Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.102
Filtrar
1.
Mater Sci Eng C Mater Biol Appl ; 127: 112176, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225892

RESUMO

The bioengineering electroactive construct of a nerve-guided conduit for repairing and restoring injured nerves is an exciting biomedical endeavor that has implications for the treatment of peripheral nerve injury. In this study, we report the development the polycaprolactone (PCL) nanofibrous substrate consisting of turmeric (TUR) and polyaniline nanoparticles (PANINPs) exhibits topological and biological features that mimics the natural extracellular matrix (ECM) for nerve cells. We evaluated the morphology of 2-dimensional (2D) fibrous substrates, and their ability of stem cell adhesion, growth and proliferation rate were influenced by use of various concentrations of turmeric in PCL-TUR substrates. The results showed that 0.62 wt% of TUR and 0.28 wt% of PANINPs in PCL nanofibers substrate exhibited the optimal cellular microenvironment to accelerate PC12 cellular activities. The in vitro experiments revealed that PCL-TUR@PANI substrates significantly stimulated the proliferation, differentiation, and spontaneous outgrowth and extension of neurites from the cells. The substrate has the capacity to respond directly to neuronal markers with significant upregulation of ßIII-Tubulin and TREK-1 through myelination, and also trigger neurotrophic protein expression, which was confirmed via immunocytochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. This study provides a new technique to design substrate of nerve tissue-specific microenvironment for peripheral nerve cell regeneration and could offer promising biomaterials for in vivo peripheral nerve repair.


Assuntos
Nanofibras , Nanopartículas , Compostos de Anilina , Animais , Diferenciação Celular , Curcuma , Regeneração Nervosa , Células PC12 , Poliésteres , Canais de Potássio de Domínios Poros em Tandem , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Engenharia Tecidual , Tecidos Suporte , Tubulina (Proteína)/genética
2.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206133

RESUMO

3,4-Dihydroxyphenylacetaldehyde (DOPAL) is the focus of the catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease and other Lewy body diseases. The catecholaldehyde is produced via oxidative deamination catalyzed by monoamine oxidase (MAO) acting on cytoplasmic dopamine. DOPAL is autotoxic, in that it can harm the same cells in which it is produced. Normally, DOPAL is detoxified by aldehyde dehydrogenase (ALDH)-mediated conversion to 3,4-dihydroxyphenylacetic acid (DOPAC), which rapidly exits the neurons. Genetic, environmental, or drug-induced manipulations of ALDH that build up DOPAL promote catecholaminergic neurodegeneration. A concept derived from the catecholaldehyde hypothesis imputes deleterious interactions between DOPAL and the protein alpha-synuclein (αS), a major component of Lewy bodies. DOPAL potently oligomerizes αS, and αS oligomers impede vesicular and mitochondrial functions, shifting the fate of cytoplasmic dopamine toward the MAO-catalyzed formation of DOPAL-destabilizing vicious cycles. Direct and indirect effects of DOPAL and of DOPAL-induced misfolded proteins could "freeze" intraneuronal reactions, plasticity of which is required for neuronal homeostasis. The extent to which DOPAL toxicity is mediated by interactions with αS, and vice versa, is poorly understood. Because of numerous secondary effects such as augmented spontaneous oxidation of dopamine by MAO inhibition, there has been insufficient testing of the catecholaldehyde hypothesis in animal models. The clinical pathophysiological significance of genetics, emotional stress, environmental agents, and interactions with numerous proteins relevant to the catecholaldehyde hypothesis are matters for future research. The imposing complexity of intraneuronal catecholamine metabolism seems to require a computational modeling approach to elucidate clinical pathogenetic mechanisms and devise pathophysiology-based, individualized treatments.


Assuntos
Catecóis/metabolismo , Dopamina/metabolismo , Degeneração Neural/genética , Doença de Parkinson/genética , Aldeído Desidrogenase/genética , Aldeídos/metabolismo , Animais , Humanos , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/uso terapêutico , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Oxirredução , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ratos , alfa-Sinucleína/genética
3.
Methods Mol Biol ; 2276: 305-324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34060051

RESUMO

Specific bioenergetic signature reports on the current metabolic state of the cell, which may be affected by metabolic rearrangement, dysfunction or dysregulation of relevant signaling pathways, altered physiological condition or energy stress. A combined analysis of respiration , glycolytic flux, Krebs cycle activity, ATP levels, and total biomass allows informative initial assessment. Such simple, high-throughput, multiparametric methodology, called cell energy budget (CEB ) platform, is presented here and demonstrated with particular cell and tissue models. The CEB uses a commercial fluorescent lanthanide probe pH-Xtra™ to measure extracellular acidification (ECA) associated with lactate (L-ECA) and combined lactate/CO2 (T-ECA), a phosphorescent probe MitoXpress®-Xtra to measure oxygen consumption rate (OCR), a bioluminescent ATP kit, and an absorbance-based total protein assay. All the assays are performed on a standard multi-label reader. Using the same readouts, the CEB approach can be extended to more detailed mechanistic studies, by targeting specific pathways in cell bioenergetics and measuring other cellular parameters, such as NAD(P)H, Ca2+, mitochondrial pH, membrane potential, redox state, with conventional fluorescent or luminescent probes.


Assuntos
Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Células/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Ácido Láctico/metabolismo , Animais , Metabolismo Energético , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Consumo de Oxigênio/fisiologia , Células PC12 , Ratos
4.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062902

RESUMO

Currently utilized antidepressants have limited effectiveness and frequently incur undesired effects. Most antidepressants are thought to act via the inhibition of monoamine reuptake; however, direct binding to monoaminergic receptors has been proposed to contribute to both their clinical effectiveness and their side effects, or lack thereof. Among the target receptors of antidepressants, α1­adrenergic receptors (ARs) have been implicated in depression etiology, antidepressant action, and side effects. However, differences in the direct effects of antidepressants on signaling from the three subtypes of α1-ARs, namely, α1A-, α1B- and α1D­ARs, have been little explored. We utilized cell lines overexpressing α1A-, α1B- or α1D-ARs to investigate the effects of the antidepressants imipramine (IMI), desipramine (DMI), mianserin (MIA), reboxetine (REB), citalopram (CIT) and fluoxetine (FLU) on noradrenaline-induced second messenger generation by those receptors. We found similar orders of inhibition at α1A-AR (IMI < DMI < CIT < MIA < REB) and α1D­AR (IMI = DMI < CIT < MIA), while the α1B-AR subtype was the least engaged subtype and was inhibited with low potency by three drugs (MIA < IMI = DMI). In contrast to their direct antagonistic effects, prolonged incubation with IMI and DMI increased the maximal response of the α1B-AR subtype, and the CIT of both the α1A- and the α1B-ARs. Our data demonstrate a complex, subtype-specific modulation of α1-ARs by antidepressants of different groups.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Receptores Adrenérgicos alfa 1/genética , Animais , Antidepressivos/classificação , Citalopram/farmacologia , Depressão/etiologia , Depressão/genética , Depressão/patologia , Desipramina/farmacologia , Fluoxetina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imipramina/farmacologia , Mianserina/farmacologia , Camundongos , Células PC12 , Ratos , Reboxetina/farmacologia , Transdução de Sinais/efeitos dos fármacos
5.
Wei Sheng Yan Jiu ; 50(3): 483-487, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34074373

RESUMO

OBJECTIVE: To investigate the protective effect of 1, 25(OH)_2D_3 on Aß_(1-42)-induced pyrolysis in PC12 cells. METHODS: The Alzheimer& apos; s disease model in PC12 cells was established with 20 µmol/L Aß_(1-42). The experiment was divided into control group, model group(20 µmol/L Aß_(1-42)) and 1, 25(OH)_2D_3 groups(1, 10, 100 nmol/L 1, 25(OH)_2D_3+20 µmol/L Aß_(1-42)). Cell activity was detected by CCK-8, cell membrane permeability was detected by AO/EB staining, lactic dehydrogenase(LDH)and interleukin-1ß(IL-1ß)were detected by colorimetry and ELISA, NOD-like receptor family protein 1(NLRP1), cysteinyl aspartate specific proteinase-1(caspase-1)and gasdermin D(GSDMD)protein expression were detected by Western Blot. RESULTS: Compared with the control group, the cell activitywas significantly decreased(P& lt; 0. 01), cell membrane permeability, the level of LDH and IL-1ß, and the expression of NLRP1, caspase-1 and GSDMD were significantly increased(P& lt; 0. 01). Compared with the model group, the cell activity was significantly increased(P& lt; 0. 01), cell membrane damage was decreased in PC12 cells exposed to 1, 25(OH)_2D_3. The level of LDH and IL-1ß were significantly decreased(P& lt; 0. 01) in PC12 cells exposed to 10 and 100 nmol/L 1, 25(OH)_2D_3. The expression of NLRP1 and GSDMD in 1 nmol/L 1, 25(OH)_2D_3 group was decreased(P& lt; 0. 05), and the decrease was more significant in 10 and 100 nmol/L 1, 25(OH)_2D_3 groups(P& lt; 0. 01). The expression of caspase-1 was significantly decreased in 10 and 100 nmol/L 1, 25(OH)_2D_3 groups(P& lt; 0. 05, P& lt; 0. 01). CONCLUSION: 1, 25(OH)_2D_3 exerts a significant protective effect against Aß_(1-42)-induced PC12 cells injury through inhibition of neuronal pyrolysis.


Assuntos
Pirólise , Animais , Células PC12 , Ratos
6.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073816

RESUMO

Alzheimer's disease (AD) is attracting considerable interest due to its increasing number of cases as a consequence of the aging of the global population. The mainstream concept of AD neuropathology based on pathological changes of amyloid ß metabolism and the formation of neurofibrillary tangles is under criticism due to the failure of Aß-targeting drug trials. Recent findings have shown that AD is a highly complex disease involving a broad range of clinical manifestations as well as cellular and biochemical disturbances. The past decade has seen a renewed importance of metabolic disturbances in disease-relevant early pathology with challenging areas in establishing the role of local micro-fluctuations in glucose concentrations and the impact of insulin on neuronal function. The role of the S100 protein family in this interplay remains unclear and is the aim of this research. Intracellularly the S100B protein has a protective effect on neurons against the toxic effects of glutamate and stimulates neurites outgrowth and neuronal survival. At high concentrations, it can induce apoptosis. The aim of our study was to extend current knowledge of the possible impact of hyper-glycemia and -insulinemia directly on neuronal S100B secretion and comparison to oxidative stress markers such as ROS, NO and DBSs levels. In this paper, we have shown that S100B secretion decreases in neurons cultured in a high-glucose or high-insulin medium, while levels in cell lysates are increased with statistical significance. Our findings demonstrate the strong toxic impact of energetic disturbances on neuronal metabolism and the potential neuroprotective role of S100B protein.


Assuntos
Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Neurônios/metabolismo , Estresse Nitrosativo , Estresse Oxidativo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Doença de Alzheimer , Animais , Dano ao DNA , Humanos , Hiperglicemia/genética , Hiperinsulinismo/genética , Neuroproteção , Células PC12 , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/fisiologia
7.
Molecules ; 26(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067571

RESUMO

This study evaluated the neuroprotective effects and mechanisms of procyanidins (PCs). In vitro, rat pheochromocytoma cells (PC12 cells) were exposed to PCs (1, 2 or 4 µg/mL) or N-Acetyl-L-cysteine (NAC) (20 µM) for 24 h, and then incubated with 200 µM of H2O2 for 24 h. Compared with H2O2 alone, PCs significantly increased antioxidant activities (e.g., glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT)), decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased nuclear factor-erythroid 2-related factor 2 (Nrf2) accumulation and increased the expression of quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC). In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were exposed to NAC (30 µM) or PCs (4, 8 or 16 µg/mL) in the absence or presence of 300 µM of H2O2 for 4 days. Compared with H2O2 alone, PCs enhanced antioxidant activities (e.g., GSH-Px, CAT, and SOD), decreased levels of ROS and MDA, and enhanced Nrf2/ antioxidant response element (ARE) activation and raised expression levels of NQO1, HO-1, GCLM, and GCLC. In conclusion, these results indicated that PCs exerted neuroprotective effects via activating the Nrf2/ARE pathway and alleviating oxidative damage.


Assuntos
Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Acetilcisteína/farmacologia , Animais , Elementos de Resposta Antioxidante , Antioxidantes/metabolismo , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator de Transcrição NF-E2/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo
8.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069784

RESUMO

Fermented soybean products have attracted great attention due to their health benefits. In the present study, the hypoxia-injured PC12 cells induced by cobalt chloride (CoCl2) were used to evaluate the neuroprotective potency of tofu fermented by Actinomucor elegans (FT). Results indicated that FT exhibited higher phenolic content and antioxidant activity than tofu. Moreover, most soybean isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. FT demonstrated a significant protective effect on PC12 cells against hypoxic injury by maintaining cell viability, reducing lactic dehydrogenase leakage, and inhibiting oxidative stress. The cell apoptosis was significantly attenuated by the FT through down-regulation of caspase-3, caspases-8, caspase-9, and Bax, and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was significantly inhibited by the FT through increasing cyclin A and decreasing the p21 protein level. Furthermore, treatment with the FT activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. Overall, FT offered a potential protective effect on nerve cells in vitro against hypoxic damage.


Assuntos
Cobalto/toxicidade , Mucorales/metabolismo , Fármacos Neuroprotetores/farmacologia , Alimentos de Soja , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fermentação , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Fenóis/química , Ratos
9.
Analyst ; 146(12): 3971-3976, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33997880

RESUMO

Depression is closely related to overactivation of N-methyl-d-aspartic acid (NMDA) receptors, and Zn2+ is a vital NMDA receptor modulator involved in the pathophysiological and physiological processes of depression. Therefore, quantitative and real-time detection of Zn2+ is very important for understanding the pathogenesis of depression. In this work, a near-infrared (NIR) fluorescent probe ISO-DPA was designed and synthesized for Zn2+ detection with a large Stokes shift (185 nm), high quantum yield (up to 44%), high sensitivity (LOD = 0.106 µM) and good pH stability. The probe showed rapid response within 10 s, accompanied by a distinct fluorescence change from faint to bright pink with the fluorescence intensity increasing 4.5-fold. Moreover, the sensing mechanism of ISO-DPA towards Zn2+ was supported by MALDI-TOF-MS and Job's plot. The probe ISO-DPA could detect instantaneous variation of exogenous and endogenous Zn2+ in PC12 cells. The bioimaging results reveal the increase of the endogenous Zn2+ concentration in PC12 cells under the oxidative stress induced by glutamate and confirm that overactivation of NMDA receptors results in an increase of the Zn2+ level. All the results proved that ISO-DPA is an excellent probe for detecting Zn2+ in solution and living cells and could help us better understand Zn2+ associated pathogenesis of depression.


Assuntos
Depressão , Corantes Fluorescentes , Animais , Diagnóstico por Imagem , Células PC12 , Ratos , Zinco/toxicidade
10.
ACS Chem Neurosci ; 12(12): 2182-2193, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34033711

RESUMO

Alizarin (1,2-dihydroxyanthraquinone) and purpurin (1,2,4-trihydroxyanthraquinone), natural anthraquinone compounds from Rubia tinctorum L., are reported to have diverse biological effects including antibacterial, antitumor, antioxidation, and so on, but the inhibition activity against amyloid aggregation has been rarely reported. In this study, we used insulin as a model protein to explore the anti-amyloid effects of the two compounds. The results showed that alizarin and purpurin inhibited the formation of insulin fibrils in a dose-dependent manner and reduced insulin-induced cytotoxicity. Meanwhile, purpurin had a more significant inhibitory effect on insulin amyloid fibrils compared with alizarin. In addition, computer simulations indicated that the two compounds interacted mainly with the hydrophobic residues of insulin chain B and interfered with the binding of phenylalanine residues. The research indicated that natural anthraquinone compounds had potential effects in preventing protein misfolding diseases and could be further used to design effective antiamyloidosis compounds.


Assuntos
Rubia , Amiloide , Animais , Antraquinonas/farmacologia , Insulina , Células PC12 , Ratos
11.
Phytomedicine ; 87: 153576, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33985879

RESUMO

BACKGROUND: Gastrodiae Rhizoma (Tianma), the dried tuber of Gastrodia elata Bl. (Orchidaceae), is listed as a top-grade herbal medicine in Shen-nong Ben-ts'ao Jing and has been used for treating headaches, dizziness, vertigo and convulsion. It has a neuroprotective effect and extends the lifespan in mouse models of Huntington's disease and Niemann-Pick type C disease. However, its effect on senescence remains unknown. PURPOSE: This study aimed to investigate the anti-aging effects and the underlying mechanism of Gastrodiae Rhizoma. METHODS: D-galactose (D-gal)- and BeSO4-induced cellular senescence and senescence-associated ß-galactosidase (SA-ß-gal) activity were evaluated in SH-SY5Y and PC12 cells. D-gal-induced aging mice were used as an in vivo model. Animal behaviors including nesting and burrowing and Morris water maze were conducted. Neurogenesis in the hippocampus was assessed by immunohistochemistry and confocal microscopy, and the aging-related proteins were assessed by Western blot analysis. The potential neuritogenesis activity of the partially purified fraction of Gastrodiae Rhizoma (TM-2) and its major ingredients were investigated in PC12 cells. RESULTS: TM-2 could improve D-gal-induced learning and memory impairement by inhibiting oxidative stress, increasing hippocampal neurogenesis and regulating the SH2B1-Akt pathway. Moreover, N6-(4-hydroxybenzyl)adenine riboside (T1-11) and parishins A and B, three constituents of TM-2, had anti-aging activity, as did T1-11 and parishin A induced neuritogenesis. CONCLUSION: Our data suggested that TM-2 slowed down D-gal-induced cellular and mouse brain aging. These results indicate that Gastrodiae Rhizoma has a beneficial effect on senescence. It may be used for neuroprotection and promoting neurogenesis.


Assuntos
Envelhecimento/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Gastrodia/química , Hipocampo/efeitos dos fármacos , Rizoma/química , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Galactose , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos , Neurogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos
12.
Artigo em Inglês | MEDLINE | ID: mdl-34052562

RESUMO

Huang-Lian-Jie-Du Decoction (HLJDD), a well-known traditional Chinese formulation, has been proved to exert neuroprotective effects, however, the bioactive components in HLJDD still remain to be elucidated. In the present study, a rapid and effective method involving live cell biospecific extraction and HPLC-Q-Orbitrap HRMS/MS was utilized to rapidly screen and identify the neuroprotective compounds from the HLJDD crude extract directly. Firstly, sixteen principal components in HLJDD crude extract were identified by HPLC-Q-Orbitrap HRMS/MS analysis. After co-incubation with PC12 cells, which have been validated as the key target cells for neurodegenerative diseases, seven compounds of them were demonstrated to exhibit binding affinity to the target cells. Furthermore, three representative compounds named baicalin, wogonoside, and berberine were subsequently verified to exert cytoprotective effects on PC12 cells injured by hydrogen peroxide via inhibiting oxidative stress and cell apoptosis, indicating that these screened compounds may possess a potential for the treatment of neurodegenerative diseases and were responsible, in part at least, for the neuroprotective beneficial effects of HLJDD. Taken together, our study provides evidence that live cell biospecific extraction coupled with LC-HRMS/MS technique is an efficient method for rapid screening potential bioactive components in traditional Chinese medicines.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Técnicas Citológicas/métodos , Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Animais , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/farmacologia , Fármacos Neuroprotetores/análise , Fármacos Neuroprotetores/farmacologia , Células PC12 , Ratos , Espectrometria de Massas em Tandem
13.
Eur J Endocrinol ; 185(1): 179-191, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983135

RESUMO

Objective: Within the past decade, important genetic drivers of pheochromocytoma and paraganglioma (PPGLs) development have been identified. The pathophysiological mechanism that translates these alterations into functional autonomy and potentially malignant behavior has not been elucidated in detail. Here we used MALDI-mass spectrometry imaging (MALDI-MSI) of formalin-fixed paraffin-embedded tissue specimens to comprehensively characterize the metabolic profiles of PPGLs. Design and methods: MALDI-MSI was conducted in 344 PPGLs and results correlated with genetic and phenotypic information. We experimentally silenced genetic drivers by siRNA in PC12 cells to confirm their metabolic impact in vitro. Results: Tissue abundance of kynurenine pathway metabolites such as xanthurenic acid was significantly lower (P = 2.35E-09) in the pseudohypoxia pathway cluster 1 compared to PPGLs of the kinase-driven PPGLs cluster 2. Lower abundance of xanthurenic acid was associated with shorter metastasis-free survival (log-rank tests P = 7.96E-06) and identified as a risk factor for metastasis independent of the genetic status (hazard ratio, 32.6, P = 0.002). Knockdown of Sdhb and Vhl in an in vitro model demonstrated that inositol metabolism and sialic acids were similarly modulated as in tumors of the respective cluster. Conclusions: The present study has identified distinct tissue metabolomic profiles of PPGLs in relation to tumor genotypes. In addition, we revealed significantly altered metabolites in the kynurenine pathway in metastatic PPGLs, which can aid in the prediction of its malignant potential. However, further validation studies will be required to confirm our findings.


Assuntos
Neoplasias das Glândulas Suprarrenais/patologia , Espectrometria de Massas/métodos , Metaboloma , Paraganglioma/patologia , Feocromocitoma/patologia , Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Adulto , Animais , Estudos de Coortes , Progressão da Doença , Feminino , Estudos de Associação Genética , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Metástase Neoplásica , Células PC12 , Paraganglioma/diagnóstico , Paraganglioma/genética , Paraganglioma/metabolismo , Feocromocitoma/diagnóstico , Feocromocitoma/genética , Feocromocitoma/metabolismo , Prognóstico , Ratos , Análise Serial de Tecidos/métodos
14.
AAPS PharmSciTech ; 22(4): 149, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961149

RESUMO

Parkinson's disease (PD) is the second most common neurological disorder, associated with decreased dopamine levels in the brain. The goal of this study was to assess the potential of a regenerative medicine-based cell therapy approach to increase dopamine levels. In this study, we used rat adrenal pheochromocytoma (PC12) cells that can produce, store, and secrete dopamine. These cells were microencapsulated in the selectively permeable polymer membrane to protect them from immune responses. For fabrication of the microcapsules, we used a modified Buchi spray dryer B-190 that allows for fast manufacturing of microcapsules and is industrially scalable. Size optimization of the microcapsules was performed by systematically varying key parameters of the spraying device. The short- and long-term stabilities of the microcapsules were assessed. In the in vitro study, the cells were found viable for a period of 30 days. Selective permeability of the microcapsules was confirmed via dopamine release assay and micro BCA protein assay. We found that the microcapsules were permeable to the small molecules including dopamine and were impermeable to the large molecules like BSA. Thus, they can provide the protection to the encapsulated cells from the immune cells. Griess's assay confirmed the non-immunogenicity of the microcapsules. These results demonstrate the effective fabrication of microcapsules encapsulating cells using an industrially scalable device. The microcapsules were stable, and the cells were viable inside the microcapsules and were found to release dopamine. Thus, these microcapsules have the potential to serve as the alternative or complementary treatment approach for PD.


Assuntos
Compostos de Alumínio/síntese química , Cápsulas/síntese química , Encapsulamento de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Doença de Parkinson , Compostos de Sódio/síntese química , Compostos de Alumínio/administração & dosagem , Compostos de Alumínio/metabolismo , Animais , Encéfalo/metabolismo , Cápsulas/administração & dosagem , Cápsulas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dopamina/metabolismo , Camundongos , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Polímeros/administração & dosagem , Polímeros/síntese química , Polímeros/metabolismo , Estudos Prospectivos , Células RAW 264.7 , Ratos , Compostos de Sódio/administração & dosagem , Compostos de Sódio/metabolismo , Resultado do Tratamento
15.
Phytomedicine ; 87: 153578, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34038839

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative motor disorders, and is characterized by the presence of Lewy bodies containing misfolded α-synuclein (α-syn) and by selective degeneration of midbrain dopamine neurons. Studies have shown that upregulation of ubiquitin-proteasome system (UPS) activity promotes the clearance of aggregation-prone proteins such as α-syn and Tau, so as to alleviate the neuropathology of neurodegenerative diseases. PURPOSE: To identify and investigate lycorine as a UPS enhancer able to decrease α-syn in transgenic PD models. METHODS: Dot blot was used to screen α-syn-lowering compounds in an inducible α-syn overexpression cell model. Inducible wild-type (WT) and mutant α-syn-overexpressing PC12 cells, WT α-syn-overexpressing N2a cells and primary cultured neurons from A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vitro. Heterozygous A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vivo. mCherry-GFP-LC3 reporter was used to detect autophagy-dependent degradation. Ub-R-GFP and Ub-G76V-GFP reporters were used to detect UPS-dependent degradation. Proteasome activity was detected by fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC (Suc-LLVY-AMC). RESULTS: Lycorine significantly promoted clearance of over-expressed WT and mutant α-syn in neuronal cell lines and primary cultured neurons. More importantly, 15 days' intraperitoneal administration of lycorine effectively promoted the degradation of α-syn in the brains of A53T transgenic mice. Mechanistically, lycorine accelerated α-syn degradation by activating cAMP-dependent protein kinase (PKA) to promote proteasome activity. CONCLUSION: Lycorine is a novel α-syn-lowering compound that works through PKA-mediated UPS activation. This ability to lower α-syn implies that lycorine has the potential to be developed as a pharmaceutical for the treatment of neurodegenerative diseases, such as PD, associated with UPS impairment and protein aggregations.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Doença de Parkinson/tratamento farmacológico , Fenantridinas/farmacologia , alfa-Sinucleína/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos , alfa-Sinucleína/genética
16.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926107

RESUMO

Amyloid ß-peptide (Aß) oligomerization is believed to contribute to the neuronal dysfunction in Alzheimer disease (AD). Despite decades of research, many details of Aß oligomerization in neurons still need to be revealed. Förster resonance energy transfer (FRET) is a simple but effective way to study molecular interactions. Here, we used a confocal microscope with a sensitive Airyscan detector for FRET detection. By live cell FRET imaging, we detected Aß42 oligomerization in primary neurons. The neurons were incubated with fluorescently labeled Aß42 in the cell culture medium for 24 h. Aß42 were internalized and oligomerized in the lysosomes/late endosomes in a concentration-dependent manner. Both the cellular uptake and intracellular oligomerization of Aß42 were significantly higher than for Aß40. These findings provide a better understanding of Aß42 oligomerization in neurons.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/fisiopatologia , Doença de Alzheimer , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide , Animais , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Células PC12 , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/diagnóstico por imagem , Ratos
17.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923239

RESUMO

Hydroxyapatite has been used in medicine for many years as a biomaterial or a cover for other biomaterials in orthopedics and dentistry. This study characterized the physicochemical properties (structure, particle size and morphology, surface properties) of Li+- and Li+/Eu3+-doped nanohydroxyapatite obtained using the wet chemistry method. The potential regenerative properties against neurite damage in cultures of neuron-like cells (SH-SY5Y and PC12 after differentiation) were also studied. The effect of nanohydroxyapatite (nHAp) on the induction of repair processes in cell cultures was assessed in tests of metabolic activity, the level of free oxygen radicals and nitric oxide, and the average length of neurites. The study showed that nanohydroxyapatite influences the increase in mitochondrial activity, which is correlated with the increase in the length of neurites. It has been shown that the doping of nanohydroxyapatite with Eu3+ ions enhances the antioxidant properties of the tested nanohydroxyapatite. These basic studies indicate its potential application in the treatment of neurite damage. These studies should be continued in primary neuronal cultures and then with in vivo models.


Assuntos
Materiais Biocompatíveis/farmacologia , Durapatita/farmacologia , Nanopartículas/administração & dosagem , Regeneração Nervosa , Neuroblastoma/tratamento farmacológico , Nervos Periféricos/citologia , Animais , Humanos , Técnicas In Vitro , Nanopartículas/química , Neuroblastoma/patologia , Células PC12 , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/patologia , Ratos , Propriedades de Superfície , Células Tumorais Cultivadas
18.
Molecules ; 26(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923340

RESUMO

Curcumin (CUR), a natural polyphenol extracted from rhizome of the Curcuma longa L, has received great attention for its multiple potential health benefits as well as disease prevention. For instance, CUR protects against toxic agents acting on the human body, including the nervous system. In detail, CUR possesses, among others, strong effects as an autophagy activator. The present study indicates that CUR counteracts methamphetamine (METH) toxicity. Such a drug of abuse is toxic by disturbing the autophagy machinery. We profited from an unbiased, low variable cell context by using rat pheochromocytoma PC12 cell line. In such a system, a strong protection was exerted by CUR against METH toxicity. This was associated with increased autophagy flux, merging of autophagosomes with lysosomes and replenishment of autophagy vacuoles with LC3, which instead is moved out from the vacuoles by METH. This is expected to enable the autophagy machinery. In fact, while in METH-treated cells the autophagy substrates α-synuclein accumulates in the cytosol, CUR speeds up α-synuclein clearance. Under the effects of CUR LC3 penetrate in autophagy vacuoles to commit them to cell clearance and promotes the autophagy flux. The present data provide evidence that CUR counteracts the neurotoxic effects induced by METH by promoting autophagy.


Assuntos
Curcumina/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Curcuma/química , Curcumina/química , Humanos , Metanfetamina/toxicidade , Fármacos Neuroprotetores/química , Síndromes Neurotóxicas/patologia , Células PC12 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos
19.
Toxicology ; 456: 152770, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33823232

RESUMO

Extensive health studies had declared that exposure to particulate matter (PM) was closely associated with neurodegenerative diseases, i.e. Parkinson's disease (PD). Our aim was to clarify the potential molecular mechanism by which PM2.5 aggravated PD symptoms using in vitro and in vivo PD models. In this study, PC12 cells treated with rotenone (1 µM) and/or PM2.5 (50 µg/mL) for 4 days was used as the in vitro model. C57BL/6 J mice expored to PM2.5 (inhalation, 2.5 mg/kg) and rotenone (intraperitoneal injection, 30 mg/kg) for 28 days was used as the in vivo model. Rapamycin was used to promote the level of autophagy. The results showed that after exposure to PM2.5, the apoptosis of rotenone-treated PC12 cells were increased by increasing the ROS levels and decreasing the levels of mitochondrial membrane potential. In rotenone-treated PC12 cells, exposure to PM2.5 could decrease the expression levels of LC3II and Atg5, and increase the expression level of mTOR, suggesting that PM2.5 exposure inhibited autophagy. Furthermore, the mitophagy related genes, including PINK1 and Parkin, were decreased. At the same time, inhalation of PM2.5 could relieve the behavioral abnormalities of PD mouse induced by rotenone. The levels of inflammatory factors (TNF-α, IL-1ß, and IL-6) were significantly increased. Inhalation of PM2.5 could induce the oxidative stress and apoptosis in the substantia nigra of PD mouse, as well as the key markers of autophagy and mitophagy were also changed, which was consistent with the cell model. Besides, rapamycin would relieve the damaging effect of PM2.5 by triggering autophagy and mitophagy in rotenone-induced PD models. These results indicated that exposure to PM2.5 aggravated the behavioral abnormalities of PD symptoms through increasing oxidative stress, decreasing autophagy and mitophagy, and inducing mitochondria-mediated neuronal apoptosis. These findings not only revealed the effects and mechanism of PM2.5 exposure on PD, but also provided fundamental data that can be exploited to develop environmental safety policies.


Assuntos
Autofagia/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Mitofagia/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Material Particulado/toxicidade , Animais , Autofagia/fisiologia , Inseticidas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitofagia/fisiologia , Células PC12 , Transtornos Parkinsonianos/patologia , Material Particulado/administração & dosagem , Ratos , Rotenona/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
20.
Mol Med Rep ; 23(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864663

RESUMO

Parkinson's disease (PD) is one of the most disabling diseases of the central nervous system, seriously affecting health and quality of life for the elderly. The present study aimed to explore the effects of nuclear receptor subfamily 4 group A member 2 (Nurr1) and nuclear factor­κB (NF­κB) on the progression of Parkinson's disease (PD). Pheochromocytoma (PC12) cells were pretreated with the NF­κB inhibitor quinazoline (QNZ) or transfected with small interfering (si)RNA­NF­κB, followed by the addition of lipopolysaccharide (LPS). After culturing for 24 h, Cell Counting Kit­8 (CCK­8) was utilized to measure cell viability. Next, the expression levels of interleukin (IL)­1ß, IL­6 and tumor necrosis factor (TNF)­α were determined using the relevant Enzyme­linked immunosorbent assay kits. Expression levels of p65, tyrosine hydroxylase (TH), α­Synuclein (A­SYN) and Nurr1 were examined by immunofluorescence and western blotting. CCK­8 results showed that the cell viability was significantly reduced in the LPS group than in the control group (P<0.05), whereas QNZ and si­NF­κB demonstrated significantly enhanced viability induced by LPS (P<0.05). After LPS induction, the levels of IL­1ß, IL­6 and TNF­α were significantly elevated when compared with those in the control group (P<0.05), whereas QNZ and NF­κB interference partially restored their levels. Additionally, after LPS induction, the expression of p65 and A­SYN was higher, while the expression of TH and Nurr1 was lower. However, QNZ and NF­κB treatment significantly reversed the expression levels induced by LPS (P<0.05). Finally, it was observed that NF­κB may be negatively associated with Nurr1. In conclusion, inhibition of NF­κB may reduce the production of inflammatory factors by upregulating Nurr1 and TH and downregulating A­SYN, thus relieving the inflammatory response in PD.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Doença de Parkinson/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Células PC12 , Quinazolinas/farmacologia , Ratos , Sinucleínas/genética , Sinucleínas/metabolismo , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...