Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.409
Filtrar
1.
Mol Syst Biol ; 17(9): e10426, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34486798

RESUMO

Although 15-20% of COVID-19 patients experience hyper-inflammation induced by massive cytokine production, cellular triggers of this process and strategies to target them remain poorly understood. Here, we show that the N-terminal domain (NTD) of the SARS-CoV-2 spike protein substantially induces multiple inflammatory molecules in myeloid cells and human PBMCs. Using a combination of phenotypic screening with machine learning-based modeling, we identified and experimentally validated several protein kinases, including JAK1, EPHA7, IRAK1, MAPK12, and MAP3K8, as essential downstream mediators of NTD-induced cytokine production, implicating the role of multiple signaling pathways in cytokine release. Further, we found several FDA-approved drugs, including ponatinib, and cobimetinib as potent inhibitors of the NTD-mediated cytokine release. Treatment with ponatinib outperforms other drugs, including dexamethasone and baricitinib, inhibiting all cytokines in response to the NTD from SARS-CoV-2 and emerging variants. Finally, ponatinib treatment inhibits lipopolysaccharide-mediated cytokine release in myeloid cells in vitro and lung inflammation mouse model. Together, we propose that agents targeting multiple kinases required for SARS-CoV-2-mediated cytokine release, such as ponatinib, may represent an attractive therapeutic option for treating moderate to severe COVID-19.


Assuntos
Antivirais/farmacologia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Animais , Azetidinas/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Janus Quinase 1/metabolismo , Lipopolissacarídeos/toxicidade , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/virologia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Pirazóis/farmacologia , Piridazinas/farmacologia , Células RAW 264.7 , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Sulfonamidas/farmacologia
2.
Nat Commun ; 12(1): 4838, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376698

RESUMO

Macropinosomes are formed by shaping actin-rich plasma membrane ruffles into large intracellular organelles in a phosphatidylinositol 3-kinase (PI3K)-coordinated manner. Here, we utilize lattice lightsheet microscopy and image visualization methods to map the three-dimensional structure and dynamics of macropinosome formation relative to PI3K activity. We show that multiple ruffling morphologies produce macropinosomes and that the majority form through collisions of adjacent PI3K-rich ruffles. By combining multiple volumetric representations of the plasma membrane structure and PI3K products, we show that PI3K activity begins early throughout the entire ruffle volume and continues to increase until peak activity concentrates at the base of the ruffle after the macropinosome closes. Additionally, areas of the plasma membrane rich in ruffling had increased PI3K activity and produced many macropinosomes of various sizes. Pharmacologic inhibition of PI3K activity had little effect on the rate and morphology of membrane ruffling, demonstrating that early production of 3'-phosphoinositides within ruffles plays a minor role in regulating their morphology. However, 3'-phosphoinositides are critical for the fusogenic activity that seals ruffles into macropinosomes. Taken together, these data indicate that local PI3K activity is amplified in ruffles and serves as a priming mechanism for closure and sealing of ruffles into macropinosomes.


Assuntos
Membrana Celular/metabolismo , Microscopia de Fluorescência/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Pinocitose/fisiologia , Animais , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura , Morfolinas/farmacologia , Fosfatidilinositóis/metabolismo , Pinocitose/efeitos dos fármacos , Células RAW 264.7
3.
Food Res Int ; 147: 110515, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399493

RESUMO

Two intracellular polysaccharide fractions (IPS1 and IPS2) were obtained from the mycelium of Paecilomyces cicadae TJJ1213, and the structures were conducted. Results showed that they were homogenous with the average molecular weight of 2.40 × 106 Da and 6.79 × 105 Da. Two fractions were composed of mannose, glucose and galactose with molar ratios of 1.35: 6.93: 1.0 and 2.04: 1.0: 1.87, respectively. The backbone of IPS1 was â†’ 4)-α-D-Glcp (1 â†’ and â†’ 3,4)-α-D-Manp (1 â†’ residues with a side chain consisted of T-α-D-Galp. IPS2 was consisted of â†’ 4)-α-D-Glcp-(1→, →3,4)-α-D-Manp-(1 â†’ and â†’ 2,6)-α-D-Manp-(1 â†’ residues and the branches were also consisted of T-α-D-Galp. In addition, the scanning electron microscope and atomic force microscope images presented different features of IPS1 and IPS2, respectively. Furthermore, two fractions exhibited better immunomodulatory effects. They could markedly promote the proliferation of RAW264.7 cells and enhance phagocytosis, nitric oxide release and cytokines production. These results indicated that IPS1 and IPS2 had potential to enhance immune responses.


Assuntos
Micélio , Polissacarídeos , Animais , Cordyceps , Imunidade , Camundongos , Células RAW 264.7
4.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445416

RESUMO

The antioxidant and anti-inflammatory potentials of polyphenols contained in Gynura procumbens (GP) extract were systematically analyzed. Polyphenols in GP were analyzed for nine peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS), and quantitatively determined through each standard. A total of nine polyphenolic compounds were identified in the samples and their MS data were tabulated. To determine the potential of bioactive ingredients targeting DPPH and COX-2, we analyzed them by ultrafiltration combined with LC. The results identified the major compounds exhibiting binding affinity for DPPH and COX-2. Caffeic acid, kynurenic acid, and chlorogenic acid showed excellent binding affinity to DPPH and COX-2, suggesting that they can be considered as major active compounds. Additionally, the anti-inflammatory effect of GP was confirmed in vitro. This study will not only be used to provide basic data for the application of GP to the food and pharmaceutical industries, but will also provide information on effective screening methods for other medicinal plants.


Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Asteraceae/química , Ciclo-Oxigenase 2/metabolismo , Polifenóis/análise , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Compostos de Bifenilo/metabolismo , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Lipopolissacarídeos/efeitos adversos , Espectrometria de Massas , Camundongos , Picratos/metabolismo , Extratos Vegetais/química , Polifenóis/farmacologia , Células RAW 264.7
5.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445423

RESUMO

Low-magnitude high-frequency vibration (LMHFV) has previously been reported to modulate the acute inflammatory response of ovariectomy-induced osteoporotic fracture healing. However, the underlying mechanisms are not clear. In the present study, we investigated the effect of LMHFV on the inflammatory response and the role of the p38 MAPK mechanical signaling pathway in macrophages during the healing process. A closed femoral fracture SD rat model was used. In vivo results showed that LMHFV enhanced activation of the p38 MAPK pathway at the fracture site. The acute inflammatory response, expression of inflammatory cytokines, and callus formation were suppressed in vivo by p38 MAPK inhibition. However, LMHFV did not show direct in vitro enhancement effects on the polarization of RAW264.7 macrophage from the M1 to M2 phenotype, but instead promoted macrophage enlargement and transformation to dendritic monocytes. The present study demonstrated that p38 MAPK modulated the enhancement effects of mechanical stimulation in vivo only. LMHFV may not have exerted its enhancement effects directly on macrophage, but the exact mechanism may have taken a different pathway that requires further investigation in the various subsets of immune cells.


Assuntos
Citocinas/sangue , Consolidação da Fratura , Fraturas por Osteoporose/terapia , Vibração/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Fraturas por Osteoporose/sangue , Fraturas por Osteoporose/imunologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Microtomografia por Raio-X
6.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360988

RESUMO

Replacement and inflammatory resorption are serious complications associated with the delayed replantation of avulsed teeth. In this study, we aimed to assess whether deferoxamine (DFO) can suppress inflammation and osteoclastogenesis in vitro and attenuate inflammation and bone resorption in a replanted rat tooth model. Cell viability and inflammation were evaluated in RAW264.7 cells. Osteoclastogenesis was confirmed by tartrate-resistant acid phosphatase staining, reactive oxygen species (ROS) measurement, and quantitative reverse transcriptase-polymerase chain reaction in teeth exposed to different concentrations of DFO. In vivo, molars of 31 six-week-old male Sprague-Dawley rats were extracted and stored in saline (n = 10) or DFO solution (n = 21) before replantation. Micro-computed tomography (micro-CT) imaging and histological analysis were performed to evaluate inflammation and root and alveolar bone resorption. DFO downregulated the genes related to inflammation and osteoclastogenesis. DFO also reduced ROS production and regulated specific pathways. Furthermore, the results of the micro-CT and histological analyses provided evidence of the decrease in inflammation and hard tissue resorption in the DFO group. Overall, these results suggest that DFO reduces inflammation and osteoclastogenesis in a tooth replantation model, and thus, it has to be further investigated as a root surface treatment option for an avulsed tooth.


Assuntos
Perda do Osso Alveolar/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Desferroxamina/uso terapêutico , Osteogênese , Avulsão Dentária/tratamento farmacológico , Perda do Osso Alveolar/etiologia , Animais , Anti-Inflamatórios/farmacologia , Regeneração Óssea , Desferroxamina/farmacologia , Masculino , Camundongos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Avulsão Dentária/complicações
7.
Medicina (Kaunas) ; 57(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440983

RESUMO

Background and objectives: Tumor progression and the immune response are intricately linked. Additionally, the presence of macrophages in the microenvironment is essential for carcinogenesis, but regulation of the polarization of M1- and M2-like macrophages and their role in metastasis remain unclear. Based on previous studies, both reactive oxygen species (ROS) and the endoplasmic reticulum (ER) are emerging as key players in macrophage polarization. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, there is limited knowledge regarding how they affect the macrophage-dependent innate host defense. Materials and methods: We detected the levels of ROS, the ability of chemotaxis, the expressions of markers of M1-/M2-like macrophages in RAW264.7 in presence of T2- and T2C-conditioned medium. Results: The results of this study indicated that ROS levels were decreased in RAW 264.7 cells when cultured with T2C-conditioned medium, while there was an improvement in chemotaxis abilities. We also found that the M2-like macrophages were characterized by an elongated shape in RAW 264.7 cells cultured in T2C-conditioned medium, which had increased CD206 expression but decreased expression of CD86 and inducible nitric oxide synthase. Suppression of ER stress shifted polarized M1-like macrophages toward an M2-like phenotype in RAW 264.7 cells cultured in T2C-conditioned medium. Conclusions: Taken together, we conclude that the polarization of macrophages is associated with the alteration of cell shape, ROS accumulation, and ER stress.


Assuntos
Ativação de Macrófagos , Neoplasias , Animais , Macrófagos , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio , Microambiente Tumoral
8.
FASEB J ; 35(9): e21833, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34365659

RESUMO

Macrophages are the principal component of the innate immune system. They play very crucial and multifaceted roles in the pathogenesis of inflammatory vascular diseases. There is an increasing recognition that transcriptionally dynamic macrophages are the key players in the pathogenesis of inflammatory vascular diseases. In this context, the accumulation and aberrant activation of macrophages in the subendothelial layers govern atherosclerotic plaque development. Macrophage-mediated inflammation is an explicitly robust biological response that involves broad alterations in inflammatory gene expression. Thus, cell-intrinsic negative regulatory mechanisms must exist which can restrain inflammatory response in a spatiotemporal manner. In this study, we identified CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) as one such cell-intrinsic negative regulator of inflammation. Our in vivo studies show that myeloid-CITED2-deficient mice on the Apoe-/- background have larger atherosclerotic lesions on both control and high-fat/high-cholesterol diets. Our integrated transcriptomics and gene set enrichment analyses studies show that CITED2 deficiency elevates STAT1 and interferon regulatory factor 1 (IRF1) regulated pro-inflammatory gene expression in macrophages. At the molecular level, our studies identify that CITED2 deficiency elevates IFNγ-induced STAT1 transcriptional activity and STAT1 enrichment on IRF1 promoter in macrophages. More importantly, siRNA-mediated knockdown of IRF1 completely reversed elevated pro-inflammatory target gene expression in CITED2-deficient macrophages. Collectively, our study findings demonstrate that CITED2 restrains the STAT1-IRF1 signaling axis in macrophages and limits the development of atherosclerotic plaques.


Assuntos
Aterosclerose/genética , Fator Regulador 1 de Interferon/genética , Proteínas Repressoras/genética , Fator de Transcrição STAT1/genética , Transdução de Sinais/genética , Transativadores/genética , Animais , Feminino , Inflamação/genética , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , Transcrição Genética/genética
9.
Biomed Res Int ; 2021: 1978434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337001

RESUMO

Lung cancer is one of the most serious leading cancers with high incidence globally. Identifying molecular markers is key for disease diagnosis and treatment. Coal dust might be important triggering factors in disease development. Here, we first performed RNA-seq-based screening in coal dust treated and nontreated RAW264.7 cell lines. PHLDB2 was found to be the top differentially expressed gene. By retrieving TCGA lung cancer dataset, we observed that PHLDB2 showed upregulations in males and smoker patients. Patients with lower PHLDB2 expression survived longer than those with higher expressions. Furthermore, PHLDB2 was negatively correlated with EMT makers, and a total of 2.74% mutation rate were observed in 1,059 patients. This finding highlights the critical role of PHLDB2 in lung cancer development. PHLDB2 might be a molecular maker for disease diagnosis or treatment.


Assuntos
Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Carvão Mineral , Poeira , Detecção Precoce de Câncer , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , RNA-Seq , Animais , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Morte Celular/genética , Sobrevivência Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Células RAW 264.7 , Análise de Sobrevida
10.
Molecules ; 26(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361589

RESUMO

Virus-like particles are excellent inducers of the adaptive immune response of humans and are presently being used as scaffolds for the presentation of foreign peptides and antigens derived from infectious microorganisms for subunit vaccine development. The most common approaches for peptide and antigen presentation are translational fusions and chemical coupling, but some alternatives that seek to simplify the coupling process have been reported recently. In this work, an alternative platform for coupling full antigens to virus-like particles is presented. Heterodimerization motifs inserted in both Tobacco etch virus coat protein and green fluorescent protein directed the coupling process by simple mixing, and the obtained complexes were easily taken up by a macrophage cell line.


Assuntos
Apresentação do Antígeno/imunologia , Antígenos , Potyvirus , Vacinas de Partículas Semelhantes a Vírus , Animais , Antígenos/química , Antígenos/imunologia , Camundongos , Potyvirus/química , Potyvirus/imunologia , Células RAW 264.7 , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia
11.
Inorg Chem ; 60(17): 12984-12999, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34369772

RESUMO

Three new classes of ionic organoselenium compounds containing cationic benzimidazolium and imidazolium ring systems with selenocyanates as counterions are described. The cyclization of N,N'-disubstituted benzimidazolium and imidazolium bromides having N-(CH2)2-Br and N-(CH2)3-Br groups in the presence of potassium selenocyanate (KSeCN) led to formation of the corresponding selenazolium selenocyanates (21a, 21b, 22a, and 22b) and selenazinium selenocyanates (21c, 21d, 22c, and 22d). However, the open-chain selenocyanates with additional selenocyanate counterions (21e, 21f, 22e, and 22f) were formed from the N,N'-disubstituted benzimidazolium and imidazolium bromides having N-(CH2)6-Br groups. Mechanistic studies were carried out to understand the feasibility of such cyclization processes in the presence of KSeCN. The compounds were studied further for their potencies to catalytically reduce H2O2 in the presence of thiols. Interestingly, the cyclic selenazolium (21a, 21b, 22a, and 22b) and selenazinium compounds (21c, 21d, 22c, and 22d) exhibited significantly higher antioxidant activities than the corresponding acyclic selenocyanates (21f, 22e, and 22f). Selected compounds (22d and 22e) were further evaluated for their potencies in modulating the intracellular level of reactive oxygen species (ROS) in a representative macrophage cell line (RAW 264.7). Owing to the cationic nature of compounds, they may target and scavenge mitochondrial ROS in the cellular medium.


Assuntos
Antioxidantes/farmacologia , Benzimidazóis/farmacologia , Compostos Organosselênicos/farmacologia , Animais , Antioxidantes/síntese química , Benzimidazóis/síntese química , Cianatos/síntese química , Cianatos/farmacologia , Ciclização , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Camundongos , Compostos Organosselênicos/síntese química , Oxirredução , Células RAW 264.7 , Compostos de Selênio/síntese química , Compostos de Selênio/farmacologia
12.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443320

RESUMO

Crop diseases caused by Fusarium pathogens, among other microorganisms, threaten crop production in both commercial and smallholder farming. There are increasing concerns about the use of conventional synthetic fungicides due to fungal resistance and the associated negative effects of these chemicals on human health, livestock and the environment. This leads to the search for alternative fungicides from nature, especially from plants. The objectives of this study were to characterize isolated compounds from Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) Dunal leaf extracts, evaluate their antifungal activity against Fusarium pathogens, their phytotoxicity on maize seed germination and their cytotoxicity effect on Raw 264.7 macrophage cells. The investigation led to the isolation of antifungal compounds characterized as 5-hydroxy-7,4'-dimethoxyflavone, maslinic acid (21-hydroxy-3-oxo-olean-12-en-28-oic acid) and withaferin A (4ß,27-dihydroxy-1-oxo-5ß,6ß-epoxywitha-2-24-dienolide). The structural elucidation of the isolated compounds was established using nuclear magnetic resonance (NMR) spectroscopy, mass spectroscopy (MS) and, in comparison, with the available published data. These compounds showed good antifungal activity with minimum inhibitory concentrations (MIC) less than 1.0 mg/mL against one or more of the tested Fusarium pathogens (F. oxysporum, F. verticilloides, F. subglutinans, F. proliferatum, F. solani, F. graminearum, F. chlamydosporum and F. semitectum). The findings from this study indicate that medicinal plants are a good source of natural antifungals. Furthermore, the isolated antifungal compounds did not show any phytotoxic effects on maize seed germination. The toxicity of the compounds A (5-hydroxy-7,4'-dimethoxyflavone) and AI (4ß,27-dihydroxy-1-oxo-5ß,6ß-epoxywitha-2-24-dienolide) was dose-dependent, while compound B (21-hydroxy-3-oxo-olean-12-en-28-oic acid) showed no toxicity effect against Raw 264.7 macrophage cells.


Assuntos
Antifúngicos/farmacologia , Combretum/química , Fusarium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Withania/química , Animais , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7
13.
Nat Commun ; 12(1): 4999, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404769

RESUMO

The type I interferon (IFN) signaling pathway has important functions in resistance to viral infection, with the downstream induction of interferon stimulated genes (ISG) protecting the host from virus entry, replication and spread. Listeria monocytogenes (Lm), a facultative intracellular foodborne pathogen, can exploit the type I IFN response as part of their pathogenic strategy, but the molecular mechanisms involved remain unclear. Here we show that type I IFN suppresses the antibacterial activity of phagocytes to promote systemic Lm infection. Mechanistically, type I IFN suppresses phagosome maturation and proteolysis of Lm virulence factors ActA and LLO, thereby promoting phagosome escape and cell-to-cell spread; the antiviral protein, IFN-induced transmembrane protein 3 (IFITM3), is required for this type I IFN-mediated alteration. Ifitm3-/- mice are resistant to systemic infection by Lm, displaying decreased bacterial spread in tissues, and increased immune cell recruitment and pro-inflammatory cytokine signaling. Together, our findings show how an antiviral mechanism in phagocytes can be exploited by bacterial pathogens, and implicate IFITM3 as a potential antimicrobial therapeutic target.


Assuntos
Antibacterianos/farmacologia , Listeria/efeitos dos fármacos , Listeriose/imunologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Fagócitos/imunologia , Fagócitos/microbiologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Listeria monocytogenes/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagossomos/imunologia , Células RAW 264.7 , Transcriptoma , Fatores de Virulência , Internalização do Vírus/efeitos dos fármacos
14.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360711

RESUMO

The acute demise of stem cells following transplantation significantly compromises the efficacy of stem cell-based cell therapeutics for infarcted hearts. As the stem cells transplanted into the damaged heart are readily exposed to the hostile environment, it can be assumed that the acute death of the transplanted stem cells is also inflicted by the same environmental cues that caused massive death of the host cardiac cells. Pyroptosis, a highly inflammatory form of programmed cell death, has been added to the list of important cell death mechanisms in the damaged heart. However, unlike the well-established cell death mechanisms such as necrosis or apoptosis, the exact role and significance of pyroptosis in the acute death of transplanted stem cells have not been explored in depth. In the present study, we found that M1 macrophages mediate the pyroptosis in the ischemia/reperfusion (I/R) injured hearts and identified miRNA-762 as an important regulator of interleukin 1ß production and subsequent pyroptosis. Delivery of exogenous miRNA-762 prior to transplantation significantly increased the post-transplant survival of stem cells and also significantly ameliorated cardiac fibrosis and heart functions following I/R injury. Our data strongly suggest that suppressing pyroptosis can be an effective adjuvant strategy to enhance the efficacy of stem cell-based therapeutics for diseased hearts.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , Piroptose , Transplante de Células-Tronco , Células-Tronco , Animais , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/farmacologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/terapia , Piroptose/efeitos dos fármacos , Piroptose/genética , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Células-Tronco/patologia
15.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360873

RESUMO

Staphylococcus aureus is a commensal bacterium that causes severe infections in soft tissue and the bloodstream. During infection, S. aureus manipulates host cell response to facilitate its own replication and dissemination. Here, we show that S. aureus significantly decreases the level of SUMOylation, an essential post-translational modification, in infected macrophages 24 h post-phagocytosis. The reduced level of SUMOylation correlates with a decrease in the SUMO-conjugating enzyme Ubc9. The over-expression of SUMO proteins in macrophages impaired bacterial intracellular proliferation and the inhibition of SUMOylation with ML-792 increased it. Together, these findings demonstrated for the first time the role of host SUMOylation response toward S. aureus infection.


Assuntos
Interações entre Hospedeiro e Microrganismos/imunologia , Macrófagos/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Animais , Macrófagos/citologia , Camundongos , Células RAW 264.7 , Sumoilação , Enzimas de Conjugação de Ubiquitina/imunologia
16.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360887

RESUMO

The fruits of the mulberry tree (Morus alba L.), known as white mulberry, have been consumed in various forms, including tea, beverages, and desserts, worldwide. As part of an ongoing study to discover bioactive compounds from M. alba fruits, the anti-inflammatory effect of compounds from M. alba were evaluated in lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 macrophages. Phytochemical analysis of the ethanol extract of the M. alba fruits led to the isolation of 22 compounds. Among the isolated compounds, to the best of our knowledge, compounds 1, 3, 5, 7, 11, 12, and 14-22 were identified from M. alba fruits for the first time in this study. Inhibitory effects of 22 compounds on the production of the nitric oxide (NO) known as a proinflammatory mediator in LPS-stimulated RAW 264.7 macrophages were evaluated using NO assays. Western blot analysis was performed to evaluate the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5). We evaluated whether the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5) following LPS stimulation in RAW 264.7 macrophages occurred because of phosphorylation of IκB kinase alpha (IKKα), IκB kinase beta (IKKß), inhibitor of kappa B alpha (IκBα), nuclear factor kappa B (NF-κB) and activations of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Cyclo(L-Pro-L-Val) (5) significantly suppressed phosphorylations of IKKα, IKKß, IκBα, and NF-κB and activations of iNOS and COX-2 in a concentration-dependent manner. Taken together, these results indicate that cyclo(L-Pro-L-Val) (5) can be considered a potential therapeutic agent for the treatment of inflammation-associated disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Dipeptídeos/farmacologia , Frutas/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Morus/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
17.
Phytochemistry ; 191: 112908, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34388664

RESUMO

The fungus Biscogniauxia whalleyi SWUF13-085 from the Graphostomataceae family was studied for potential anti-inflammatory and anticancer agents. A diverse array of natural products was identified. Six of which were undescribed compounds, including xylariterpenoids L-N, (1R,2S,6R,7S)-1,2-dihydroxy-α-bisabolol, 6-[(1R)-1-hydroxy-1-methyl-2-propenyl]-4-methoxy-3-methyl-2H-pyran-2-one and (1R*,4S*,5S*,7S*,10R*)-guaia-11 (12)-en-7,10-diol. Several of the isolated compounds such as bergamotene, guaiane and phthalide derivatives showed activity in both the inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values in the range of 2.48-10.82 µg/mL and anti-proliferation against HeLa cells with IC50 values in the range of 8.64-31.16 µg/mL. While compounds such as cerebrosides A and C only exhibited inhibitory effects on NO production with IC50 values in the range of 4.45-10.28 µg/mL.


Assuntos
Anti-Inflamatórios , Xylariales , Animais , Anti-Inflamatórios/farmacologia , Células HeLa , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico , Células RAW 264.7
18.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360922

RESUMO

Recent evidence has shown that inflammation can contribute to all tumorigenic states. We have investigated the anti-inflammatory effects of a diamine-PEGylated derivative of oleanolic acid (OADP), in vitro and in vivo with inflammation models. In addition, we have determined the sub-cytotoxic concentrations for anti-inflammatory assays of OADP in RAW 264.7 cells. The inflammatory process began with incubation with lipopolysaccharide (LPS). Nitric oxide production levels were also determined, exceeding 75% inhibition of NO for a concentration of 1 µg/mL of OADP. Cell-cycle analysis showed a reversal of the arrest in the G0/G1 phase in LPS-stimulated RAW 264.7 cells. Furthermore, through Western blot analysis, we have determined the probable molecular mechanism activated by OADP; the inhibition of the expression of cytokines such as TNF-α, IL-1ß, iNOS, and COX-2; and the blocking of p-IκBα production in LPS-stimulated RAW 264.7 cells. Finally, we have analyzed the anti-inflammatory action of OADP in a mouse acute ear edema, in male BL/6J mice treated with OADP and tetradecanoyl phorbol acetate (TPA). Treatment with OADP induced greater suppression of edema and decreased the ear thickness 14% more than diclofenac. The development of new derivatives such as OADP with powerful anti-inflammatory effects could represent an effective therapeutic strategy against inflammation and tumorigenic processes.


Assuntos
Anti-Inflamatórios/farmacologia , Otopatias/tratamento farmacológico , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7
19.
Chem Pharm Bull (Tokyo) ; 69(8): 811-816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34334527

RESUMO

Three new aconitine-type C19-diterpenoid alkaloid namely novolunines A (1), B (2), and C (3), along with fifteen known diterpenoid alkaloids were isolated from the roots of Aconitum novoluridum, whose phytochemical investigations have never been reported before. The structures of three new alkaloids were established on the basis of spectra data (high-resolution electrospray ionization (HR-ESI)-MS, IR, one dimensional (1D)- and 2D-NMR). Noteworthily, novolunines A (1) and B (2) are two diterpenoid alkaloids bearing conformational isomerism. In addition, the diterpenoid alkaloids 1-3 did not show any anti-acetylcholinesterase (AChE) or anti-inflammatory activities.


Assuntos
Acetilcolinesterase/metabolismo , Aconitum/química , Anti-Inflamatórios/farmacologia , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Electrophorus , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
20.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360629

RESUMO

Macrophages play a critical role in the inflammatory response to environmental triggers, such as lipopolysaccharide (LPS). Inflammatory signaling through macrophages and the innate immune system are increasingly recognized as important contributors to multiple acute and chronic disease processes. Nitric oxide (NO) is a free radical that plays an important role in immune and inflammatory responses as an important intercellular messenger. In addition, NO has an important role in inflammatory responses in mucosal environments such as the ocular surface. Histatin peptides are well-established antimicrobial and wound healing agents. These peptides are important in multiple biological systems, playing roles in responses to the environment and immunomodulation. Given the importance of macrophages in responses to environmental triggers and pathogens, we investigated the effect of histatin-1 (Hst1) on LPS-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 (RAW) macrophages. LPS-induced inflammatory signaling, NO production and cytokine production in macrophages were tested in response to treatment with Hst1. Hst1 application significantly reduced LPS-induced NO production, inflammatory cytokine production, and inflammatory signaling through the JNK and NF-kB pathways in RAW cells. These results demonstrate that Hst1 can inhibit LPS-induced inflammatory mediator production and MAPK signaling pathways in macrophages.


Assuntos
Histatinas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Animais , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...