabetic complications. This study discovers significant upregulation of Quaking-7 (QKI-7) in iPS cell-derived ECs when exposed to hyperglycemia, and in human iPS-ECs from diabetic patients. QKI-7 is also highly expressed in human coronary arterial ECs from diabetic donors, and on blood vessels from diabetic critical limb ischemia patients undergoing a lower-limb amputation. QKI-7 expression is tightly controlled by RNA splicing factors CUG-BP and hnRNPM through direct binding. QKI-7 upregulation is correlated with disrupted cell barrier, compromised angiogenesis and enhanced monocyte adhesion. RNA immunoprecipitation (RIP) and mRNA-decay assays reveal that QKI-7 binds and promotes mRNA degradation of downstream targets CD144, Neuroligin 1 (NLGN1), and TNF-α-stimulated gene/protein 6 (TSG-6). When hindlimb ischemia is induced in diabetic mice and QKI-7 is knocked-down in vivo in ECs, reperfusion and blood flow recovery are markedly promoted. Manipulation of QKI-7 represents a promising strategy for the treatment of diabetic vascular complications.


Assuntos
Diabetes Mellitus Experimental/patologia , Células Endoteliais/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Doenças Vasculares/patologia , Animais , Antígenos CD/genética , Aterosclerose/patologia , Caderinas/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Regulação da Expressão Gênica/genética , Humanos , Hiperglicemia/patologia , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética
7.
PLoS One ; 15(7): e0225351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735563

RESUMO

Endothelial cilia are found in a variety of tissues including the cranial vasculature of zebrafish embryos. Recently, endothelial cells in the developing mouse retina were reported to also possess primary cilia that are potentially involved in vascular remodeling. Fish carrying mutations in intraflagellar transport (ift) genes have disrupted cilia and have been reported to have an increased rate of spontaneous intracranial hemorrhage (ICH), potentially due to disruption of the sonic hedgehog (shh) signaling pathway. However, it remains unknown whether the endothelial cells forming the retinal microvasculature in zebrafish also possess cilia, and whether endothelial cilia are necessary for development and maintenance of the blood-retinal barrier (BRB). In the present study, we found that the endothelial cells lining the zebrafish hyaloid vasculature possess primary cilia during development. To determine whether endothelial cilia are necessary for BRB integrity, ift57, ift88, and ift172 mutants, which lack cilia, were crossed with the double-transgenic zebrafish strain Tg(l-fabp:DBP-EGFP;flk1:mCherry). This strain expresses a vitamin D-binding protein (DBP) fused to enhanced green fluorescent protein (EGFP) as a tracer in the blood plasma, while the endothelial cells forming the vasculature are tagged by mCherry. The Ift mutant fish develop a functional BRB, indicating that endothelial cilia are not necessary for early BRB integrity. Additionally, although treatment of zebrafish larvae with Shh inhibitor cyclopamine results in BRB breakdown, the Ift mutant fish were not sensitized to cyclopamine-induced BRB breakdown.


Assuntos
Barreira Hematorretiniana/metabolismo , Cílios/metabolismo , Células Endoteliais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Geneticamente Modificados , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/fisiologia , Células Endoteliais/citologia , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Larva/metabolismo , Mutagênese , Vasos Retinianos/citologia , Transdução de Sinais , Alcaloides de Veratrum/farmacologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(36): 22351-22356, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32826331

RESUMO

Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19.


Assuntos
Síndrome da Liberação de Citocina/metabolismo , Células Endoteliais/metabolismo , Interleucina-6/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Transdução de Sinais , Adulto , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Betacoronavirus , Queimaduras/metabolismo , Queimaduras/patologia , Células Cultivadas , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/patologia , Citocinas/sangue , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Inflamação , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Pandemias , Inibidor 1 de Ativador de Plasminogênio/sangue , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/metabolismo , Síndrome do Desconforto Respiratório do Adulto/metabolismo , Síndrome do Desconforto Respiratório do Adulto/patologia , Sepse/metabolismo , Sepse/patologia
9.
Nat Commun ; 11(1): 3984, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770009

RESUMO

The epsin family of endocytic adapter proteins are widely expressed, and interact with both proteins and lipids to regulate a variety of cell functions. However, the role of epsins in atherosclerosis is poorly understood. Here, we show that deletion of endothelial epsin proteins reduces inflammation and attenuates atherosclerosis using both cell culture and mouse models of this disease. In atherogenic cholesterol-treated murine aortic endothelial cells, epsins interact with the ubiquitinated endoplasmic reticulum protein inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), which triggers proteasomal degradation of this calcium release channel. Epsins potentiate its degradation via this interaction. Genetic reduction of endothelial IP3R1 accelerates atherosclerosis, whereas deletion of endothelial epsins stabilizes IP3R1 and mitigates inflammation. Reduction of IP3R1 in epsin-deficient mice restores atherosclerotic progression. Taken together, epsin-mediated degradation of IP3R1 represents a previously undiscovered biological role for epsin proteins and may provide new therapeutic targets for the treatment of atherosclerosis and other diseases.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Aterosclerose/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteólise , Proteínas Adaptadoras de Transporte Vesicular/química , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/patologia , Cálcio/metabolismo , Colesterol/metabolismo , Células Endoteliais/metabolismo , Feminino , Deleção de Genes , Células HEK293 , Homeostase , Humanos , Inflamação/patologia , Masculino , Camundongos Knockout , Ligação Proteica , Domínios Proteicos , Ubiquitinação
10.
PLoS Biol ; 18(8): e3000808, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817651

RESUMO

Although dysregulation of mitochondrial dynamics has been linked to cellular senescence, which contributes to advanced age-related disorders, it is unclear how Krüppel-like factor 5 (Klf5), an essential transcriptional factor of cardiovascular remodeling, mediates the link between mitochondrial dynamics and vascular smooth muscle cell (VSMC) senescence. Here, we show that Klf5 down-regulation in VSMCs is correlated with rupture of abdominal aortic aneurysm (AAA), an age-related vascular disease. Mice lacking Klf5 in VSMCs exacerbate vascular senescence and progression of angiotensin II (Ang II)-induced AAA by facilitating reactive oxygen species (ROS) formation. Klf5 knockdown enhances, while Klf5 overexpression suppresses mitochondrial fission. Mechanistically, Klf5 activates eukaryotic translation initiation factor 5a (eIF5a) transcription through binding to the promoter of eIF5a, which in turn preserves mitochondrial integrity by interacting with mitofusin 1 (Mfn1). Accordingly, decreased expression of eIF5a elicited by Klf5 down-regulation leads to mitochondrial fission and excessive ROS production. Inhibition of mitochondrial fission decreases ROS production and VSMC senescence. Our studies provide a potential therapeutic target for age-related vascular disorders.


Assuntos
Aneurisma da Aorta Abdominal/genética , Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Idoso , Angiotensina II/genética , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Aorta/diagnóstico por imagem , Aorta/metabolismo , Aorta/patologia , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Senescência Celular/efeitos dos fármacos , Ecocardiografia , Células Endoteliais/patologia , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/deficiência , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Fatores de Iniciação de Peptídeos/deficiência , Cultura Primária de Células , Regiões Promotoras Genéticas , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(33): 19854-19865, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759214

RESUMO

The blood-retina barrier and blood-brain barrier (BRB/BBB) are selective and semipermeable and are critical for supporting and protecting central nervous system (CNS)-resident cells. Endothelial cells (ECs) within the BRB/BBB are tightly coupled, express high levels of Claudin-5 (CLDN5), a junctional protein that stabilizes ECs, and are important for proper neuronal function. To identify novel CLDN5 regulators (and ultimately EC stabilizers), we generated a CLDN5-P2A-GFP stable cell line from human pluripotent stem cells (hPSCs), directed their differentiation to ECs (CLDN5-GFP hPSC-ECs), and performed flow cytometry-based chemogenomic library screening to measure GFP expression as a surrogate reporter of barrier integrity. Using this approach, we identified 62 unique compounds that activated CLDN5-GFP. Among them were TGF-ß pathway inhibitors, including RepSox. When applied to hPSC-ECs, primary brain ECs, and retinal ECs, RepSox strongly elevated barrier resistance (transendothelial electrical resistance), reduced paracellular permeability (fluorescein isothiocyanate-dextran), and prevented vascular endothelial growth factor A (VEGFA)-induced barrier breakdown in vitro. RepSox also altered vascular patterning in the mouse retina during development when delivered exogenously. To determine the mechanism of action of RepSox, we performed kinome-, transcriptome-, and proteome-profiling and discovered that RepSox inhibited TGF-ß, VEGFA, and inflammatory gene networks. In addition, RepSox not only activated vascular-stabilizing and barrier-establishing Notch and Wnt pathways, but also induced expression of important tight junctions and transporters. Taken together, our data suggest that inhibiting multiple pathways by selected individual small molecules, such as RepSox, may be an effective strategy for the development of better BRB/BBB models and novel EC barrier-inducing therapeutics.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Claudina-5/genética , Claudina-5/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Edição de Genes , Genoma , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Junções Íntimas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
PLoS One ; 15(8): e0237141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764789

RESUMO

Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.


Assuntos
Citocinas/sangue , Vírus da Dengue/imunologia , Interações Hospedeiro-Patógeno/imunologia , Dengue Grave/sangue , Proteínas não Estruturais Virais/sangue , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Vírus da Dengue/metabolismo , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Humanos , Fosfolipídeos/metabolismo , Cultura Primária de Células , Dengue Grave/imunologia , Dengue Grave/metabolismo , Dengue Grave/patologia , Proteínas não Estruturais Virais/imunologia
13.
Circulation ; 142(12): 1190-1204, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32755395

RESUMO

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II, a potent vasoconstrictor, to angiotensin-(1-7) and is also a membrane protein that enables coronavirus disease 2019 (COVID-19) infectivity. AMP-activated protein kinase (AMPK) phosphorylation of ACE2 enhances ACE2 stability. This mode of posttranslational modification of ACE2 in vascular endothelial cells is causative of a pulmonary hypertension (PH)-protective phenotype. The oncoprotein MDM2 (murine double minute 2) is an E3 ligase that ubiquitinates its substrates to cause their degradation. In this study, we investigated whether MDM2 is involved in the posttranslational modification of ACE2 through its ubiquitination of ACE2, and whether an AMPK and MDM2 crosstalk regulates the pathogenesis of PH. METHODS: Bioinformatic analyses were used to explore E3 ligase that ubiquitinates ACE2. Cultured endothelial cells, mouse models, and specimens from patients with idiopathic pulmonary arterial hypertension were used to investigate the crosstalk between AMPK and MDM2 in regulating ACE2 phosphorylation and ubiquitination in the context of PH. RESULTS: Levels of MDM2 were increased and those of ACE2 decreased in lung tissues or pulmonary arterial endothelial cells from patients with idiopathic pulmonary arterial hypertension and rodent models of experimental PH. MDM2 inhibition by JNJ-165 reversed the SU5416/hypoxia-induced PH in C57BL/6 mice. ACE2-S680L mice (dephosphorylation at S680) showed PH susceptibility, and ectopic expression of ACE2-S680L/K788R (deubiquitination at K788) reduced experimental PH. Moreover, ACE2-K788R overexpression in mice with endothelial cell-specific AMPKα2 knockout mitigated PH. CONCLUSIONS: Maladapted posttranslational modification (phosphorylation and ubiquitination) of ACE2 at Ser-680 and Lys-788 is involved in the pathogenesis of pulmonary arterial hypertension and experimental PH. Thus, a combined intervention of AMPK and MDM2 in the pulmonary endothelium might be therapeutically effective in PH treatment.


Assuntos
Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Hipertensão Arterial Pulmonar/patologia , Ubiquitinação , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Animais , Suscetibilidade a Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidil Dipeptidase A/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos
14.
Arterioscler Thromb Vasc Biol ; 40(9): 2293-2309, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32757648

RESUMO

OBJECTIVE: Extracellular vesicles (EVs) have the potential to act as intercellular communicators. The aims were to characterize circulating EVs in patients with pulmonary arterial hypertension (PAH) and to explore whether these EVs contribute to endothelial activation and angiogenesis. Approach and Results: Patients with PAH (n=70) and healthy controls (HC; n=20) were included in this cross-sectional study. EVs were characterized and human pulmonary endothelial cells (hPAECs) were incubated with purified EVs. Endothelial cell activity and proangiogenic markers were analyzed. Tube formation analysis was performed for hPAECs, and the involvement of PSGL-1 (P-selectin glycoprotein ligand 1) was evaluated. The numbers of CD62P+, CD144+, and CD235a EVs were higher in blood from PAH compared with HC. Thirteen proteins were differently expressed in PAH and HC EVs, where complement fragment C1q was the most significantly elevated protein (P=0.0009) in PAH EVs. Upon EVs-internalization in hPAECs, more PAH compared with HC EVs evaded lysosomes (P<0.01). As oppose to HC, PAH EVs stimulated hPAEC activation and induced transcription and translation of VEGF-A (vascular endothelial growth factor A; P<0.05) and FGF (fibroblast growth factor; P<0.005) which were released in the cell supernatant. These proangiogenic proteins were higher in patient with PAH plasma compered with HC. PAH EVs induced a complex network of angiotubes in vitro, which was abolished by inhibitory PSGL-1antibody. Anti-PSGL-1 also inhibited EV-induced endothelial cell activation and PAH EV dependent increase of VEGF-A. CONCLUSIONS: Patients with PAH have higher levels of EVs harboring increased amounts of angiogenic proteins, which induce activation of hPAECs and in vitro angiogenesis. These effects were partly because of platelet-derived EVs evasion of lysosomes upon internalization within hPAEC and through possible involvement of P-selectin-PSGL-1 pathway.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Neovascularização Fisiológica , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Idoso , Estudos de Casos e Controles , Células Cultivadas , Estudos Transversais , Células Endoteliais/ultraestrutura , Endotélio Vascular/fisiopatologia , Endotélio Vascular/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Selectina-P/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/ultraestrutura , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Cell Stress Chaperones ; 25(5): 737-741, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32754823

RESUMO

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the cause of COVID-19 disease, has the potential to elicit autoimmunity because mimicry of human molecular chaperones by viral proteins. We compared viral proteins with human molecular chaperones, many of which are heat shock proteins, to determine if they share amino acid-sequence segments with immunogenic-antigenic potential, which can elicit cross-reactive antibodies and effector immune cells with the capacity to damage-destroy human cells by a mechanism of autoimmunity. We identified the chaperones that can putatively participate in molecular mimicry phenomena after SARS-CoV-2 infection, focusing on those for which endothelial cell plasma-cell membrane localization has already been demonstrated. We also postulate that post-translational modifications, induced by physical (shear) and chemical (metabolic) stress caused respectively by the risk factors hypertension and diabetes, might have a role in determining plasma-cell membrane localization and, in turn, autoimmune-induced endothelial damage.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/virologia , Proteínas de Choque Térmico , Pneumonia Viral/virologia , Proteínas Virais , Sequência de Aminoácidos , Autoantígenos , Autoimunidade , Bases de Dados de Proteínas , Células Endoteliais/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/imunologia , Humanos , Epitopos Imunodominantes , Mimetismo Molecular , Pandemias , Proteínas Virais/química , Proteínas Virais/imunologia
16.
Front Immunol ; 11: 1648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754159

RESUMO

Cytokine storm is an acute hyperinflammatory response that may be responsible for critical illness in many conditions including viral infections, cancer, sepsis, and multi-organ failure. The phenomenon has been implicated in critically ill patients infected with SARS-CoV-2, the novel coronavirus implicated in COVID-19. Critically ill COVID-19 patients experiencing cytokine storm are believed to have a worse prognosis and increased fatality rate. In SARS-CoV-2 infected patients, cytokine storm appears important to the pathogenesis of several severe manifestations of COVID-19: acute respiratory distress syndrome, thromboembolic diseases such as acute ischemic strokes caused by large vessel occlusion and myocardial infarction, encephalitis, acute kidney injury, and vasculitis (Kawasaki-like syndrome in children and renal vasculitis in adult). Understanding the pathogenesis of cytokine storm will help unravel not only risk factors for the condition but also therapeutic strategies to modulate the immune response and deliver improved outcomes in COVID-19 patients at high risk for severe disease. In this article, we present an overview of the cytokine storm and its implications in COVID-19 settings and identify potential pathways or biomarkers that could be targeted for therapy. Leveraging expert opinion, emerging evidence, and a case-based approach, this position paper provides critical insights on cytokine storm from both a prognostic and therapeutic standpoint.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Cuidados Críticos/métodos , Citocinas/sangue , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia , Corticosteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Relação CD4-CD8 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Tomada de Decisão Clínica/métodos , Infecções por Coronavirus/sangue , Infecções por Coronavirus/mortalidade , Estado Terminal , Células Endoteliais/metabolismo , Feminino , Humanos , Hospedeiro Imunocomprometido , Interleucina-6/antagonistas & inibidores , Inibidores de Janus Quinases/uso terapêutico , Masculino , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/sangue , Pneumonia Viral/mortalidade , Fatores Sexuais , Trombose
17.
Nat Commun ; 11(1): 3866, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737287

RESUMO

Upon severe head injury (HI), blood vessels of the meninges and brain parenchyma are inevitably damaged. While limited vascular regeneration of the injured brain has been studied extensively, our understanding of meningeal vascular regeneration following head injury is quite limited. Here, we identify key pathways governing meningeal vascular regeneration following HI. Rapid and complete vascular regeneration in the meninges is predominantly driven by VEGFR2 signaling. Substantial increase of VEGFR2 is observed in both human patients and mouse models of HI, and endothelial cell-specific deletion of Vegfr2 in the latter inhibits meningeal vascular regeneration. We further identify the facilitating, stabilizing and arresting roles of Tie2, PDGFRß and Dll4 signaling, respectively, in meningeal vascular regeneration. Prolonged inhibition of this angiogenic process following HI compromises immunological and stromal integrity of the injured meninges. These findings establish a molecular framework for meningeal vascular regeneration after HI, and may guide development of wound healing therapeutics.


Assuntos
Traumatismos Craniocerebrais/genética , Células Endoteliais/metabolismo , Neovascularização Fisiológica/genética , Regeneração/genética , Transdução de Sinais/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Circulação Cerebrovascular , Traumatismos Craniocerebrais/metabolismo , Traumatismos Craniocerebrais/patologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Regulação da Expressão Gênica/genética , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Meninges/lesões , Meninges/metabolismo , Camundongos , Camundongos Knockout , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética
18.
Circulation ; 142(12): 1190-1204, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: covidwho-810574

RESUMO

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II, a potent vasoconstrictor, to angiotensin-(1-7) and is also a membrane protein that enables coronavirus disease 2019 (COVID-19) infectivity. AMP-activated protein kinase (AMPK) phosphorylation of ACE2 enhances ACE2 stability. This mode of posttranslational modification of ACE2 in vascular endothelial cells is causative of a pulmonary hypertension (PH)-protective phenotype. The oncoprotein MDM2 (murine double minute 2) is an E3 ligase that ubiquitinates its substrates to cause their degradation. In this study, we investigated whether MDM2 is involved in the posttranslational modification of ACE2 through its ubiquitination of ACE2, and whether an AMPK and MDM2 crosstalk regulates the pathogenesis of PH. METHODS: Bioinformatic analyses were used to explore E3 ligase that ubiquitinates ACE2. Cultured endothelial cells, mouse models, and specimens from patients with idiopathic pulmonary arterial hypertension were used to investigate the crosstalk between AMPK and MDM2 in regulating ACE2 phosphorylation and ubiquitination in the context of PH. RESULTS: Levels of MDM2 were increased and those of ACE2 decreased in lung tissues or pulmonary arterial endothelial cells from patients with idiopathic pulmonary arterial hypertension and rodent models of experimental PH. MDM2 inhibition by JNJ-165 reversed the SU5416/hypoxia-induced PH in C57BL/6 mice. ACE2-S680L mice (dephosphorylation at S680) showed PH susceptibility, and ectopic expression of ACE2-S680L/K788R (deubiquitination at K788) reduced experimental PH. Moreover, ACE2-K788R overexpression in mice with endothelial cell-specific AMPKα2 knockout mitigated PH. CONCLUSIONS: Maladapted posttranslational modification (phosphorylation and ubiquitination) of ACE2 at Ser-680 and Lys-788 is involved in the pathogenesis of pulmonary arterial hypertension and experimental PH. Thus, a combined intervention of AMPK and MDM2 in the pulmonary endothelium might be therapeutically effective in PH treatment.


Assuntos
Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Hipertensão Arterial Pulmonar/patologia , Ubiquitinação , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Animais , Suscetibilidade a Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidil Dipeptidase A/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos
19.
Cell Stress Chaperones ; 25(5): 737-741, 2020 09.
Artigo em Inglês | MEDLINE | ID: covidwho-697095

RESUMO

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the cause of COVID-19 disease, has the potential to elicit autoimmunity because mimicry of human molecular chaperones by viral proteins. We compared viral proteins with human molecular chaperones, many of which are heat shock proteins, to determine if they share amino acid-sequence segments with immunogenic-antigenic potential, which can elicit cross-reactive antibodies and effector immune cells with the capacity to damage-destroy human cells by a mechanism of autoimmunity. We identified the chaperones that can putatively participate in molecular mimicry phenomena after SARS-CoV-2 infection, focusing on those for which endothelial cell plasma-cell membrane localization has already been demonstrated. We also postulate that post-translational modifications, induced by physical (shear) and chemical (metabolic) stress caused respectively by the risk factors hypertension and diabetes, might have a role in determining plasma-cell membrane localization and, in turn, autoimmune-induced endothelial damage.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/virologia , Proteínas de Choque Térmico , Pneumonia Viral/virologia , Proteínas Virais , Sequência de Aminoácidos , Autoantígenos , Autoimunidade , Bases de Dados de Proteínas , Células Endoteliais/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/imunologia , Humanos , Epitopos Imunodominantes , Mimetismo Molecular , Pandemias , Proteínas Virais/química , Proteínas Virais/imunologia
20.
Circulation ; 142(12): 1190-1204, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: covidwho-696685

RESUMO

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II, a potent vasoconstrictor, to angiotensin-(1-7) and is also a membrane protein that enables coronavirus disease 2019 (COVID-19) infectivity. AMP-activated protein kinase (AMPK) phosphorylation of ACE2 enhances ACE2 stability. This mode of posttranslational modification of ACE2 in vascular endothelial cells is causative of a pulmonary hypertension (PH)-protective phenotype. The oncoprotein MDM2 (murine double minute 2) is an E3 ligase that ubiquitinates its substrates to cause their degradation. In this study, we investigated whether MDM2 is involved in the posttranslational modification of ACE2 through its ubiquitination of ACE2, and whether an AMPK and MDM2 crosstalk regulates the pathogenesis of PH. METHODS: Bioinformatic analyses were used to explore E3 ligase that ubiquitinates ACE2. Cultured endothelial cells, mouse models, and specimens from patients with idiopathic pulmonary arterial hypertension were used to investigate the crosstalk between AMPK and MDM2 in regulating ACE2 phosphorylation and ubiquitination in the context of PH. RESULTS: Levels of MDM2 were increased and those of ACE2 decreased in lung tissues or pulmonary arterial endothelial cells from patients with idiopathic pulmonary arterial hypertension and rodent models of experimental PH. MDM2 inhibition by JNJ-165 reversed the SU5416/hypoxia-induced PH in C57BL/6 mice. ACE2-S680L mice (dephosphorylation at S680) showed PH susceptibility, and ectopic expression of ACE2-S680L/K788R (deubiquitination at K788) reduced experimental PH. Moreover, ACE2-K788R overexpression in mice with endothelial cell-specific AMPKα2 knockout mitigated PH. CONCLUSIONS: Maladapted posttranslational modification (phosphorylation and ubiquitination) of ACE2 at Ser-680 and Lys-788 is involved in the pathogenesis of pulmonary arterial hypertension and experimental PH. Thus, a combined intervention of AMPK and MDM2 in the pulmonary endothelium might be therapeutically effective in PH treatment.


Assuntos
Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Hipertensão Arterial Pulmonar/patologia , Ubiquitinação , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Animais , Suscetibilidade a Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidil Dipeptidase A/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA