Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.758
Filtrar
1.
Nat Commun ; 12(1): 4810, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376666

RESUMO

The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mucosa Intestinal/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Células Cultivadas , Células Epiteliais/citologia , Humanos , Mucosa Intestinal/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Ligação Proteica , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
FASEB J ; 35(9): e21798, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339064

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic threatens human species with mortality rate of roughly 2%. We can hardly predict the time of herd immunity against and end of COVID-19 with or without success of vaccine. One way to overcome the situation is to define what delineates disease severity and serves as a molecular target. The most successful analogy is found in BCR-ABL in chronic myeloid leukemia, which is the golden biomarker, and simultaneously, the most effective molecular target. We hypothesize that S100 calcium-binding protein A8 (S100A8) is one such molecule. The underlying evidence includes accumulating clinical information that S100A8 is upregulated in severe forms of COVID-19, pathological similarities of the affected lungs between COVID-19 and S100A8-induced acute respiratory distress syndrome (ARDS) model, homeostatic inflammation theory in which S100A8 is an endogenous ligand for endotoxin sensor Toll-like receptor 4/Myeloid differentiation protein-2 (TLR4/MD-2) and mediates hyper-inflammation even after elimination of endotoxin-producing extrinsic pathogens, analogous findings between COVID-19-associated ARDS and pre-metastatic lungs such as S100A8 upregulation, pulmonary recruitment of myeloid cells, increased vascular permeability, and activation coagulation cascade. A successful treatment in an animal COVID-19 model is given with a reagent capable of abrogating interaction between S100A8/S100A9 and TLR4. In this paper, we try to verify our hypothesis that S100A8 governs COVID-19-associated ARDS.


Assuntos
COVID-19/complicações , Calgranulina A/fisiologia , Síndrome da Liberação de Citocina/etiologia , Inflamação/etiologia , Pandemias , Síndrome do Desconforto Respiratório/etiologia , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , Antivirais/farmacologia , COVID-19/genética , COVID-19/patologia , Calgranulina A/sangue , Calgranulina A/genética , Quimiocina CXCL11/sangue , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/patologia , Dissacarídeos/farmacologia , Dissacarídeos/uso terapêutico , Modelos Animais de Doenças , Descoberta de Drogas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Inflamação/genética , Inflamação/patologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Antígeno 96 de Linfócito/fisiologia , Macaca mulatta , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Mutação , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/metabolismo , Especificidade da Espécie , Fosfatos Açúcares/farmacologia , Fosfatos Açúcares/uso terapêutico , Receptor 4 Toll-Like/fisiologia , Regulação para Cima , Internalização do Vírus
3.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445093

RESUMO

The airway epithelium of the human nasal mucosa acts as a physical barrier that protects against inhaled substances and pathogens via bicellular and tricellular tight junctions (bTJs and tTJs) including claudins, angulin-1/LSR and tricellulin. High mobility group box-1 (HMGB1) increased by TGF-ß1 is involved in the induction of nasal inflammation and injury in patients with allergic rhinitis, chronic rhinosinusitis, and eosinophilic chronic rhinosinusitis. However, the detailed mechanisms by which this occurs remain unknown. In the present study, to investigate how HMGB1 affects the barrier of normal human nasal epithelial cells, 2D and 2.5D Matrigel culture of primary cultured human nasal epithelial cells were pretreated with TGF-ß type I receptor kinase inhibitor EW-7197 before treatment with HMGB1. Knockdown of angulin-1/LSR downregulated the epithelial barrier. Treatment with EW-7197 decreased angulin-1/LSR and concentrated the expression at tTJs from bTJs and increased the epithelial barrier. Treatment with a binder to angulin-1/LSR angubindin-1 decreased angulin-1/LSR and the epithelial barrier. Treatment with HMGB1 decreased angulin-1/LSR and the epithelial barrier. In 2.5D Matrigel culture, treatment with HMGB1 induced permeability of FITC-dextran (FD-4) into the lumen. Pretreatment with EW-7197 prevented the effects of HMGB1. HMGB1 disrupted the angulin-1/LSR-dependent epithelial permeability barriers of HNECs via TGF-ß signaling in HNECs.


Assuntos
Proteína HMGB1/metabolismo , Mucosa Nasal/metabolismo , Transdução de Sinais , Junções Íntimas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Mucosa Nasal/citologia
4.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445100

RESUMO

Endometriosis is a common gynecological disorder characterized by ectopic growth of endometrium outside the uterus and is associated with chronic pain and infertility. We investigated the role of the long intergenic noncoding RNA 01133 (LINC01133) in endometriosis, an lncRNA that has been implicated in several types of cancer. We found that LINC01133 is upregulated in ectopic endometriotic lesions. As expression appeared higher in the epithelial endometrial layer, we performed a siRNA knockdown of LINC01133 in an endometriosis epithelial cell line. Phenotypic assays indicated that LINC01133 may promote proliferation and suppress cellular migration, and affect the cytoskeleton and morphology of the cells. Gene ontology analysis of differentially expressed genes indicated that cell proliferation and migration pathways were affected in line with the observed phenotype. We validated upregulation of p21 and downregulation of Cyclin A at the protein level, which together with the quantification of the DNA content using fluorescence-activated cell sorting (FACS) analysis indicated that the observed effects on cellular proliferation may be due to changes in cell cycle. Further, we found testis-specific protein kinase 1 (TESK1) kinase upregulation corresponding with phosphorylation and inactivation of actin severing protein Cofilin, which could explain changes in the cytoskeleton and cellular migration. These results indicate that endometriosis is associated with LINC01133 upregulation, which may affect pathogenesis via the cellular proliferation and migration pathways.


Assuntos
Endometriose/genética , Endométrio/patologia , Células Epiteliais/patologia , RNA Longo não Codificante/genética , Adulto , Linhagem Celular , Proliferação de Células , Endometriose/patologia , Endométrio/citologia , Endométrio/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Regulação para Cima , Adulto Jovem
5.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445169

RESUMO

Tetraspanins are a family of transmembrane proteins that form a network of protein-protein interactions within the plasma membrane. Within this network, tetraspanin are thought to control the lateral segregation of their partners at the plasma membrane through mechanisms involving specific lipids. Here, we used a single molecule tracking approach to study the membrane behavior of tetraspanins in mammary epithelial cells and demonstrate that despite a common overall behavior, each tetraspanin (CD9, CD81 and CD82) has a specific signature in terms of dynamics. Furthermore, we demonstrated that tetraspanin dynamics on the cell surface are dependent on gangliosides. More specifically, we found that CD82 expression increases the dynamics of CD81 and alters its localization at the plasma membrane, this has no effect on the behavior of CD9. Our results provide new information on the ability of CD82 and gangliosides to differentially modulate the dynamics and organization of tetraspanins at the plasma membrane and highlight that its lipid and protein composition is involved in the dynamical architecture of the tetraspanin web. We predict that CD82 may act as a regulator of the lateral segregation of specific tetraspanins at the plasma membrane while gangliosides could play a crucial role in establishing tetraspanin-enriched areas.


Assuntos
Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Gangliosídeos/metabolismo , Proteína Kangai-1/metabolismo , Tetraspanina 28/metabolismo , Membrana Celular/química , Células Cultivadas , Células Epiteliais/química , Células Epiteliais/citologia , Gangliosídeos/análise , Humanos , Proteína Kangai-1/análise , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Tetraspanina 28/análise
6.
Science ; 373(6556): 760-767, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34385390

RESUMO

The origin of human metaplastic states and their propensity for cancer is poorly understood. Barrett's esophagus is a common metaplastic condition that increases the risk for esophageal adenocarcinoma, and its cellular origin is enigmatic. To address this, we harvested tissues spanning the gastroesophageal junction from healthy and diseased donors, including isolation of esophageal submucosal glands. A combination of single-cell transcriptomic profiling, in silico lineage tracing from methylation, open chromatin and somatic mutation analyses, and functional studies in organoid models showed that Barrett's esophagus originates from gastric cardia through c-MYC and HNF4A-driven transcriptional programs. Furthermore, our data indicate that esophageal adenocarcinoma likely arises from undifferentiated Barrett's esophagus cell types even in the absence of a pathologically identifiable metaplastic precursor, illuminating early detection strategies.


Assuntos
Adenocarcinoma/patologia , Esôfago de Barrett/patologia , Cárdia/citologia , Neoplasias Esofágicas/patologia , Esôfago/patologia , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Cárdia/química , Diferenciação Celular , Linhagem da Célula , Transformação Celular Neoplásica , Epigênese Genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Esôfago/citologia , Esôfago/metabolismo , Glândulas Exócrinas/química , Glândulas Exócrinas/citologia , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Queratina-7/análise , Metaplasia , Fenótipo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA-Seq , Análise de Célula Única , Transcrição Genética , Transcriptoma
7.
Ecotoxicol Environ Saf ; 223: 112588, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364124

RESUMO

PM2.5 refers to ambient air particulate matter with aerodynamic diameters ≤ 2.5 µm, which has been a global environmental problem threatening public health in recent years. Melatonin serving as one of the predominant hormones secreted by the pineal gland displays multiple pharmacological properties in various diseases. However, little is known about the possible effects of melatonin in the development of lung injury induced by PM2.5. This study was designed to explore the potential roles of melatonin as well as its possible mechanisms in PM2.5-induced lung injury. In the present study, mice were intratracheally instilled with PM2.5 dissolved in sterile water to induce lung injury with or without intragastric administration of melatonin. The results showed that melatonin treatment significantly alleviated lung pathological injury and edema, apart from inhibiting inflammatory cell infiltration. Meantime, melatonin also decreased the makers of ferroptosis and lipid peroxidation products in lung tissues challenged with PM2.5. Additionally, melatonin promoted the nuclear translocation and expression of Nrf2 and the protein degradation of Keap1. However, the pulmonary protection and anti-ferroptosis effect of melatonin were counteracted in Nrf2-deficiency mice. In vitro experiments further demonstrated that Nrf2 knockdown could offset anti-ferroptosis effect of melatonin in MLE-12 lung epithelial cells. Taken together, our study disclosed that melatonin could relieve PM2.5-induced lung injury via inhibiting ferroptosis of lung epithelial cells by activating Nrf2. Hence, melatonin may be a promising candidate against lung injury associated with air particulate matter.


Assuntos
Ferroptose , Lesão Pulmonar , Melatonina , Animais , Células Epiteliais/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/prevenção & controle , Melatonina/farmacologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Material Particulado/toxicidade
8.
FASEB J ; 35(9): e21816, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34396583

RESUMO

Proper physiological function of mammalian airways requires the differentiation of basal stem cells into secretory or multiciliated cells, among others. In addition, the self-renewal ability of these basal stem cells is crucial for developing a quick response to toxic agents in order to re-establish the epithelial barrier function of the airways. Although these epithelial missions are vital, little is known about those mechanism controlling airway epithelial regeneration in health and disease. p53 has been recently proposed as the guardian of homeostasis, promoting differentiation programs, and antagonizing a de-differentiation program. Here, we exploit mouse and human tracheal epithelial cell culture models to study the role of MDM2-p53 signaling in self-renewal and differentiation in the airway epithelium. We show that p53 protein regulation by MDM2 is crucial for basal stem cell differentiation and to keep proper cell proliferation. Therefore, we suggest that MDM2/p53 interaction modulation is a potential target to control regeneration of the mammalian airway epithelia without massively affecting the epithelium integrity and differentiation potential.


Assuntos
Diferenciação Celular/fisiologia , Epitélio/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Mucosa Respiratória/metabolismo , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Feminino , Homeostase/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Traqueia/metabolismo
9.
Nutrients ; 13(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34444916

RESUMO

The study was conducted to explore actions of decanoic acid on regulating intestinal barrier and antioxidant functions in intestinal epithelium cells isolated from porcine jejunum (IPEC-J2) and C57/BL6 mice models. In vitro and vivo assays, mice and IPEC-J2 cells treated by H2O2 were disposed of sodium decanoate and sodium butyrate to determine intestinal barrier and antioxidant functions of the host. Results showed that sodium decanoate upregulated expression of tight junction proteins and improved antioxidant capacity in both IPEC-J2 cells treated by H2O2 and mice models (p < 0.05). Sodium decanoate increased weight gain and ileal villus height of mice compared with control and sodium butyrate treatments (p < 0.05). Sodium decanoate increased α-diversity of ileal microbiota, volatile fatty acids concentration, and G protein-coupled receptor-43 (GPR-43) expression in the ileum and colon of mice (p < 0.05). In conclusion, sodium decanoate improved antioxidant capacity, intestinal morphology, and gut physical barrier of intestinal epithelial cells, resulting in an increase growth performance of mice, which is mediated through activating GPR-43 signaling.


Assuntos
Antioxidantes/metabolismo , Ácidos Decanoicos/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Ácido Butírico/metabolismo , Colo/metabolismo , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Íleo/metabolismo , Jejuno/metabolismo , Camundongos , Modelos Animais , Transdução de Sinais , Suínos , Junções Íntimas/metabolismo , Regulação para Cima
10.
Biomed Res Int ; 2021: 5522964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337019

RESUMO

Ziziphora (Cacotti in Persian) belongs to the Lamiaceae family (mint group) and is vastly found in Iran and Asia. This traditional medicinal plant is normally used as analgesic and for treatment of particular gastrointestinal diseases. Since colorectal cancer is one of the most common causes of death in the world and the second leading cause of cancer death among adults, there is a pressing need to inhibit this malignancy by using methods with minimal side effects. One of these methods is the use of natural resources such as medical plants. This study is aimed at investigating the expression of apoptosis-related genes in the adjacent culture of colorectal cancer epithelial cells (HT-29) with Ziziphora essential oil (ZEO). The essential oil was extracted from Ziziphora leaves, and its compounds were determined and then added to the HT-29 culture medium at different concentrations. After 24 hours, the HT-29 cells were harvested from the medium and cytotoxicity was analyzed by MTT assay. After MTT assay and determination of the percentage of apoptosis by flow cytometry, RNA extraction was performed and the expression levels of Bax, Bcl-2, caspase 3 (C3), and caspase 9 (C9) were analyzed using newly designed primers by reverse transcription (RT) qPCR method and GeniX6 software. Also, specific antibodies were used for western blot analyses of those molecules. GC analysis revealed 42 different compounds in the ZEO, including pulegone (26.65%), menthone (5.74%), thymol (5.51%), and menthol (1.02%). MTT assay showed that the concentration of 200 µg/ml of ZEO had the highest HT-29 cell death during 24 hours. After incubation with the concentration of 50 µg/ml of ZEO for 24 and 48 hours, caspase 3 and 9 gene expressions in the treated group increased compared to those in the control group (P < 0.001), while the Bcl-2 expression decreased. The results showed that having anticancer compounds, ZEO can increase C3 and C9 and decrease Bcl-2 expressions, causing apoptosis in HT-29 cells in vitro. This can lead to the use of ZEO as a factor for colorectal cancer treatment.


Assuntos
Apoptose , Neoplasias Colorretais/patologia , Lamiaceae/química , Óleos Voláteis/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Monoterpenos Cicloexânicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Cromatografia Gasosa-Espectrometria de Massas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Proteína X Associada a bcl-2/metabolismo
11.
J Cell Sci ; 134(2)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34432031

RESUMO

Cell-cell junction formation requires actin cytoskeletal remodeling. Here, we show that PLEKHG4B, a Rho-guanine nucleotide exchange factor (Rho-GEF), plays a crucial role in epithelial cell-cell junction formation. Knockdown of PLEKHG4B decreased Cdc42 activity and tended to increase RhoA activity in A549 cells. A549 monolayer cells showed 'closed junctions' with closely packed actin bundles along the cell-cell contacts, but PLEKHG4B knockdown suppressed closed junction formation, and PLEKHG4B-knockdown cells exhibited 'open junctions' with split actin bundles located away from the cell-cell boundary. In Ca2+-switch assays, PLEKHG4B knockdown delayed the conversion of open junctions to closed junctions and ß-catenin accumulation at cell-cell junctions. Furthermore, PLEKHG4B knockdown abrogated the reduction in myosin activity normally seen in the later stage of junction formation. The aberrant myosin activation and impairments in closed junction formation in PLEKHG4B-knockdown cells were reverted by ROCK inhibition or LARG/PDZ-RhoGEF knockdown. These results suggest that PLEKHG4B enables actin remodeling during epithelial cell-cell junction maturation, probably by reducing myosin activity in the later stage of junction formation, through suppressing LARG/PDZ-RhoGEF and RhoA-ROCK pathway activities. We also showed that annexin A2 participates in PLEKHG4B localization to cell-cell junctions. This article has an associated First Person interview with the first author of the paper.


Assuntos
Actinas , Junções Intercelulares , Células A549 , Actinas/genética , Actinas/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Junções Intercelulares/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Nature ; 596(7871): 262-267, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34349263

RESUMO

Regulated cell death is an integral part of life, and has broad effects on organism development and homeostasis1. Malfunctions within the regulated cell death process, including the clearance of dying cells, can manifest in diverse pathologies throughout various tissues including the gastrointestinal tract2. A long appreciated, yet elusively defined relationship exists between cell death and gastrointestinal pathologies with an underlying microbial component3-6, but the direct effect of dying mammalian cells on bacterial growth is unclear. Here we advance a concept that several Enterobacteriaceae, including patient-derived clinical isolates, have an efficient growth strategy to exploit soluble factors that are released from dying gut epithelial cells. Mammalian nutrients released after caspase-3/7-dependent apoptosis boosts the growth of multiple Enterobacteriaceae and is observed using primary mouse colonic tissue, mouse and human cell lines, several apoptotic triggers, and in conventional as well as germ-free mice in vivo. The mammalian cell death nutrients induce a core transcriptional response in pathogenic Salmonella, and we identify the pyruvate formate-lyase-encoding pflB gene as a key driver of bacterial colonization in three contexts: a foodborne infection model, a TNF- and A20-dependent cell death model, and a chemotherapy-induced mucositis model. These findings introduce a new layer to the complex host-pathogen interaction, in which death-induced nutrient release acts as a source of fuel for intestinal bacteria, with implications for gut inflammation and cytotoxic chemotherapy treatment.


Assuntos
Apoptose , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Intestinos/citologia , Intestinos/microbiologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Doenças Transmitidas por Alimentos/microbiologia , Vida Livre de Germes , Interações Hospedeiro-Patógeno , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Masculino , Camundongos , Mucosite/induzido quimicamente , Salmonella/enzimologia , Salmonella/genética , Salmonella/crescimento & desenvolvimento , Salmonella/metabolismo , Transcriptoma , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360950

RESUMO

The Bruch's membrane (BrM) is a five-layered extracellular matrix (ECM) that supports the retinal pigment epithelium (RPE). Normal age-related changes in the BrM may lead to RPE cell damage and ultimately to the onset and progression of age-related macular degeneration (AMD), which is the most common cause of visual loss among the elderly. A role for the complement system in AMD pathology has been established, but the disease mechanisms are poorly understood, which hampers the design of efficient therapies to treat millions of patients. In an effort to identify the mechanisms that lead from normal aging to pathology, we have developed a cell-based model using complement deficient human induced pluripotent stem cell (iPSC)-derived RPE cells cultured on an AMD-like ECM that mimics BrM. The data present evidence that changes in the ECM result in loss of differentiation and promote epithelial mesenchymal transition (EMT) of healthy RPE cells. This pathological process is mediated by complement activation and involves the formation of a randomly oriented collagen meshwork that drives the dedifferentiation of the RPE monolayer. Genetic ablation of complement component 3 has a protective effect against EMT but does not prevent the abnormal deposition of collagens. These findings offer new insights into the sequence of events that initiate AMD and may guide the design of efficient therapies to treat this disease with unmet medical needs.


Assuntos
Complemento C3/metabolismo , Transição Epitelial-Mesenquimal , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Linhagem Celular , Colágeno/metabolismo , Ativação do Complemento , Complemento C3/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Epitélio Pigmentado da Retina/citologia
14.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360894

RESUMO

Disruption of retinal pigment epithelial (RPE) barrier integrity is involved in the pathology of several blinding retinal diseases including age-related macular degeneration (AMD) and diabetic retinopathy (DR), but the underlying causes and pathophysiology are not completely well-defined. Mitochondria dysfunction has often been considered as a potential candidate implicated in such a process. In this study, we aimed to dissect the role of different mitochondrial components; specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier functionality of RPE. Electric cell-substrate impedance sensing (ECIS) technology was used to collect multi-frequency electrical impedance data to assess in real-time the barrier formation of the RPE cells. For this purpose, the human retinal pigment epithelial cell line-ARPE-19-was used and treated with varying concentrations of specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I (the largest protein complex in the electron transport chain (ETC)); oligomycin for ATP synthase; and carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) for uncoupling ATP synthesis from the accompanying ETC. Furthermore, data were modeled using the ECIS-Zθ software to investigate in depth the effects of these inhibitors on three separate barrier parameters: cell-cell interactions (Rb), cell-matrix interactions (α), and the cell membrane capacitance (Cm). The viability of ARPE-19 cells was determined by lactate dehydrogenase (LDH) Cytotoxicity Assay. The ECIS program's modeling demonstrated that FCCP and thus OxPhos uncoupling disrupt the barrier function in the ARPE-19 cells across all three components of the total resistance (Rb, α, and Cm) in a dose-dependent manner. On the other hand, oligomycin and thus ATP synthase inhibition mostly affects the ARPE-19 cells' attachment to their substrate evident by a significant decrease in α resistance in a dose-dependent manner, both at the end and throughout the duration of the experiment. On the contrary, rotenone and complex I inhibition mostly affect the ARPE-19 paracellular resistance Rb in a dose-dependent manner compared to basolateral resistance α or Cm. Our results clearly demonstrate differential roles for different mitochondrial components in maintaining RPE cell functionality in which uncoupling of OxPhos is a major contributing factor to the disruption barrier function. Such differences can be used in investigating gene expression as well as for screening of selective agents that improve the OxPhos coupling efficiency to be used in the therapeutic approach for treating RPE-related retinal diseases.


Assuntos
Barreira Hematorretiniana/metabolismo , Retinopatia Diabética/metabolismo , Células Epiteliais/metabolismo , Degeneração Macular/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Barreira Hematorretiniana/efeitos dos fármacos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacocinética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Impedância Elétrica , Transporte de Elétrons/efeitos dos fármacos , Inibidores Enzimáticos/farmacocinética , Humanos , Mitocôndrias/efeitos dos fármacos , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Oligomicinas/farmacocinética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Rotenona/farmacocinética
15.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445577

RESUMO

Infections by the zoonotic foodborne bacterium Campylobacter jejuni (C. jejuni) are among the most frequent causes of bacterial gastroenteritis worldwide. The aim was to evaluate the relationship between epithelial barrier disruption, mucosal immune activation, and vitamin D (VD) treatment during C. jejuni infection, using intestinal epithelial cells and mouse models focused on the interaction of C. jejuni with the VD signaling pathway and VD treatment to improve C. jejuni-induced barrier dysfunction. Our RNA-Seq data from campylobacteriosis patients demonstrate inhibition of VD receptor (VDR) downstream targets, consistent with suppression of immune function. Barrier-preserving effects of VD addition were identified in C. jejuni-infected epithelial cells and IL-10-/- mice. Furthermore, interference of C. jejuni with the VDR pathway was shown via VDR/retinoid X receptor (RXR) interaction. Paracellular leakiness of infected epithelia correlated with tight junction (TJ) protein redistribution off the TJ domain and apoptosis induction. Supplementation with VD reversed barrier impairment and prevented inhibition of the VDR pathway, as shown by restoration of transepithelial electrical resistance and fluorescein (332 Da) permeability. We conclude that VD treatment restores gut epithelial barrier functionality and decreases bacterial transmigration and might, therefore, be a promising compound for C. jejuni treatment in humans and animals.


Assuntos
Infecções por Campylobacter/complicações , Permeabilidade da Membrana Celular , Células Epiteliais/efeitos dos fármacos , Interleucina-10/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Vitamina D/farmacologia , Animais , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/isolamento & purificação , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Junções Íntimas/metabolismo , Vitaminas/farmacologia
16.
Nat Commun ; 12(1): 5148, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446714

RESUMO

Coronavirus infection in humans is usually associated to respiratory tract illnesses, ranging in severity from mild to life-threatening respiratory failure. The aryl hydrocarbon receptor (AHR) was recently identified as a host factor for Zika and dengue viruses; AHR antagonists boost antiviral immunity, decrease viral titers and ameliorate Zika-induced pathology in vivo. Here we report that AHR is activated by infection with different coronaviruses, potentially impacting antiviral immunity and lung epithelial cells. Indeed, the analysis of single-cell RNA-seq from lung tissue detected increased expression of AHR and AHR transcriptional targets, suggesting AHR signaling activation in SARS-CoV-2-infected epithelial cells from COVID-19 patients. Moreover, we detected an association between AHR expression and viral load in SARS-CoV-2 infected patients. Finally, we found that the pharmacological inhibition of AHR suppressed the replication in vitro of one of the causative agents of the common cold, HCoV-229E, and the causative agent of the COVID-19 pandemic, SARS-CoV-2. Taken together, these findings suggest that AHR activation is a common strategy used by coronaviruses to evade antiviral immunity and promote viral replication, which may also contribute to lung pathology. Future studies should further evaluate the potential of AHR as a target for host-directed antiviral therapy.


Assuntos
Infecções por Coronavirus/metabolismo , Coronavirus/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Receptores de Hidrocarboneto Arílico/genética , SARS-CoV-2/fisiologia
17.
Viruses ; 13(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34452468

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), a global pandemic characterized by an exaggerated immune response and respiratory illness. Age (>60 years) is a significant risk factor for developing severe COVID-19. To better understand the host response of the aged airway epithelium to SARS-CoV-2 infection, we performed an in vitro study using primary human bronchial epithelial cells from donors >67 years of age differentiated on an air-liquid interface culture. We demonstrate that SARS-CoV-2 infection leads to early induction of a proinflammatory response and a delayed interferon response. In addition, we observed changes in the genes and pathways associated with cell death and senescence throughout infection. In summary, our study provides new and important insights into the temporal kinetics of the airway epithelial innate immune response to SARS-CoV-2 in older individuals.


Assuntos
Brônquios/imunologia , Brônquios/virologia , Imunidade Inata , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , SARS-CoV-2/imunologia , Idoso , Envelhecimento/imunologia , Brônquios/citologia , Brônquios/metabolismo , COVID-19/imunologia , Morte Celular/genética , Células Cultivadas , Senescência Celular/genética , Citocinas/biossíntese , Citocinas/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Humanos , Inflamação , Interferons/biossíntese , Interferons/genética , Masculino , RNA-Seq , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , SARS-CoV-2/fisiologia , Transdução de Sinais/genética
18.
Life Sci ; 283: 119854, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332980

RESUMO

AIMS: Cell adhesion molecule 1 (CADM1) mediates interepithelial adhesion and is upregulated in crowded epithelial monolayers. This study aimed to examine CADM1 expression in the human endometrium of proliferative and secretory phases, and its transcriptional regulation in terms of estrogen stimuli and higher cellularity. MAIN METHODS: CADM1 immunohistochemistry was conducted on endometrial tissues from women in their 40s and adult mice subcutaneously injected with estradiol following ovariectomy. Dual-luciferase reporter assays were conducted using human endometrial HEC-50B and HEC-1B cells and reporter plasmids harboring the human CADM1 3.4-kb promoter and its deleted and mutated forms. Cells were transfected with estrogen receptor α cDNA and reporter plasmids, and treated with estradiol before luciferase activity measurement. KEY FINDINGS: Immunohistochemistry revealed that CADM1 was clearly expressed on the lateral membranes of the simple columnar glandular cells in the proliferative phase, but not in the secretory phase, from both women and the mouse model. The glandular cell density increased two-fold in the proliferative phase. Reporter assays identified three Sp1-binding sites as estradiol-responsive elements in the proximal region (from -223 to -84) of the transcription start site (+1) in HEC-50B cells. When the cell culture was started at eight-fold higher cell density, the CADM1 3.4-kb promoter was transactivated at a two-fold higher level in HEC-50B cells. This cell density effect was not detected for the CADM1 2.3-kb or 1.6-kb promoter. SIGNIFICANCE: Two (proximal and distal) promoter regions are suggested to function additively to transactivate CADM1 in endometrial glandular cells that crowd in the proliferative phase.


Assuntos
Molécula 1 de Adesão Celular/biossíntese , Proliferação de Células , Endométrio/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Adulto , Animais , Molécula 1 de Adesão Celular/genética , Linhagem Celular Tumoral , Estrogênios/farmacologia , Feminino , Humanos , Camundongos
19.
Vet Microbiol ; 261: 109189, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34375914

RESUMO

Transmissible gastroenteritis (TGE) is an acute viral disease and characterized as severe acute inflammation response that leads to diarrhea, vomiting, and high lethality of piglets. Transmissible gastroenteritis virus (TGEV), a member of coronavirus, is the pathogen of TGE. We previously found NF-κB pathway was activated and 65 miRNAs were changed in response to inflammation caused by TGEV in cell line porcine intestinal epithelial cells-jejunum 2 (IPEC-J2). Bioinformatics results showed that these altered miRNAs were relevant to inflammation. In this study, the candidate targets of differentially expressed (DE) miRNAs were predicted and analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Based on the results of KEGG analysis, miR-885-3p might participate in regulating activation of NF-κB pathway and TNF pathway. To study the function of miR-885-3p, miR-885-3p mimics and inhibitors were artificially synthesized and respectively used for overexpression and silence of miR-885-3p in cells. Our results showed that miR-885-3p inhibited NF-κB signaling pathway and tumor necrosis factor-α (TNF-α) production. B-cell CLL/lymphoma 10 (Bcl-10) was identified as the target of miR-885-3p, and promoted NF-κB pathway activation and TNF-α production. It was found that TGEV open reading frame 3b (TGEV-ORF3b) suppressed Bcl-10 expression, activation of NF-κB pathway, and TNF-α production by uniquely up-regulated miR-885-3p expression. Overall, the results indicated that TGEV-ORF3b counteracted NF-κB pathway and TNF-α via regulating miR-885-3p and Bcl-10.


Assuntos
Proteína 10 de Linfoma CCL de Células B/metabolismo , Gastroenterite Suína Transmissível/virologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Vírus da Gastroenterite Transmissível/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteína 10 de Linfoma CCL de Células B/genética , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Mucosa Intestinal/citologia , MicroRNAs/genética , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Suínos , Regulação para Cima , Proteínas Virais
20.
Molecules ; 26(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34443536

RESUMO

A common method of three-dimensional (3D) cell cultures is embedding single cells in Matrigel. Separated cells in Matrigel migrate or grow to form spheroids but lack cell-to-cell interaction, which causes difficulty or delay in forming mature spheroids. To address this issue, we proposed a 3D aggregated spheroid model (ASM) to create large single spheroids by aggregating cells in Matrigel attached to the surface of 96-pillar plates. Before gelling the Matrigel, we placed the pillar inserts into blank wells where gravity allowed the cells to gather at the curved end. In a drug screening assay, the ASM with Hepatocellular carcinoma (HCC) cell lines showed higher drug resistance compared to both a conventional spheroid model (CSM) and a two-dimensional (2D) cell culture model. With protein expression, cytokine activation, and penetration analysis, the ASM showed higher expression of cancer markers associated with proliferation (p-AKT, p-Erk), tight junction formation (Fibronectin, ZO-1, Occludin), and epithelial cell identity (E-cadherin) in HCC cells. Furthermore, cytokine factors were increased, which were associated with immune cell recruitment/activation (MIF-3α), extracellular matrix regulation (TIMP-2), cancer interaction (IL-8, TGF-ß2), and angiogenesis regulation (VEGF-A). Compared to CSM, the ASM also showed limited drug penetration in doxorubicin, which appears in tissues in vivo. Thus, the proposed ASM better recapitulated the tumor microenvironment and can provide for more instructive data during in vitro drug screening assays of tumor cells and improved prediction of efficacious drugs in HCC patients.


Assuntos
Carcinoma Hepatocelular/patologia , Imageamento Tridimensional , Neoplasias Hepáticas/patologia , Modelos Biológicos , Esferoides Celulares/patologia , Antineoplásicos/análise , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Agregação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , Reprodutibilidade dos Testes , Esferoides Celulares/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...