Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.563
Filtrar
1.
Braz J Med Biol Res ; 52(8): e8318, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31411247

RESUMO

Currently, there is great clinical need for suitable synthetic grafts that can be used in vascular diseases. Synthetic grafts have been successfully used in medium and large arteries, however, their use in small diameter vessels is limited and presents a high failure rate. In this context, the aim of this study was to develop tissue engineering scaffolds, using poly(trimethylene carbonate-co-L-lactide) (PTMCLLA), for application as small diameter vascular grafts. For this, copolymers with varying trimethylene carbonate/lactide ratios - 20/80, 30/70, and 40/60 - were submitted to electrospinning and the resulting scaffolds were evaluated in terms of their physicochemical and biological properties. The scaffolds produced with PTMCLLA 20/80, 30/70, and 40/60 showed smooth fibers with an average diameter of 771±273, 606±242, and 697±232 nm, respectively. When the degradation ratio was evaluated, the three scaffold groups had a similar molecular weight (Mw) on the final day of analysis. PTMCLLA 30/70 and 40/60 scaffolds exhibited greater flexibility than the PTMCLLA 20/80. However, the PTMCLLA 40/60 scaffolds showed a large wrinkling and their biological properties were not evaluated. The PTMCLLA 30/70 scaffolds supported the adhesion and growth of mesenchymal stem cells (MSCs), endothelial progenitor cells, and smooth muscle cells (SMCs). In addition, they provided a spreading of MSCs and SMCs. Given the results, the electrospun scaffolds produced with PTMCLLA 30/70 copolymer can be considered promising candidates for future applications in vascular tissue engineering.


Assuntos
Prótese Vascular , Dioxanos/química , Poliésteres/química , Tecidos Suporte/química , Proliferação de Células , Células Cultivadas/citologia , Células Progenitoras Endoteliais/citologia , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia
2.
An Bras Dermatol ; 94(3): 320-326, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31365661

RESUMO

BACKGROUND: Behçet's disease is a multisystemic vasculitis, associated with vascular endothelial dysfunction. Currently, the prognosis is unpredictable, because there is still no valid laboratory marker indicating the disease activity in Behçet's disease. Endothelial progenitor cells and circulating endothelial cells are newly introduced hematological markers which are presumed to take part in the pathogenesis of vasculitis. OBJECTIVES: To evaluate the levels of endothelial progenitor cells and subtypes and circulating endothelial cells in patients with Behçet's disease and to describe their relationship with the disease activity. METHODS: A total of 45 patients with Behçet's disease and 28 healthy controls were included in the study. Endothelial progenitor cells (CD34+CD133+KDR+ as early endothelial progenitor cells and CD34+KDR+ as late endothelial progenitor cells), and circulating endothelial cells (CD34+CD133+) were measured by flow cytometry. RESULTS: The mean plasma level of endothelial progenitor cells and circulating endothelial cells, vascular endothelial growth factor, matrix metalloproteinase-9, C-reactive protein, and erythrocyte sedimentation rate were significantly higher in patients with Behçet's disease. All of these parameters except circulating endothelial cells were also found to be higher in patients with active disease than in patients with inactive disease. Early endothelial progenitor cells showed significant correlations with C-reactive protein and circulating endothelial cells. STUDY LIMITATIONS: The cross-sectional nature of the study and patient characteristics such as being under treatment, which can affect endothelial progenitor cells numbers. CONCLUSION: The increase in endothelial progenitor cells may play an essential role in the repair of endothelial injury in Behçet's disease, especially in the active period of the disease. Thus, endothelial progenitor cells can indicate the disease activity. In addition, endothelial progenitor cells and circulating endothelial cells can be used as endothelial repair and injury markers for Behçet's disease, respectively.


Assuntos
Síndrome de Behçet/sangue , Biomarcadores/sangue , Células Progenitoras Endoteliais/metabolismo , Adulto , Síndrome de Behçet/complicações , Proteína C-Reativa/análise , Estudos de Casos e Controles , Contagem de Células , Estudos Transversais , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Fator A de Crescimento do Endotélio Vascular/sangue , Vasculite
3.
Croat Med J ; 60(3): 227-236, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31187950

RESUMO

AIM: To analyze clinical and functional effects of intra-articular injection of autologous micro-fragmented lipoaspirate (MLA) in patients with late stage knee osteoarthritis (KOA). Secondary aims included classifying cell types contributing to the treatment effect, performing detailed MRI-based classification of KOA, and elucidating the predictors for functional outcomes. METHODS: This prospective, non-randomized study was conducted from June 2016 to February 2018 and enrolled 20 patients with late stage symptomatic KOA (Kellgren Lawrence grade III, n=4; and IV, n=16) who received an intra-articular injection of autologous MLA in the index knee joint. At baseline radiological KOA grade and MRI were assessed in order to classify the morphology of KOA changes. Stromal vascular fraction cells obtained from MLA samples were stained with antibodies specific for cell surface markers. Patients were evaluated at baseline and 12-months after treatment with visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Knee Injury and Osteoarthritis Outcome Score (KOOS). RESULTS: Three patients (15%) received a total knee replacement and were not followed up completely. Seventeen patients (85%) showed a substantial pattern of KOOS and WOMAC improvement, significant in all accounts. KOOS score improved from 46 to 176% when compared with baseline, WOMAC decreased from 40 to 45%, while VAS rating decreased from 54% to 82% (all P values were <0.001). MLA contained endothelial progenitor cells, pericytes, and supra-adventitial adipose stromal cells as most abundant cell phenotypes. CONCLUSION: This study is among the first to show a positive effect of MLA on patients with late stages KOA.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/transplante , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Progenitoras Endoteliais/transplante , Humanos , Injeções Intra-Articulares , Imagem por Ressonância Magnética , Pessoa de Meia-Idade , Pericitos/transplante , Estudos Prospectivos , Índice de Gravidade de Doença , Células Estromais/transplante , Transplante Autólogo , Resultado do Tratamento
4.
Radiat Res ; 192(1): 53-62, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31081743

RESUMO

Acute high-dose radiation injury damages the bone marrow hematopoietic stem and progenitor cell compartment. This damage compromises the functional ability of the bone marrow to produce mature blood cells and results in an increased risk of death due to hematopoietic complications. Past work has shown that the bone marrow endothelium provides critical cues, which promote hematopoietic stem cell regeneration after injury. Additionally, transfusion of endothelial cells after radiation injury has been shown to promote recovery of both the bone marrow vasculature and hematopoietic systems. In this work, we examined the regenerative capacity of intravenous infusion of umbilical cord-blood derived endothelial progenitor cells (EPCs) since this is a cell source which is easy to obtain, expand and cryopreserve. We show that pre-treatment with the Wnt-antagonist Dickkopf1 (Dkk1) augments EPC regenerative function in an allogeneic mouse transplant model. Here, hematopoietic recovery was assessed in Balb/c mice after 5 Gy total-body irradiation and transplantation with C57/BL6-derived EPCs either with or without Dkk1 pre-treatment. The Dkk1-treated EPC group had significantly faster recovery of peripheral white blood cells, total bone marrow cellularity, bone marrow progenitors and BM endothelial cells compared to EPC treatment alone or saline controls. Importantly, after an LD50/30 dose of 8 Gy in the Balb/c mouse, Dkk1-treated EPCs were able to rescue 100% of irradiated mice versus 80% in the EPC control group and only 33% in the saline-treated group. To understand how Dkk1 induces regenerative function in the EPCs, we screened for pro-regenerative factors secreted by the EPC in response to Dkk1. Dkk1-treated EPCs were observed to secrete high levels of the anti-fibrotic protein follistatin as well as several proteins known to promote regeneration including EGF, VEGF and G-CSF. This work demonstrates the potential for Dkk1-treated EPCs as a rescue therapeutic for victims of acute radiation injury.


Assuntos
Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Animais , Células Progenitoras Endoteliais/efeitos da radiação , Feminino , Hematopoese/efeitos da radiação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Regeneração/efeitos dos fármacos , Regeneração/efeitos da radiação
5.
Cell Mol Biol (Noisy-le-grand) ; 65(4): 101-106, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31078159

RESUMO

Endothelial progenitor cells (EPCs) improve neovascularization and endothelium regeneration. Transplantation with EPCs is a therapeutic strategy for the treatment of ischemic diseases. However, the transplanted EPCs are susceptible to adverse environments such as hypoxia, inflammation and oxidative stress. Oxidative stress-induced apoptosis of transplanted EPCs greatly reduces their therapeutic efficacy. Lipopolysaccharide (LPS) is a highly immunogenic antigen. Recent findings suggest that low dose of LPS pretreatment has protective effect against apoptosis. In this study, the role of LPS in apoptosis of EPCs was investigated. Pretreatment with 1µg/ml LPS prevented oxidative stress-induced EPCs apoptosis and ROS generation, which effects were abolished by TAK-242, a specific TLR4 antagonist. Further investigation of the mechanisms demonstrated that the activation was mediated by TLR4, and that PI3K/Akt/ NF-κB p65 signaling pathway may play a critical role in the process.


Assuntos
Apoptose/efeitos dos fármacos , Células Progenitoras Endoteliais/patologia , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
6.
Pregnancy Hypertens ; 16: 42-47, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31056159

RESUMO

OBJECTIVE: The objective of our study was to determine levels of endothelial progenitor cells (EPCs) in preeclampsia and normotensive pregnant women. STUDY DESIGN: Prospective cohort study of women with preeclampsia and normotensive pregnancies. EPCs were estimated by flow cytometry. Multiple linear regression was used to assess the association of EPCs with preeclampsia adjusting for maternal age, body mass index (BMI), gestation and ethnicity. MAIN OUTCOME MEASURE: Levels of EPCs in preeclampsia and normotensive pregnancies, with CD-34 and vascular endothelial (VE)-cadherin as markers of EPCs. VE-cadherin is an endothelial cell adhesion molecule used to delineate endothelial lineage of EPCs. RESULTS: There were thirty women in the preeclampsia group and thirty-three in the normotensive group. The two groups were similar except for the BMI and blood pressures, which were higher in preeclampsia. On multiple linear regression, EPCs numbers were significantly higher by 29 (95% confidence interval 11.7-46.6, p = 0.001) in preeclampsia compared to the normotensive group. There was significant positive correlation between EPCs and systolic blood pressure in preeclampsia (Spearman correlation coefficient 0.39, p = 0.03). CONCLUSION: Although widely used in cardiovascular disease other than preeclampsia, this is the first study using VE-cadherin as a marker of endothelial lineage to define EPCs in preeclampsia. Our results suggest the higher number of EPCs in preeclampsia may be a response of the bone marrow to endothelial injury.


Assuntos
Antígenos CD34/sangue , Antígenos CD/sangue , Caderinas/sangue , Células Progenitoras Endoteliais/citologia , Pré-Eclâmpsia/diagnóstico , Diagnóstico Pré-Natal , Adulto , Biomarcadores/sangue , Pressão Sanguínea , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Citometria de Fluxo , Humanos , Modelos Lineares , Pré-Eclâmpsia/sangue , Gravidez , Estudos Prospectivos
7.
Int J Mol Sci ; 20(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100865

RESUMO

Adult metabolic syndrome is considered to be elicited by the developmental programming which is regulated by the prenatal environment. The maternal excess intake of fructose, a wildly used food additive, is found to be associated with developmental programing-associated cardiovascular diseases. To investigate the effect of maternal fructose exposure (MFE) on endothelial function and repair, which participate in the initiation and progress of cardiovascular disease, we applied a rat model with maternal fructose excess intake during gestational and lactational stage and examined the number and function of endothelial progenitor cells (EPCs) in 3-month-old male offspring with induction of critical limb ischemia (CLI). Results showed that the circulating levels of c-Kit+/CD31+ and Sca-1+/KDR+ EPC were reduced by MFE. In vitro angiogenesis analysis indicated the angiogenic activity of bone marrow-derived EPC, including tube formation and cellular migration, was reduced by MFE. Western blots further indicated the phosphorylated levels of ERK1/2, p38-MAPK, and JNK in circulating peripheral blood mononuclear cells were up-regulated by MFE. Fourteen days after CLI, the reduced blood flow recovery, lowered capillary density, and increased fibrotic area in quadriceps were observed in offspring with MFE. Moreover, the aortic endothelium-mediated vasorelaxant response in offspring was impaired by MFE. In conclusion, maternal fructose intake during gestational and lactational stage modulates the number and angiogenic activity of EPCs and results in poor blood flow recovery after ischemic injury.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Frutose/metabolismo , Frutose/farmacologia , Isquemia/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fluxo Sanguíneo Regional , Animais , Ataxina-1 , Medula Óssea/metabolismo , Doenças Cardiovasculares , Movimento Celular , Modelos Animais de Doenças , Extremidades/patologia , Isquemia/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Proteínas Proto-Oncogênicas c-kit , Ratos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
9.
Int J Oncol ; 54(4): 1327-1336, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30968151

RESUMO

Endothelial progenitor cells (EPCs) are bone marrow (BM)­derived progenitor cells that can differentiate into mature endothelial cells, contributing to vasculogenesis in the blood vessel formation process. Runt­related transcription factor 3 (RUNX3) belongs to the Runt domain family and is required for the differentiation of specific immune cells and neurons. The tumor suppressive role of RUNX3, via the induction of apoptosis and cell cycle arrest in a variety of cancers, and its deletion or frequent silencing by epigenetic mechanisms have been studied extensively; however, its role in the differentiation of EPCs is yet to be investigated. Therefore, in the present study, adult BM­derived hematopoietic stem cells (HSCs) were isolated from Runx3 heterozygous (Rx3+/­) or wild­type (WT) mice. The differentiation of EPCs from the BM­derived HSCs of Rx3+/­ mice was found to be significantly increased compared with those of the WT mice, as determined by the number of small or large colony­forming units. The migration and tube formation abilities of Rx3+/­ EPCs were also observed to be significantly increased compared with those of WT EPCs. Furthermore, the number of circulating EPCs, defined as CD34+/vascular endothelial growth factor receptor 2 (VEGFR2)+ cells, was also significantly increased in Rx3+/­ mice. Hypoxia­inducible factor (HIF)­1α was upregulated in Rx3+/­ EPCs compared with WT EPCs, even under normoxic conditions. Furthermore, in a hindlimb ischemic mouse models, the recovery of blood flow was observed to be highly stimulated in Rx3+/­ mice compared with WT mice. Also, in a Lewis lung carcinoma cell allograft model, the tumor size in Rx3+/­ mice was significantly larger than that in WT mice, and the EPC cell population (CD34+/VEGFR2+ cells) recruited to the tumor was greater in the Rx3+/­ mice compared with the WT mice. In conclusion, the present study revealed that Runx3 inhibits vasculogenesis via the inhibition of EPC differentiation and functions via the suppression of HIF­1α activity.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Diferenciação Celular/fisiologia , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Células Progenitoras Endoteliais/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/patologia , Cultura Primária de Células , Regulação para Cima
10.
Acta Diabetol ; 56(7): 785-795, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30859314

RESUMO

AIMS: Circulating endothelial progenitor cells (EPCs) play a key role in maintaining endothelial function. Dysfunction of EPCs is associated with the cardiovascular complication of diabetes. The purpose of this study is to investigate the direct effects of hyperinsulinemia on EPCs and the underlying mechanisms. METHODS: EPCs isolated from healthy adults were cultured with various concentrations of insulin (control group, without insulin; physiological insulin group, 10 nM insulin and hyperinsulinemia group, 100 nM insulin) with or without phosphatidylinositol-3-kinase (PI3-K) inhibitor (LY294002, 5 µM), endothelial nitric oxide synthase (eNOS) inhibitor (L-NG-nitro-arginine methyl ester (L-NAME), 100 µM), sodium nitroprusside (SNP, 25 µM), p38 mitogen-activated protein kinase(MAPK) inhibitor (SB203580, 5 µM) or extracellular signal-regulated kinases (ERK) 1/2 inhibitor (PD98059, 10 µM). Proliferation, tube formation, and apoptosis of EPCs were determined. Expressions of eNOS, PI3-K, protein kinase B (Akt), p38 MAPK, and ERK 1/2 were assessed. RESULTS: Hyperinsulinemia caused a significant decrease in proliferation and tube formation abilities than control group. Hyperinsulinemia increased apoptosis rate of EPCs than control group. Furthermore, hyperinsulinemia downregulated phosphorylation of eNOS, PI3-K and Akt, and upregulated phosphorylation of p38 MAPK and ERK. SNP could restore impaired tube formation induced by hyperinsulinemia. P38 MAPK inhibitor but not ERK inhibitor could decrease apoptosis induced by hyperinsulinemia. CONCLUSION: Hyperinsulinemia impaired EPCs' tube formation ability by downregulation of PI-3K/Akt/eNOS pathway. Hyperinsulinemia induced apoptosis of EPCs via upregulation of p38 MAPK.


Assuntos
Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/fisiologia , Hiperinsulinismo/fisiopatologia , Insulina/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Adulto , Animais , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Progenitoras Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Hiperinsulinismo/sangue , Hiperinsulinismo/patologia , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos
11.
J Biomed Nanotechnol ; 15(4): 742-755, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30841967

RESUMO

People have been looking for tissue engineering approaches to treat large segment bone defects as replacements of autologous bone method. Cell-seeded scaffolds are promising candidates, but lack of vascularization into the scaffolds has greatly hindered their applications. To address this problem, we used a co-culture of bone marrow derived mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs) on calcium phosphate ceramics scaffolds for better vascularization and thus osteogenesis. Different ratios of BMSC/EPC (3:1, 2:1, 1:1, 1:2, 1:3) in the co-culture were examined in vitro, and it was revealed that the optimal value for neovascularization and osteogenesis was 1:3 and 2:1, respectively. Then cell mixtures with the optimized ratios were cultured in distinct regions of volume-reduced scaffolds and allowed to culture for 7 days for sufficient cell adhesion and ingrowth, as demonstrated by cell proliferation throughout the scaffolds and enhanced expressions of cell markers and growth factors comparing to a mono-culture of BMSCs. Upon implantation into a rabbit large segmental bone defect model, the scaffolds with co-culture of the cells had better osteoid tissue formation and bone remodeling supported by neovascularization, comparing to scaffolds with mono-culture or without cells. Yet with sub-optimal efficacy comparing to autologous bone grafts, it was believed to be a promising candidate for treatment of large segment bone defects.


Assuntos
Células Progenitoras Endoteliais , Células-Tronco Mesenquimais , Animais , Células da Medula Óssea , Diferenciação Celular , Técnicas de Cocultura , Osteogênese , Coelhos , Engenharia Tecidual , Tecidos Suporte
12.
Nanomedicine ; 18: 135-145, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30849548

RESUMO

We report here the preparation, physico-chemical characterization, and biological evaluation of a new liposome formulation as a tool for tumor angiogenesis inhibition. Liposomes are loaded with sunitinib, a tyrosine kinase inhibitor, and decorated with cyclo-aminoprolineRGD units (cAmpRGD), efficient and selective ligands for integrin αVß3. The RGD units play multiple roles since they target the nanovehicles at the integrin αVß3-overexpressing cells (e.g. activated endothelial cells), favor their active cell internalization, providing drug accumulation in the cytoplasm, and likely take part in the angiogenesis inhibition by interfering in the αVß3-VEGFR2 cross-talk. Both in vitro and in vivo studies show a better efficacy of this integrated antiangiogenic tool with respect to the free sunitinib and untargeted sunitinib-loaded liposomes. This system could allow a lower administration of the drug and, by increasing the vector specificity, reduce side-effects in a prolonged antiangiogenic therapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Integrina alfaVbeta3/metabolismo , Oligopeptídeos/química , Prolina/análogos & derivados , Sunitinibe/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/uso terapêutico , Animais , Adesão Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Humanos , Recém-Nascido , Lipídeos/química , Lipossomos , Camundongos , Nanopartículas/química , Neovascularização Patológica/tratamento farmacológico , Oligopeptídeos/síntese química , Fosfolipídeos/síntese química , Fosfolipídeos/química , Fosforilação/efeitos dos fármacos , Prolina/síntese química , Prolina/química , Sunitinibe/química , Sunitinibe/uso terapêutico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vitronectina/metabolismo
13.
Biomed Pharmacother ; 111: 1088-1102, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30841422

RESUMO

This study tested whether sitagliptin and shock wave (SW)-assisted circulatory-derived autologous endothelial progenitor cell (EPC) therapy would effectively preserve residual renal function in chronic kidney disease (CKD) induced by 5/6 left-nephrectomy/remove right kidney plus daily feeding high-protein diet (HPD) in rat. Adult-male SD rats (n = 40) were categorized into group 1 (sham-operated control with HPD), group 2 (HPD-CKD), group 3 [HPD-CKD + EPC (1.2 × 106 cell)/intra-vessel administration by day 14 after CKD-induction], group 4 [HPD-CKD + SW (0.12 mJ/mm2/180 shorts) at days 14/21/28 after CKD-induction by ultrasound-guided application] and group 5 [HPD-CKD + SW + EPC + sitagliptin (Sita; 600 mg/kg/day since day 14 after CKD induction)]. All animals were euthanized by day 60. By day 60, renal blood flow (RBF) was highest in group 1 and progressively increased from groups 2 to 5, whereas the levels of creatinine/BUN/proteinuria exhibited an opposite pattern of RBF among the five groups (all p < 0.001). The circulating levels of GLP-1/SDF-1α and protein levels of angiogenesis (VEGF/SDF-1α/CXCR4) and GLP-1R in kidney were progressively increased from groups 1 to 5, whereas circulating DPP4 activity exhibited an opposite pattern of SDF-1α among the groups (all p < 0.0001). The protein expressions of oxidative-stress (NOX-1/NOX-2/oxidized protein), apoptosis (Bax/caspase-3/PARP), fibrosis (Smad3/TGF-ß) and inflammation (TNF-α/NF-κB/MMP-2) and kidney injury score displayed an opposite pattern, whereas the protein expressions of TMP2, endothelial-cell markers (CD31/eNOS) and podocyte integrity biomarkers (podocin/ZO-1/synaptopodin) exhibited an identical pattern of RBF among the groups (all p < 0.001). In conclusion Sita associated SW-assisted EPC effectively protected residual renal function in CKD.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Células Progenitoras Endoteliais/fisiologia , Rim/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Fosfato de Sitagliptina/farmacologia , Animais , Biomarcadores/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Creatinina/metabolismo , Células Progenitoras Endoteliais/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Rim/metabolismo , Rim/fisiopatologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Proteinúria/tratamento farmacológico , Proteinúria/metabolismo , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia
14.
Int J Mol Sci ; 20(5)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836679

RESUMO

In clinical practice, there are patients with a combination of metabolic syndrome (MS) and chronic obstructive pulmonary disease (COPD). The pathological mechanisms linking MS and COPD are largely unknown. It remains unclear whether the effect of MS (possible obesity) has a major impact on the progression of COPD. This complicates the development of effective approaches for the treatment of patients with a diagnosis of MS and COPD. Experiments were performed on female C57BL/6 mice. Introduction of monosodium glutamate and extract of cigarette smoke was modeled to simulate the combined pathology of lipid disorders and emphysema. Biological effects of glucagon-like peptide 1 (GLP-1) and GLP-1 on endothelial progenitor cells (EPC) in vitro and in vivo were evaluated. Histological, immunohistochemical methods, biochemical methods, cytometric analysis of markers identifying EPC were used in the study. The CD31⁺ endothelial cells in vitro evaluation was produced by Flow Cytometry and Image Processing of each well with a Cytation™ 3. GLP-1 reduces the area of emphysema and increases the number of CD31⁺ endothelial cells in the lungs of mice in conditions of dyslipidemia and damage to alveolar tissue of cigarette smoke extract. The regenerative effects of GLP-1 are caused by a decrease in inflammation, a positive effect on lipid metabolism and glucose metabolism. EPC are proposed as pathogenetic and diagnostic markers of endothelial disorders in combination of MS with COPD. Based on GLP-1, it is proposed to create a drug to stimulate the regeneration of endothelium damaged in MS and COPD.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/genética , Síndrome Metabólica/genética , Doença Pulmonar Obstrutiva Crônica/genética , Enfisema Pulmonar/genética , Animais , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Células Progenitoras Endoteliais/metabolismo , Citometria de Fluxo , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Pulmão/efeitos dos fármacos , Pulmão/patologia , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/tratamento farmacológico , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/diagnóstico , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/patologia , Glutamato de Sódio/toxicidade
15.
Plast Reconstr Surg ; 143(4): 744e-755e, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30921123

RESUMO

BACKGROUND: Fat grafting has become a valuable technique for soft-tissue reconstruction; however, long-lasting success depends on several determinants. An early blood supply to the transplanted adipocytes is important to prevent ischemia. The recently developed quality and quantity (QQ) culture increases the vasculogenic potential of endothelial progenitor cells. The authors used a murine fat grafting model to address the hypothesis that QQ-cultured endothelial progenitor cells stimulate the establishment of a blood vessel network and increase graft success. METHODS: c-KitSca-1Lin (KSL) cells were isolated as endothelial progenitor cell precursors from C57BL/6 mice. Adipose tissue was grafted with QQ-cultured KSL cells (QQKSL group), uncultured KSL cells (KSL group), adipose-derived stem cells (ASC group), and a combination (QQKSL+ASC group), and compared to a control group. Five and 10 weeks later, grafts were weighed, histologic and immunohistochemical parameters were evaluated, and gene expression was quantified by quantitative polymerase chain reaction. RESULTS: The highest vessel density was observed in the combined QQKSL+ASC group (68.0 ± 4.3/mm; p < 0.001) and the QQKSL group (53.9 ± 3.0/mm; p < 0.001). QQKSL cells were engrafted in proximity to the graft vasculature. QQKSL cells decreased the fibrosis percentage (13.8 ± 1.8 percent; p < 0.05). The combined QQKSL+ASC group (22.4 ± 1.8/mm; p < 0.001) showed the fewest local inflammation units. A significant up-regulation of platelet-derived growth factor and adiponectin expression was observed in the QQKSL group and QQKSL+ASC group. Graft weight persistence was not significantly different between groups. CONCLUSIONS: Supplementing fat grafts with quality and quantity-cultured endothelial progenitor cells improves graft quality by stimulating vascularization. The increased vessel density is associated with less fibrosis, less inflammation, and better adipose tissue integrity. Enriching fat grafts with QQ-cultured endothelial progenitor cells is a potential solution to their clinical shortcomings.


Assuntos
Tecido Adiposo/transplante , Células Progenitoras Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Tecido Adiposo/patologia , Animais , Células Cultivadas , Aloenxertos Compostos/irrigação sanguínea , Modelos Animais de Doenças , Fibrose/patologia , Sobrevivência de Enxerto/fisiologia , Camundongos Endogâmicos C57BL
17.
EBioMedicine ; 42: 64-75, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30904607

RESUMO

BACKGROUND: Hypertensive patients exhibit decline in capillary density and endothelial progenitor cells (EPCs). However, whether capillary rarefaction in hypertension is associated with defect angiogenesis of EPCs remains unknown. We hypothesized that impaired mitochondrial function of late EPCs in hypertension is associated with the structural lack of capillary microcirculation via deficient CXCR4/JAK2/SIRT5 signaling. METHODS: We performed capillary microcirculation detection in hypertensive patients and healthy subjects. Angiogenic capacity and mitochondrial function of circulating EPCs were evaluated. The underlying mechanisms were further investigated by genetic inhibition and overexpression. FINDINGS: Capillary density of nail fold and eye fundus were significantly reduced in hypertensive patients, which was paralleled to decreased in vitro late EPC function and in vivo angiogenic capacity. Meanwhile the decline of EPC function in hypertension was accompanied by impaired mitochondrial ultrastructure, diminished mitochondrial membrane potential, reduced oxygen consumption, increased ROS generation and NADH level. Rotenone induced inhibition of oxygen consumption rate, excessive ROS generation and loss of MMP, which markedly decreased the in vitro functions of EPCs. Furthermore, SIRT5 expression of EPCs in hypertension was markedly reduced, which was correlated to mitochondrial dysfunction. CXCR4 gene transfer enhanced SIRT5 expression, improved mitochondrial functions and augmented angiogenic capacity of EPCs. The beneficial impacts of SIRT5 up-regulation on late EPC-mediated angiogenesis can be abrogated by blockade of CXCR4/JAK2/SIRT5 signaling pathway. INTERPRETATION: Mitochondrial dysfunction-mediated fall in angiogenic capacity due to deficient CXCR4/JAK2/SIRT5 signaling of late EPCs is probably responsible for the capillary rarefaction in hypertension. Our findings provide insight into the potential of EPC mitochondria as a novel target for the treatment of hypertension-related loss of microvascular density. FUNDS: National Nature Science Foundation of China, 973Program, the Nature Science Foundation of Guangdong.


Assuntos
Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Janus Quinase 2/metabolismo , Rarefação Microvascular/metabolismo , Mitocôndrias/metabolismo , Neovascularização Fisiológica , Receptores CXCR4/metabolismo , Sirtuínas/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Expressão Gênica , Humanos , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/patologia , Janus Quinase 2/genética , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Rarefação Microvascular/diagnóstico por imagem , Rarefação Microvascular/genética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Modelos Biológicos , Neovascularização Fisiológica/genética , Consumo de Oxigênio , Ratos , Ratos Endogâmicos SHR , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR4/genética , Fatores de Risco , Transdução de Sinais , Sirtuínas/genética , Transplante de Células-Tronco , Transdução Genética
18.
PLoS One ; 14(3): e0205477, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30889182

RESUMO

Metabolic syndrome (MS), overlapping type 2 diabetes, hyperlipidemia, and/or hypertension, owing to high-fat diet, poses risk for cardiovascular disease. A critical feature associated with such risk is the functional impairment of endothelial progenitor cells (EPCs). Dipeptidyl dipeptidase-4 inhibitors (DPP-4 i) not only inhibit degradation of incretins to control blood glucose levels, but also improve EPC bioactivity and induce anti-inflammatory effects in tissues. In the present study, we investigated the effects of such an inhibitor, MK-06266, in an ischemia model of MS using diet-induced obese (DIO) mice. EPC bioactivity was examined in MK-0626-administered DIO mice and a non-treated control group, using an EPC colony-forming assay and bone marrow cKit+ Sca-1+ lineage-cells, and peripheral blood-mononuclear cells. Our results showed that, in vitro, the effect of MK-0626 treatment on EPC bioactivities and differentiation was superior compared to the control. Furthermore, microvascular density and pericyte-recruited arteriole number increased in MK-0626-administered mice, but not in the control group. Lineage profiling of isolated cells from ischemic tissues revealed that MK-0626 administration has an inhibitory effect on unproductive inflammation. This occurred via a decrease in the influx of total blood cells and pro-inflammatory cells such as neutrophils, total macrophages, M1, total T-cells, cytotoxic T-cells, and B-cells, with a concomitant increase in number of regeneration-associated cells, such as M2/M ratio and Treg/T-helper. Laser Doppler analysis revealed that at day 14 after ischemic injury, blood perfusion in hindlimb was greater in MK-0626-treated DIO mice, but not in control. In conclusion, the DPP-4 i had a positive effect on EPC differentiation in MS model of DIO mice. Following ischemic injury, DPP-4 i sharply reduced recruitment of pro-inflammatory cells into ischemic tissue and triggered regeneration and reparation, making it a promising therapeutic agent for MS treatment.


Assuntos
Células Progenitoras Endoteliais/efeitos dos fármacos , Membro Posterior/efeitos dos fármacos , Isquemia/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Obesidade/tratamento farmacológico , Regeneração/efeitos dos fármacos , Triazóis/farmacologia , Adulto , Animais , Dieta/efeitos adversos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Voluntários Saudáveis , Humanos , Isquemia/etiologia , Isquemia/patologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Pessoa de Meia-Idade , Obesidade/etiologia , Obesidade/metabolismo , Adulto Jovem
19.
Pregnancy Hypertens ; 15: 146-153, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30825912

RESUMO

OBJECTIVES: Individuals delivered from preeclamptic pregnancies exhibit a long-term increased risk of developing cardiovascular and metabolic diseases, likely caused by aberrant fetal cell reprogramming incurred in utero. The present study investigated the functional impairment and epigenetic changes exhibited by endothelial progenitor cells derived from offspring born to preeclamptic pregnancies. STUDY DESIGN: The capacity of CD133+/C-kit+/Lin- (CKL-) human umbilical cord blood endothelial progenitor cells (EPCs) derived from gestationally matched normal and preeclamptic (n = 10 each) pregnancies to differentiate to form outgrowth endothelial cells (OECs) was assessed by observing both their morphology, and the number and size of generated OECs colonies. Likewise, OECs angiogenic function was evaluated via migration, adhesion, and tube-formation assays. EPCs from preeclampsia were cultured in normal-, and preeclampsia-derived serum-conditioned media to assess the effects of environmental factors on EPC differentiation potency and OEC angiogenic function, and finally, EPCs H3K4, H3K9, and H3K27 trimethylation levels were assayed. RESULTS: The preeclampsia-derived CKL- EPCs exhibited decreased H3K4 and H3K9 trimethylation levels, significantly delayed differentiation times, and a significant reduction in both their number of generated OECs colonies, and exhibited reduced OECs migration, adhesion, and tube formation activities compared to those achieved by the normal-derived EPCs. Interestingly, the reduced differentiation potency of the preeclampsia-derived EPCs was not rescued via exposure to normal serum. CONCLUSIONS: Exposure to preeclampsia significantly and irreversibly reduced CKL- EPC differentiation potency and OEC angiogenic function, likely reflecting incurred irreversible epigenetic changes.


Assuntos
Antígeno AC133/sangue , Células Progenitoras Endoteliais/citologia , Epigênese Genética , Pré-Eclâmpsia/sangue , Adulto , Análise de Variância , Estudos de Casos e Controles , Movimento Celular , Feminino , Sangue Fetal , Humanos , Pré-Eclâmpsia/fisiopatologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA