Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 862
Filtrar
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 36(9): 788-793, 2020 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-32967762

RESUMO

Objective To investigate SIRT1-PGC-1α signaling pathway-mediated effect of hyperoxia on mitochondrial function in A549 human alveolar epithelial cells and its possible mechanism. Methods Human alveolar epithelial cells in logarithmic growth phase were randomly divided into control group and hyperoxia group. The control group was cultured in a 37DegreesCelsius, 50 mL/L CO2 saturated humidity incubator, and the hyperoxia group was treated with 950 mL/L O2. Following 24-hour culture, Mito SOXTM staining was used to detect the level of mitochondrial reactive oxygen species (Mito-ROS) and JC-1 staining to detect the mitochondrial membrane potential. Real-time quantitative PCR was performed to detect the mitochondrial DNA content and the mRNA levels of SIRT1, PGC-1α, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), and Western blotting to detect the protein levels of SIRT1, PGC-1α, NRF1 and TFAM. Results Compared with the control group, the Mito-ROS of the hyperoxia group increased significantly, while the membrane potential decreased obviously; the mitochondrial DNA content of the hyperoxia group went down, and the mRNA and protein expression of SIRT1, PGC-1α, NRF1 and TFAM dropped. Conclusion Hyperoxia induces mitochondrial dysfunction in human alveolar epithelial cells by inhibiting the expression of SIRT1 and PGC-1α.


Assuntos
Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sirtuína 1/genética , Células Epiteliais Alveolares/metabolismo , Hipóxia Celular , Linhagem Celular , Regulação para Baixo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/metabolismo
3.
Anesthesiology ; 133(4): 905-918, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32930731

RESUMO

BACKGROUND: Alveolar epithelial cell apoptosis is implicated in the onset of ventilator-induced lung injury. Death-associated protein kinase 1 (DAPK1) is associated with cell apoptosis. The hypothesis was that DAPK1 participates in ventilator-induced lung injury through promoting alveolar epithelial cell apoptosis. METHODS: Apoptosis of mouse alveolar epithelial cell was induced by cyclic stretch. DAPK1 expression was altered (knockdown or overexpressed) in vitro by using a small interfering RNA or a plasmid, respectively. C57/BL6 male mice (n = 6) received high tidal volume ventilation to establish a lung injury model. Adeno-associated virus transfection of short hairpin RNA and DAPK1 inhibitor repressed DAPK1 expression and activation in lungs, respectively. The primary outcomes were alveolar epithelial cell apoptosis and lung injury. RESULTS: Compared with the control group, the 24-h cyclic stretch group showed significantly higher alveolar epithelial cell apoptotic percentage (45 ± 4% fold vs. 6 ± 1% fold; P < 0.0001) and relative DAPK1 expression, and this group also demonstrated a reduced apoptotic percentage after DAPK1 knockdown (27 ± 5% fold vs. 53 ± 8% fold; P < 0.0001). A promoted apoptotic percentage in DAPK1 overexpression was observed without stretching (49 ± 6% fold vs. 14 ± 3% fold; P < 0.0001). Alterations in B-cell lymphoma 2 and B-cell lymphoma 2-associated X are associated with DAPK1 expression. The mice subjected to high tidal volume had higher DAPK1 expression and alveolar epithelial cell apoptotic percentage in lungs compared with the low tidal volume group (43 ± 6% fold vs. 4 ± 2% fold; P < 0.0001). Inhibition of DAPK1 through adeno-associated virus infection or DAPK1 inhibitor treatment appeared to be protective against lung injury with reduced lung injury score, resolved pulmonary inflammation, and repressed alveolar epithelial cell apoptotic percentage (47 ± 4% fold and 48 ± 6% fold; 35 ± 5% fold and 34 ± 4% fold; P < 0.0001, respectively). CONCLUSIONS: DAPK1 promotes the onset of ventilator-induced lung injury by triggering alveolar epithelial cell apoptosis through intrinsic apoptosis pathway in mice.


Assuntos
Células Epiteliais Alveolares/metabolismo , Apoptose/fisiologia , Proteínas Quinases Associadas com Morte Celular/biossíntese , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Células Cultivadas , Proteínas Quinases Associadas com Morte Celular/deficiência , Proteínas Quinases Associadas com Morte Celular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
4.
EBioMedicine ; 60: 102976, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32971472

RESUMO

BACKGROUND: Zoonotically transmitted coronaviruses are responsible for three disease outbreaks since 2002, including the current COVID-19 pandemic, caused by SARS-CoV-2. Its efficient transmission and range of disease severity raise questions regarding the contributions of virus-receptor interactions. ACE2 is a host ectopeptidase and the receptor for SARS-CoV-2. Numerous reports describe ACE2 mRNA abundance and tissue distribution; however, mRNA abundance is not always representative of protein levels. Currently, there is limited data evaluating ACE2 protein and its correlation with other SARS-CoV-2 susceptibility factors. MATERIALS AND METHODS: We systematically examined the human upper and lower respiratory tract using single-cell RNA sequencing and immunohistochemistry to determine receptor expression and evaluated its association with risk factors for severe COVID-19. FINDINGS: Our results reveal that ACE2 protein is highest within regions of the sinonasal cavity and pulmonary alveoli, sites of presumptive viral transmission and severe disease development, respectively. In the lung parenchyma, ACE2 protein was found on the apical surface of a small subset of alveolar type II cells and colocalized with TMPRSS2, a cofactor for SARS-CoV2 entry. ACE2 protein was not increased by pulmonary risk factors for severe COVID-19. Additionally, ACE2 protein was not reduced in children, a demographic with a lower incidence of severe COVID-19. INTERPRETATION: These results offer new insights into ACE2 protein localization in the human respiratory tract and its relationship with susceptibility factors to COVID-19.


Assuntos
Células Epiteliais Alveolares/metabolismo , Peptidil Dipeptidase A/genética , Análise de Sequência de RNA/métodos , Adulto , Idoso , Células Epiteliais Alveolares/patologia , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , Criança , Pré-Escolar , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , RNA Mensageiro/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Análise de Célula Única , Adulto Jovem
5.
Ecotoxicol Environ Saf ; 205: 111283, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977282

RESUMO

Fine particulate matter (PM2.5) airborne pollution increases the risk of chronic respiratory diseases, such as idiopathic pulmonary fibrosis (IPF), which is characterized by non-specific inflammation of the interstitial lung and extensive deposition of collagen fibers. Type 2 alveolar epithelial cells (AEC2s) are alveolar stem cells in the adult lung that contribute to the lung repair process through complex signaling. Our previous studies demonstrated that OGG1, a kind of DNA repair enzyme, have a critical role in protecting cells from oxidative damage and apoptosis induced by PM2.5, but the contribution of OGG1 in proliferation and self-renewal of AEC2s is not known. Here, we constructed OGG1-/-mice to test the effect and mechanism of OGG1 on PM2.5-induced pulmonary fibrosis and injury in vivo. We detected proliferation and self-renewal of OGG1 overexpression or OGG1 knockout AEC2s after PM2.5 injury by flow cytometry and clone formation. We observed that knockout of OGG1 aggravated pulmonary fibrosis, oxidative stress, and AEC2 cell death in PM2.5-injured mice. In addition, OGG1 is required for the proliferation and renewal of AEC2s after PM2.5 injury. Overexpression of OGG1 promotes the proliferation and self-renewal of AEC2s by inhibiting PM2.5-mediated oxidative stress and NF-κB signaling hyperactivation in vitro. Furthermore, NF-κB inhibitors promoted proliferation and self-renewal of OGG1-deficient AEC2s cells after PM2.5 injury, and attenuated PM2.5-induced pulmonary fibrosis and injury in mice. These data establish OGG1 as a regulator of NF-κB signal that serves to regulate AEC2 cell proliferation and self-renewal, and suggest a mechanism that inhibition of the NF-κB signaling pathway may represent a potential therapeutic strategy for IPF patients with low-expression of OGG1.


Assuntos
Poluentes Atmosféricos/toxicidade , Células Epiteliais Alveolares/efeitos dos fármacos , Autorrenovação Celular/genética , DNA Glicosilases/metabolismo , Material Particulado/toxicidade , Fibrose Pulmonar/induzido quimicamente , Células-Tronco/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , DNA Glicosilases/genética , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/patologia
6.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L670-L674, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878480

RESUMO

The severity of coronavirus disease 2019 (COVID-19) is linked to an increasing number of risk factors, including exogenous (environmental) stimuli such as air pollution, nicotine, and cigarette smoke. These three factors increase the expression of angiotensin I converting enzyme 2 (ACE2), a key receptor involved in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the etiological agent of COVID-19-into respiratory tract epithelial cells. Patients with severe COVID-19 are managed with oxygen support, as are at-risk individuals with chronic lung disease. To date, no study has examined whether an increased fraction of inspired oxygen (FiO2) may affect the expression of SARS-CoV-2 entry receptors and co-receptors, including ACE2 and the transmembrane serine proteases TMPRSS1, TMPRSS2, and TMPRSS11D. To address this, steady-state mRNA levels for genes encoding these SARS-CoV-2 receptors were assessed in the lungs of mouse pups chronically exposed to elevated FiO2, and in the lungs of preterm-born human infants chronically managed with an elevated FiO2. These two scenarios served as models of chronic elevated FiO2 exposure. Additionally, SARS-CoV-2 receptor expression was assessed in primary human nasal, tracheal, esophageal, bronchial, and alveolar epithelial cells, as well as primary mouse alveolar type II cells exposed to elevated oxygen concentrations. While gene expression of ACE2 was unaffected, gene and protein expression of TMPRSS11D was consistently upregulated by exposure to an elevated FiO2. These data highlight the need for further studies that examine the relative contribution of the various viral co-receptors on the infection cycle, and point to oxygen supplementation as a potential risk factor for COVID-19.


Assuntos
Infecções por Coronavirus/patologia , Proteínas de Membrana/metabolismo , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Mucosa Respiratória/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Betacoronavirus , Células Cultivadas , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/administração & dosagem , Oxigênio/análise , Pandemias , Receptores Virais/metabolismo , Fatores de Risco , Serina Endopeptidases/genética , Serina Proteases/genética , Índice de Gravidade de Doença
7.
Life Sci ; 259: 118260, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795541

RESUMO

Cigarette smoke (CS), the major risk factor of chronic obstructive pulmonary disease (COPD), contains numerous free radicals that can cause oxidative stress and exaggerated inflammatory responses in the respiratory system. Lipid peroxidation which is oxidative degradation of polyunsaturated fatty acids and results in cell damage has also been associated with COPD pathogenesis. Increased levels of lipid peroxidation as well as its end product 4-hydroxynonenal have indeed been detected in COPD patients. Additionally, reactive oxygen species such as those contained in CS can activate nuclear factor-κB signaling pathway, initiating cascades of proinflammatory mediator expression. As emerging evidence attests to the antioxidative and anti-inflammatory properties of tea catechins, we sought to determine whether epigallocatechin gallate, the most abundant tea catechin, can provide protection against oxidative stress, lipid peroxidation, and inflammatory responses caused by CS. We found that EGCG treatment blocked cigarette smoke extract (CSE)-induced oxidative stress as indicated by decreased production and accumulation of reactive oxygen species in airway epithelial cells (AECs). Likewise, lipid peroxidation in CSE-stimulated AECs was suppressed by EGCG. Our findings further suggest that EGCG sequestered 4-hydroxynonenal and interfered with its protein adduct formation. Lastly, we show that EGCG inhibited nuclear factor-κB activation and the downstream expression of proinflammatory mediators. In summary, our study describing the antioxidative and anti-inflammatory effects of EGCG in CSE-exposed AECs provide valuable information about the therapeutic potential of this tea catechin for COPD.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Catequina/análogos & derivados , Fumar Cigarros/tratamento farmacológico , Aldeídos/farmacologia , Células Epiteliais Alveolares/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Brônquios/metabolismo , Catequina/metabolismo , Catequina/farmacologia , Linhagem Celular , Fumar Cigarros/efeitos adversos , Fumar Cigarros/fisiopatologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , NF-kappa B/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Fumaça/efeitos adversos , Fumar/efeitos adversos
9.
Nat Commun ; 11(1): 3559, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678092

RESUMO

The cell type specific sequences of transcriptional programs during lung regeneration have remained elusive. Using time-series single cell RNA-seq of the bleomycin lung injury model, we resolved transcriptional dynamics for 28 cell types. Trajectory modeling together with lineage tracing revealed that airway and alveolar stem cells converge on a unique Krt8 + transitional stem cell state during alveolar regeneration. These cells have squamous morphology, feature p53 and NFkB activation and display transcriptional features of cellular senescence. The Krt8+ state appears in several independent models of lung injury and persists in human lung fibrosis, creating a distinct cell-cell communication network with mesenchyme and macrophages during repair. We generated a model of gene regulatory programs leading to Krt8+ transitional cells and their terminal differentiation to alveolar type-1 cells. We propose that in lung fibrosis, perturbed molecular checkpoints on the way to terminal differentiation can cause aberrant persistence of regenerative intermediate stem cell states.


Assuntos
Células Epiteliais Alveolares/metabolismo , Queratina-8/metabolismo , Alvéolos Pulmonares/fisiologia , Fibrose Pulmonar/patologia , Regeneração , Células-Tronco/metabolismo , Células Epiteliais Alveolares/citologia , Animais , Comunicação Celular , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Queratina-8/genética , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/citologia , Fibrose Pulmonar/metabolismo , Análise de Célula Única , Células-Tronco/citologia
10.
Am J Respir Cell Mol Biol ; 63(4): 436-443, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32692933

RESUMO

Rare or private, biallelic variants in the ABCA3 (ATP-binding cassette transporter A3) gene are the most common monogenic cause of lethal neonatal respiratory failure and childhood interstitial lung disease. Functional characterization of fewer than 10% of over 200 disease-associated ABCA3 variants (majority missense) suggests either disruption of ABCA3 protein trafficking (type I) or of ATPase-mediated phospholipid transport (type II). Therapies remain limited and nonspecific. A scalable platform is required for functional characterization of ABCA3 variants and discovery of pharmacologic correctors. To address this need, we first silenced the endogenous ABCA3 locus in A549 cells with CRISPR/Cas9 genome editing. Next, to generate a parent cell line (A549/ABCA3-/-) with a single recombination target site for genomic integration and stable expression of individual ABCA3 missense variant cDNAs, we used lentiviral-mediated integration of a LoxFAS cassette, FACS, and dilutional cloning. To assess the fidelity of this cell-based model, we compared functional characterization (ABCA3 protein processing, ABCA3 immunofluorescence colocalization with intracellular markers, ultrastructural vesicle phenotype) of two individual ABCA3 mutants (type I mutant, p.L101P; type II mutant, p.E292V) in A549/ABCA3-/- cells and in both A549 cells and primary, human alveolar type II cells that transiently express each cDNA after adenoviral-mediated transduction. We also confirmed pharmacologic rescue of ABCA3 variant-encoded mistrafficking and vesicle diameter in A549/ABCA3-/- cells that express p.G1421R (type I mutant). A549/ABCA3-/- cells provide a scalable, genetically versatile, physiologically relevant functional genomics platform for discovery of variant-specific mechanisms that disrupt ABCA3 function and for screening of potential ABCA3 pharmacologic correctors.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Genoma/genética , Mutação de Sentido Incorreto/genética , Células A549 , Adenosina Trifosfatases/genética , Células Epiteliais Alveolares/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , DNA Complementar/genética , Imunofluorescência/métodos , Edição de Genes/métodos , Genômica/métodos , Humanos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/genética
11.
Am J Respir Crit Care Med ; 202(8): 1088-1104, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32628504

RESUMO

Rationale: Promoting endogenous pulmonary regeneration is crucial after damage to restore normal lungs and prevent the onset of chronic adult lung diseases.Objectives: To investigate whether the cell-cycle inhibitor p16INK4a limits lung regeneration after newborn bronchopulmonary dysplasia (BPD), a condition characterized by the arrest of alveolar development, leading to adult sequelae.Methods: We exposed p16INK4a-/- and p16INK4a ATTAC (apoptosis through targeted activation of caspase 8) transgenic mice to postnatal hyperoxia, followed by pneumonectomy of the p16INK4a-/- mice. We measured p16INK4a in blood mononuclear cells of preterm newborns, 7- to 15-year-old survivors of BPD, and the lungs of patients with BPD.Measurements and Main Results: p16INK4a concentrations increased in lung fibroblasts after hyperoxia-induced BPD in mice and persisted into adulthood. p16INK4a deficiency did not protect against hyperoxic lesions in newborn pups but promoted restoration of the lung architecture by adulthood. Curative clearance of p16INK4a-positive cells once hyperoxic lung lesions were established restored normal lungs by adulthood. p16INK4a deficiency increased neutral lipid synthesis and promoted lipofibroblast and alveolar type 2 (AT2) cell development within the stem-cell niche. Besides, lipofibroblasts support self-renewal of AT2 cells into alveolospheres. Induction with a PPARγ (peroxisome proliferator-activated receptor γ) agonist after hyperoxia also increased lipofibroblast and AT2 cell numbers and restored alveolar architecture in hyperoxia-exposed mice. After pneumonectomy, p16INK4a deficiency again led to an increase in lipofibroblast and AT2 cell numbers in the contralateral lung. Finally, we observed p16INK4a mRNA overexpression in the blood and lungs of preterm newborns, which persisted in the blood of older survivors of BPD.Conclusions: These data demonstrate the potential of targeting p16INK4a and promoting lipofibroblast development to stimulate alveolar regeneration from childhood to adulthood.


Assuntos
Displasia Broncopulmonar/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Pulmão/fisiologia , Regeneração/fisiologia , Adolescente , Adulto , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Animais Recém-Nascidos , Apoptose , Displasia Broncopulmonar/metabolismo , Células Cultivadas , Criança , Modelos Animais de Doenças , Fibroblastos/patologia , Humanos , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Alvéolos Pulmonares/patologia , Distribuição Aleatória , Amostragem , Adulto Jovem
12.
Mol Immunol ; 125: 15-22, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619930

RESUMO

PIM1 is serine/threonine protein kinase that is involved in numerous biological processes. Pulmonary fibrosis (PF) is a chronic pathological result of the dysfunctional repair of lung injury without effective therapeutic treatments. In the current study, we investigated whether PIM1 inhibition would improve bleomycin (BLM)-induced pulmonary fibrosis. In a BLM-induced pulmonary fibrosis model, PIM1 was persistently upregulated in fibrotic lung tissues. Furthermore, PIM1 inhibition by the PIM1-specific inhibitor SMI-4a showed protective effects against BLM-induced mortality. Furthermore, SMI-4a suppressed hydroxyproline deposition and reversed epithelial-mesenchymal transition (EMT) formation, which was characterized by E-cadherin and α-SMA expression in vivo. More importantly, the ZEB1/E-cadherin pathway was found to be closely associated with BLM-induced pulmonary fibrosis. After the in vitro treatment of A549 cells, PIM1 regulated E-cadherin expression by dependently modulating the activity of the transcription factor ZEB1. These findings were verified in vivo after SMI-4a administration. Finally, an shPIM1-expressing adeno-associated virus was delivered via intratracheal injection to induce a long-term PIM1 deficiency in the alveolar epithelium. AAV-mediated PIM1 knockdown in the lung tissues alleviated BLM-induced pulmonary fibrosis, as indicated by collagen accumulation reduction, pulmonary histopathological mitigation and EMT reversion. These findings enhance our understanding of the roles of PIM1 in BLM-induced pulmonary fibrosis and suggest PIM1 inhibition as a potential therapeutic strategy in chronic pulmonary injuries.


Assuntos
Células Epiteliais Alveolares/metabolismo , Caderinas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fibrose Pulmonar/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Células A549 , Células Epiteliais Alveolares/patologia , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia
13.
Mol Immunol ; 125: 51-62, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32645550

RESUMO

Suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of TBK1 and interferon pathway and the expression of SOCS3 is closely correlated with symptoms of influenza patients. However, whether deletion of Socs3 in the lung epithelial cells would affect influenza lung replication and inflammation in vivo is unknown. To test this, we approached the influenza infected Socs3f/f and SpcCre.Socs3f/f mice. We first found that knockdown of Socs3 in lung epithelial cells reduced influenza replication. However, in the in vivo study, there was a reduction of SOCS3 in the influenza-infected neutrophils coincided with an increase of SOCS3 in the CD45-CD326+ lung epithelial cells in PR8-infected SpcCre.Socs3f/f mice. SOCS3-deficient neutrophils expressed higher levels of IL-17 that enhanced chemokine expression in the lung epithelial cells. Lung SOCS3-dificient epithelial cells increased expression of GM-CSF and PGE2 which promoted SpcCre.Socs3f/f neutrophils to yield SOCS3. SpcCre.Socs3f/f lung epithelial cells internalized SOCS3 released from GM-CSF + PGE2-stimulated SpcCre.Socs3f/f neutrophils, which could boost influenza replication in the lung epithelial cells. Thus, in the in vivo study, deletion of SOCS3 from lung epithelium could be nullified by the uptake from SOCS3 from infiltrated neutrophils. In addition, deletion of Socs3 from myeloid cells reduced lung influenza infection, but increased lung inflammation. Taken together, deletion of SOCS3 could suppress influenza replication, but intracellular SOCS3 communication between neutrophils and lung epithelial cells confounds this effect.


Assuntos
Células Epiteliais Alveolares/imunologia , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções Respiratórias/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/imunologia , Células Epiteliais Alveolares/metabolismo , Animais , Vírus da Influenza A , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções Respiratórias/metabolismo , Infecções Respiratórias/virologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
14.
J Interferon Cytokine Res ; 40(9): 443-445, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32721252

RESUMO

The current pandemic of COVID-19 and the identification of accessible biomarkers of disease progression is of clinical importance in the management of this novel and serious disease. This study was completed to provide information regarding 1 possible uniquely upregulated marker in this illness, eosinophil-derived neurotoxin (EDN-1). A literature search was undertaken to provide medical data regarding EDN-1 as a biomarker in the clinical setting. The literature identified was further analyzed to identify its use in the clinical setting of viral disease and asthma.


Assuntos
Células Epiteliais Alveolares/metabolismo , Infecções por Coronavirus/patologia , Neurotoxina Derivada de Eosinófilo/metabolismo , Pneumonia Viral/patologia , Betacoronavirus , Biomarcadores/análise , Síndrome da Liberação de Citocina/patologia , Eosinófilos/metabolismo , Humanos , Pandemias , Transcriptoma/genética
15.
Am J Physiol Cell Physiol ; 319(2): C316-C320, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32639871

RESUMO

Pulmonary surfactant is a heterogeneous active surface complex made up of lipids and proteins. The major glycoprotein in surfactant is surfactant protein A (SP-A), which is released into the alveolar lumen from cytoplasmic lamellar bodies in type II alveolar epithelial cells. SP-A is involved in phospholipid absorption. SP-A together with other surfactant proteins and phospholipids prevent alveolar collapse during respiration by decreasing the surface tension of the air-liquid interface. Additionally, SP-A interacts with pathogens to prevent their propagation and regulate host immune responses. Studies in human and animal models have shown that deficiencies or mutations in surfactant components result in various lung or kidney pathologies, suggesting a role for SP-A in the development of lung and kidney diseases. In this mini-review, we discuss the current understanding of SP-A functions, recent findings of its dysfunction in specific lung and kidney pathologies, and how SP-A has been used as a biomarker to detect the outcome of lung diseases.


Assuntos
Nefropatias/genética , Pneumopatias/genética , Alvéolos Pulmonares/metabolismo , Proteína A Associada a Surfactante Pulmonar/genética , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Citoplasma/genética , Citoplasma/metabolismo , Progressão da Doença , Humanos , Rim/metabolismo , Rim/patologia , Nefropatias/patologia , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/patologia , Alvéolos Pulmonares/patologia , Surfactantes Pulmonares/metabolismo
16.
PLoS One ; 15(7): e0236195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32678841

RESUMO

During infection, viruses enter susceptible host cells in order to replicate their components for production of new virions. In the process of infection, the gene expression of infected cells undergoes changes because of the production of viral components and due to the host response from detection of viral products. In the advent of RNA sequencing, the discovery of new genes and their functions in the host response generates new avenues for interventions in the host-pathogen interaction. We have identified a novel gene, Heatr9, as a virus and cytokine inducible viral responsive gene. We confirm Heatr9's expression in vitro and in vivo during virus infection and correlate it with viral burden. Heatr9 is induced by influenza virus and RSV. Heatr9 knockdown during viral infection was shown to affect chemokine expression. Our studies identify Heatr9 as a novel inflammatory and virus infection induced gene that can regulate the induction of specific cytokines.


Assuntos
Citocinas/metabolismo , Orthomyxoviridae/fisiologia , Proteínas de Ligação a RNA/metabolismo , Células A549 , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Animais , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Citocinas/genética , Feminino , Loci Gênicos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oligorribonucleotídeos Antissenso/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Vírus Sinciciais Respiratórios/fisiologia , Regulação para Cima
17.
Am J Respir Cell Mol Biol ; 63(4): 490-501, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32551854

RESUMO

Telomere dysfunction is associated with multiple fibrotic lung processes, including chronic lung allograft dysfunction (CLAD)-the major limitation to long-term survival following lung transplantation. Although shorter donor telomere lengths are associated with an increased risk of CLAD, it is unknown whether short telomeres are a cause or consequence of CLAD pathology. Our objective was to test whether telomere dysfunction contributes to the pathologic changes observed in CLAD. Histopathologic and molecular analysis of human CLAD lungs demonstrated shortened telomeres in lung epithelial cells quantified by teloFISH, increased numbers of surfactant protein C immunoreactive type II alveolar epithelial cells, and increased expression of senescence markers (ß-galactosidase, p16, p53, and p21) in lung epithelial cells. TRF1F/F (telomere repeat binding factor 1 flox/flox) mice were crossed with tamoxifen-inducible SCGB1a1-cre mice to generate SCGB1a1-creTRF1F/F mice. Following 9 months of tamoxifen-induced deletion of TRF1 in club cells, mice developed mixed obstructive and restrictive lung physiology, small airway obliteration on microcomputed tomography, a fourfold decrease in telomere length in airway epithelial cells, collagen deposition around bronchioles and adjacent lung parenchyma, increased type II aveolar epithelial cell numbers, expression of senescence-associated ß-galactosidase in epithelial cells, and decreased SCGB1a1 expression in airway epithelial cells. These findings demonstrate that telomere dysfunction isolated to airway epithelial cells leads to airway-centric lung remodeling and fibrosis similar to that observed in patients with CLAD and suggest that lung epithelial cell telomere dysfunction may be a molecular driver of CLAD.


Assuntos
Aloenxertos/patologia , Células Epiteliais Alveolares/patologia , Pulmão/fisiologia , Telômero/genética , Aloenxertos/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Biomarcadores/metabolismo , Senescência Celular/genética , Humanos , Pulmão/metabolismo , Transplante de Pulmão/métodos , Camundongos , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Uteroglobina/genética , Uteroglobina/metabolismo
18.
Am J Respir Cell Mol Biol ; 63(4): 478-489, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32551949

RESUMO

Although endoplasmic reticulum (ER) unfolded protein response (UPRER) is well known, mitochondrial unfolded protein response (UPRmt) has not been recognized in alveolar epithelial cells. Furthermore, ER stress and mitochondrial dysfunction are frequently encountered in alveolar epithelial cells from an array of lung disorders. However, these two scenarios have been often regarded as separate mechanisms contributing to the pathogeneses. It is unclear whether there is interplay between these two phenomena or an integrator that couples these two signaling cascades in the stressed alveolar epithelial cells from those pathologies. In this study, we defined UPRmt in alveolar epithelial cells and identified ATF4 (activating transcription factor 4), but not ATF5, as the key regulator of UPRmt. We found that UPRER led to UPRmt and mitochondrial dysfunction in an ATF4-dependent manner. In contrast, mitochondrial stresses did not activate UPRER. We found that alveolar epithelial ATF4 and UPRmt were induced in aged mice with experimental pulmonary fibrosis as well as in patients with idiopathic pulmonary fibrosis. Finally, we found that the inducible expression of ATF4 in mouse alveolar epithelial cells aggravated pulmonary UPRmt, lung inflammation, body weight loss, and death upon bleomycin-induced lung injury. In conclusion, ER stress induces ATF4-dependent UPRmt and mitochondrial dysfunction, indicating a novel mechanism by which ER stress contributes to the pathogeneses of a variety of pulmonary disorders.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Células Epiteliais Alveolares/metabolismo , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Células Epiteliais Alveolares/fisiologia , Animais , Apoptose/fisiologia , Linhagem Celular , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Transdução de Sinais/fisiologia
19.
Eur J Pharmacol ; 882: 173288, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32561291

RESUMO

In December 2019, many pneumonia cases with unidentified sources appeared in Wuhan, Hubei, China, with clinical symptoms like viral pneumonia. Deep sequencing analysis of samples from lower respiratory tract revealed a novel coronavirus, called 2019 novel coronavirus (2019-nCoV). Currently there is a rapid global spread. World Health Organization declare the disease a pandemic condition. The pathologic source of this disease was a new RNA virus from Coronaviridae family, which was named COVID-19. SARS-CoV-2 entry starts with the binding of the spike glycoprotein expressed on the viral envelope to ACE2 on the alveolar surface followed by clathrin-dependent endocytosis of the SARS-CoV-2 and ACE2 complex. SARS-CoV-2 enters the cells through endocytosis process, which is possibly facilitated, via a pH dependent endosomal cysteine protease cathepsins. Once inside the cells, SARS-CoV-2 exploits the endogenous transcriptional machinery of alveolar cells to replicate and spread through the entire lung. Endosomal acidic pH for SARS-CoV-2 processing and internalization is critical. After entering the cells, it possibly activates or hijack many intracellular pathways in favor of its replication. In the current opinion article, we will explain the possible involvement of unfolded protein response as a cellular stress response to the SARS-CoV-2 infection.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Retículo Endoplasmático/efeitos dos fármacos , Ionóforos/farmacologia , Pneumonia Viral/tratamento farmacológico , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Betacoronavirus/metabolismo , Vesículas Revestidas por Clatrina/efeitos dos fármacos , Vesículas Revestidas por Clatrina/metabolismo , Infecções por Coronavirus/virologia , Endocitose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Ionóforos/uso terapêutico , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
20.
Med Arch ; 74(2): 134-138, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32577056

RESUMO

Introduction: COVID-19 is a new viral illness that can affect the lungs and airways with lethal consequences leading to the death of the patients. The ACE2 receptors were widely disturbed among body tissues such as lung, kidney, small intestine, heart, and others in different percent and considered a target for the nCOVID-19 virus. S-protein of the virus was binding to ACE2 receptors caused downregulation of endogenous anti-viral mediators, upregulation of NF-κB pathway, ROS and pro-apoptotic protein. Nrf2 was a transcription factor that's play a role in generation of anti-oxidant enzymes. Aim: To describe and establish role of Nrf2 activators for treatment COVID-19 positive patients. Methods: We used method of analysis of the published papers with described studies about COVID-19 connected with pharmacological issues and aspects which are included in global fighting against COVID-19 infection, and how using DMF (Nrf2 activator) in clinical trial for nCOVID-19 produce positive effects in patients for reduce lung alveolar cells damage. Results: we are found that Nrf2 activators an important medication that's have a role in reduce viral pathogenesis via inhibit virus entry through induce SPLI gene expression as well as inhibit TRMPSS2, upregulation of ACE2 that's make a competition with the virus on binding site, induce gene expression of anti-viral mediators such as RIG-1 and INFs, induce anti-oxidant enzymes, also they have a role in inhibit NF-κB pathway, inhibit both apoptosis proteins and gene expression of TLRs. Conclusion: We are concluded that use DMF (Nrf2 activator) in clinical trial for nCOVID-19 positive patients to reduce lung alveolar cells damage.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Pulmão/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Pneumonia Viral/metabolismo , Células Epiteliais Alveolares/metabolismo , Humanos , Pandemias , Alvéolos Pulmonares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA