Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.678
Filtrar
1.
Nature ; 571(7763): 117-121, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31142833

RESUMO

Multipotent self-renewing haematopoietic stem cells (HSCs) regenerate the adult blood system after transplantation1, which is a curative therapy for numerous diseases including immunodeficiencies and leukaemias2. Although substantial effort has been applied to identifying HSC maintenance factors through the characterization of the in vivo bone-marrow HSC microenvironment or niche3-5, stable ex vivo HSC expansion has previously been unattainable6,7. Here we describe the development of a defined, albumin-free culture system that supports the long-term ex vivo expansion of functional mouse HSCs. We used a systematic optimization approach, and found that high levels of thrombopoietin synergize with low levels of stem-cell factor and fibronectin to sustain HSC self-renewal. Serum albumin has long been recognized as a major source of biological contaminants in HSC cultures8; we identify polyvinyl alcohol as a functionally superior replacement for serum albumin that is compatible with good manufacturing practice. These conditions afford between 236- and 899-fold expansions of functional HSCs over 1 month, although analysis of clonally derived cultures suggests that there is considerable heterogeneity in the self-renewal capacity of HSCs ex vivo. Using this system, HSC cultures that are derived from only 50 cells robustly engraft in recipient mice without the normal requirement for toxic pre-conditioning (for example, radiation), which may be relevant for HSC transplantation in humans. These findings therefore have important implications for both basic HSC research and clinical haematology.


Assuntos
Técnicas de Cultura de Células/métodos , Autorrenovação Celular/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , Feminino , Fibronectinas/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Masculino , Camundongos , Álcool de Polivinil/farmacologia , Albumina Sérica , Fator de Células-Tronco/farmacologia , Trombopoetina/farmacologia , Fatores de Tempo , Condicionamento Pré-Transplante
2.
Biomed Pharmacother ; 114: 108806, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30928804

RESUMO

Agents that provide protection against irradiation-induced hematopoietic injury are urgently needed for radiotherapy. We examined the effects of the small molecule, 1,2-propanediol (PPD), on total body irradiation (TBI)-induced hematopoietic injury in C57BL/6 mice. PPD administration 1 h before TBI significantly increased hematopoietic parameters such as white blood cell, platelet, red blood cell, and lymphocyte counts in vivo and enhanced the survival of mice exposed to TBI (7.0 and 7.5 Gy). PPD administration 1 h before TBI improved bone marrow (BM) and spleen recovery after TBI, with increases in both BM cellularity and spleen index. The number of colony-forming-units in bone marrow mononuclear cells (BMNCs) in vitro also increased significantly. PPD pretreatment increased the numbers of hematopoietic stem cells and hematopoietic progenitor cells in BM. Importantly, PPD also maintained endogenous antioxidant status by decreasing levels of malondialdehyde and increasing the expression of reduced glutathione, superoxide dismutase and catalase in the serum of irradiated mice. PPD alleviated the levels of apoptosis in HSCs induced by TBI, thus increasing the proportion of dividing BMNCs. These results suggest that PPD protects against TBI-induced hematopoietic injury through the increased activities of antioxidant enzymes and the inhibition of apoptosis in HSCs. PPD increased the serum levels of granulocyte-colony stimulating factor and interleukin-6 irrespective of TBI. In conclusion, these data suggest that PPD acts as a radioprotector against radiation-induced hematopoietic injury.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Propilenoglicol/farmacologia , Lesões Experimentais por Radiação/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Ensaio de Unidades Formadoras de Colônias/métodos , Fator Estimulador de Colônias de Granulócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Irradiação Corporal Total/métodos
3.
Eur J Med Chem ; 174: 181-197, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31035239

RESUMO

The scarcity of hematopoietic stem cells (HSCs) significantly hindered their clinical potentials. Umbilical cord blood (UCB) has become the leading source of HSCs for both research and clinical applications. But the low content of HSCs in a single UCB unit limited its use only to pediatric patients. Various cytokines and small molecules have demonstrated strong abilities in promoting HSC ex vivo expansion, of which UM171 is the newest and by far the most potent HSC ex vivo expansion agent. In this study, we synthesized 37 pyrimidoindole analogs and identified 6 compounds to be potent in promoting HSC ex vivo expansion. In particular, analog 11 was found to be the most effective in stimulating ex vivo expansion of UCB CD34+ cells and CD34+CD38- cells. Initial data indicated that compound 11 promoted the absolute number of long term HSCs and inhibited their differentiation. UCB HSCs expanded with 11 retained adequate multi-lineage differentiation capacity. In addition, compound 11 is not cytotoxic at its test concentrations, suggesting that it merits further investigation for potential clinical applications.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Indóis/farmacologia , Pirimidinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Indóis/síntese química , Indóis/química , Indóis/toxicidade , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/toxicidade , Relação Estrutura-Atividade
5.
Clin Calcium ; 29(3): 343-347, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-30814380

RESUMO

Over the past 15 years, many studies have revealed that Wnt signaling has a strong impact on hematopoietic stem cell fate. After a controversy over the interpretation of some results, the current understanding is that an appropriate degree of canonical Wnt signaling induces hematopoietic stem cell self-renewal and that noncanonical Wnt signaling keeps the quiescence. It is also likely that the balance between canonical and noncanonical Wnt pathways regulates the stress response and aging of hematopoietic stem cells.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Proteínas Wnt/farmacologia , Via de Sinalização Wnt , Diferenciação Celular , Senescência Celular , Células-Tronco Hematopoéticas/fisiologia , Humanos
6.
Biomed Res Int ; 2019: 4650695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906773

RESUMO

Purpose: Oxaliplatin is a platinum-based chemotherapeutic agent demonstrating significant antitumor efficacy. Unlike conventional anticancer agents which are immunosuppressive, oxaliplatin has the capacity to stimulate immunological effects in response to the presentation of damage associated molecular patterns (DAMPs) elicited upon cell death. However, the effects of oxaliplatin treatment on systemic immune responses remain largely unknown. Aims of this study were to investigate the effects of oxaliplatin treatment on the proportions of (1) splenic T cells, B cells, macrophages, pro-/anti-inflammatory cytokines, gene expression of splenic cytokines, chemokines, and mediators; (2) double-positive and single-positive CD4+ and CD8+ T thymocytes; (3) bone-marrow hematopoietic stem and progenitor cells. Methods: Male BALB/c mice received intraperitoneal injections of oxaliplatin (3mg/kg/d) or sterile water tri-weekly for 2 weeks. Leukocyte populations within the spleen, thymus, and bone-marrow were assessed using flow cytometry. RT-PCR was performed to characterise changes in splenic inflammation-associated genes. Results: Oxaliplatin treatment reduced spleen size and cellularity (CD45+ cells), increased the proportion of CD4+, CD8+, and Treg cells, and elevated TNF-α expression. Oxaliplatin was selectively cytotoxic to B cells but had no effect on splenic macrophages. Oxaliplatin treatment altered the gene expression of several cytokines, chemokines, and cell mediators. Oxaliplatin did not deplete double-positive thymocytes but increased the single-positive CD8+ subset. There was also an increase in activated (CD69+) CD8+ T cells. Bone-marrow hematopoietic progenitor pool was demonstrably normal following oxaliplatin treatment when compared to the vehicle-treated cohort. Conclusion: Oxaliplatin does not cause systemic immunosuppression and, instead, has the capacity to induce beneficial antitumor immune responses.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Oxaliplatina/administração & dosagem , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Quimiocinas/genética , Quimiocinas/imunologia , Citocinas/genética , Citocinas/imunologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/imunologia , Humanos , Imunidade Celular/imunologia , Masculino , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Oxaliplatina/imunologia , Baço/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Timócitos/efeitos dos fármacos , Timócitos/imunologia
7.
Int J Artif Organs ; 42(7): 374-379, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30744504

RESUMO

With the aim of establishing an effective method to expand hematopoietic stem/progenitor cells for application in hematopoietic stem cell transplantation, we performed ex vivo expansion of hematopoietic stem/progenitor cells derived from mouse fetal liver cells in three-dimensional cocultures with stromal cells. In these cocultures, stromal cells were first cultured within three-dimensional scaffolds to form stromal layers and then fetal liver cells containing hematopoietic cells were seeded on these scaffolds to expand the hematopoietic cells over the 2 weeks of coculture in a serum-containing medium without the addition of cytokines. Prior to coculture, stromal cell growth was suppressed by treatment with the DNA synthesis inhibitor mitomycin C, and its effect on hematopoietic stem/progenitor cell expansion was compared with that in control cocultures in which fetal liver cells were cocultured with three-dimensional freeze-thawed stromal cells. After coculture with mitomycin C-treated stromal cells, we achieved a several-fold expansion of the primitive hematopoietic cells (c-kit+ hematopoietic progenitor cells >7.8-fold, and CD34+ hematopoietic stem/progenitor cells >3.5-fold). Compared with control cocultures, expansion of hematopoietic stem/progenitor cells tended to be lower, although that of hematopoietic progenitor cells was comparable. Thus, our results suggest that three-dimensional freeze-thawed stromal cells have higher potential to expand hematopoietic stem/progenitor cells compared with mitomycin C-treated stromal cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Mitomicina/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Células Estromais/efeitos dos fármacos , Animais , Técnicas de Cultura de Células/métodos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Estromais/fisiologia
8.
Nat Commun ; 10(1): 617, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728354

RESUMO

Hematopoietic stem cell transplantation (HSCT) is a curative therapy for blood and immune diseases with potential for many settings beyond current standard-of-care. Broad HSCT application is currently precluded largely due to morbidity and mortality associated with genotoxic irradiation or chemotherapy conditioning. Here we show that a single dose of a CD117-antibody-drug-conjugate (CD117-ADC) to saporin leads to > 99% depletion of host HSCs, enabling rapid and efficient donor hematopoietic cell engraftment. Importantly, CD117-ADC selectively targets hematopoietic stem cells yet does not cause clinically significant side-effects. Blood counts and immune cell function are preserved following CD117-ADC treatment, with effective responses by recipients to both viral and fungal challenges. These results suggest that CD117-ADC-mediated HSCT pre-treatment could serve as a non-myeloablative conditioning strategy for the treatment of a wide range of non-malignant and malignant diseases, and might be especially suited to gene therapy and gene editing settings in which preservation of immunity is desired.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Imunoconjugados/farmacologia , Proteínas Proto-Oncogênicas c-kit/imunologia , Animais , Medula Óssea/efeitos dos fármacos , Transplante de Medula Óssea , Candida albicans/patogenicidade , Morte Celular , Linhagem Celular , Feminino , Terapia Genética , Humanos , Imunoconjugados/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias , Doadores de Tecidos
9.
Nat Commun ; 10(1): 523, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705272

RESUMO

Despite recent in vivo data demonstrating that high-fat diet (HFD)-induced obesity leads to major perturbations in murine hematopoietic stem cells (HSC), the direct role of a HFD is not yet completely understood. Here, we investigate the direct impact of a short-term HFD on HSC and hematopoiesis in C57BL/6J mice compared with standard diet-fed mice. We detect a loss of half of the most primitive HSC in the bone marrow (BM) cells of HFD-fed mice, which exhibit lower hematopoietic reconstitution potential after transplantation. Impaired maintenance of HSC is due to reduced dormancy after HFD feeding. We discover that a HFD disrupts the TGF-ß receptor within lipid rafts, associated to impaired Smad2/3-dependent TGF-ß signaling, as the main molecular mechanism of action. Finally, injecting HFD-fed mice with recombinant TGF-ß1 avoids the loss of HSC and alteration of the BM's ability to recover, underscoring the fact that a HFD affects TGF-ß signaling on HSC.


Assuntos
Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Dieta Hiperlipídica/efeitos adversos , Células-Tronco Hematopoéticas/metabolismo , Microdomínios da Membrana/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Vox Sang ; 114(3): 283-289, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734294

RESUMO

BACKGROUND AND OBJECTIVES: Umbilical cord blood is considered an alternative source of hematopoietic stem cells. Standard banking procedures use 50/55% DMSO in dextran 40 for cryopreservation and dextran-based solutions for thawing, however, due to the potential risk of crystallization of dextran, dextran 40 approved for clinical use has become limited or unavailable. This affects cryopreservation and thawing procedures. Carbohydrates, in particular sucrose, trehalose and glucose, have been shown to be effective in reducing cell damage during dehydration and have cryoprotective potential. We aim to study a 50/55% DMSO in 5% dextrose cryopreservation solution as an alternative to DMSO dextran. MATERIALS AND METHODS: Eighteen samples were divided into two aliquots and cryopreserved, one using standard solution and the other with DMSO dextrose experimental solution. Both aliquots were thawed and diluted with PBS or saline. Total nucleated cells counts, 7-AAD viability of CD45+ cells and recovery of CD34+ viable cells were assessed on thawed samples and compared between pair of aliquots. RESULTS: No differences were observed in the total nucleated cells recovery between cryopreservation solutions, however, higher viability and CD34+ viable cells recoveries were observed using the experimental solution. CONCLUSION: Results showed that DMSO dextrose cryopreservation solution had better results than the standard solution when thawed in an isotonic solution. This indicates that DMSO dextrose is probably a better alternative for direct infusion or when dextran thawing solutions are unavailable. Viability of CD45+ cells and recovery of CD34+ viable cells have positive correlation with engraftment, highlighting the relevance of the optimization of the cryopreservation and thawing process.


Assuntos
Preservação de Sangue/métodos , Criopreservação/métodos , Crioprotetores/efeitos adversos , Dimetil Sulfóxido/análogos & derivados , Sangue Fetal/efeitos dos fármacos , Sobrevivência Celular , Crioprotetores/farmacologia , Dextranos/efeitos adversos , Dextranos/farmacologia , Glucose/efeitos adversos , Glucose/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos
11.
Differentiation ; 105: 27-32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30554008

RESUMO

Horse serum is commonly used as an additive to support the maintenance of hematopoietic progenitor cells in culture. However, the wide variability in the performance of different lots calls for parallel testing of multiple batches over extended periods of culture. Identification of the serum components that determine hematopoietic support would therefore save considerable time and effort and would help to standardize culture procedures. We report here that the ability of horse serum to support the self-renewal of multipotent murine hematopoietic progenitor FDCP-Mix cells is correlated to the concentration of specific fatty acid products of phospholipase A2 and more closely to the spectrum of eicosanoids generated by their further processing through cyclooxygenase and lipoxygenase pathways. Supportive sera have low levels of lysophosphatidylcholine and inflammatory eicosanoids. This links known markers of inflammation, infection and platelet activation to the ability of serum to maintain progenitor cells in an undifferentiated state, providing a means for prospective identification of suitable sera as well as quality control of the production process.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/efeitos dos fármacos , Fosfolipases A2/análise , Soro/química , Animais , Eicosanoides/análise , Eicosanoides/farmacologia , Células-Tronco Hematopoéticas/citologia , Cavalos , Lipídeos/análise , Lipídeos/farmacologia , Lipoxigenase/metabolismo , Lisofosfatidilcolinas/análise , Lisofosfatidilcolinas/farmacologia , Espectrometria de Massas , Camundongos , Fosfolipases A2/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Soro/metabolismo
12.
Biomed Pharmacother ; 110: 594-601, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30537676

RESUMO

Pharmacological interventions which could be hepatoprotective, depending on bioavailability, anti-inflammatory and macrophage-targeting potential of drugs, are still at early preclinical stages. Existing evidence from many animal models of liver injury, as well as from human data, indicate that pharmacological and/or phytochemical interventions have limited impact on liver recovery. Recent studies on stem cell therapies focused on different cell subsets involved in tissue repair, including monocytes/macrophages and bone marrow cells migrating to the injured liver. Partial hepatectomy (PH) resulted in a rapid increase of monocytes/macrophages in bone marrow and liver, which could be further enhanced by prior treatment of animals with sodium phthalhydrazide. Increased number of proliferating Ki67+ hepatocytes, increased total protein and albumin content in regenerating liver, recruitment of CD172a+ macrophages and more differentiated CD45lowCD117+ bone marrow cells, could be further promoted by the treatment of animals with 2 mg/kg b.w. phthalhydrazide, considered immunomodulatory, antioxidant and macrophage-silencing. Phenotypic polarization of macrophages can possibly explain the macrophage reparative capacities, protective against liver injury. Enhanced macrophage cell recruitment from bone marrow to regenerating liver can be possibly one of important events in hepatic recovery.


Assuntos
Antioxidantes/farmacologia , Hidrazinas/farmacologia , Regeneração Hepática/fisiologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ftalazinas/farmacologia , Animais , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Regeneração Hepática/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos CBA , Ratos
13.
Cell Stem Cell ; 23(6): 833-849.e5, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30526882

RESUMO

Inflammation is a risk factor for cancer development. Individuals with preleukemic TET2 mutations manifest clonal hematopoiesis and are at a higher risk of developing leukemia. How inflammatory signals influence the survival of preleukemic hematopoietic stem and progenitor cells (HSPCs) is unclear. We show a rapid increase in the frequency and absolute number of Tet2-KO mature myeloid cells and HSPCs in response to inflammatory stress, which results in enhanced production of inflammatory cytokines, including interleukin-6 (IL-6), and resistance to apoptosis. IL-6 induces hyperactivation of the Shp2-Stat3 signaling axis, resulting in increased expression of a novel anti-apoptotic long non-coding RNA (lncRNAs), Morrbid, in Tet2-KO myeloid cells and HSPCs. Expression of activated Shp2 in HSPCs phenocopies Tet2 loss with regard to hyperactivation of Stat3 and Morrbid. In vivo, pharmacologic inhibition of Shp2 or Stat3 or genetic loss of Morrbid in Tet2 mutant mice rescues inflammatory-stress-induced abnormalities in HSPCs and mature myeloid cells, including clonal hematopoiesis.


Assuntos
Benzoquinonas/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Células-Tronco Hematopoéticas/efeitos dos fármacos , Inflamação/tratamento farmacológico , Células Mieloides/efeitos dos fármacos , Piperidinas/farmacologia , Propionatos/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirimidinas/farmacologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Inflamação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Células Mieloides/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
Toxicol Lett ; 295: 54-63, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859861

RESUMO

Although immunotoxic effects of mercury (Hg) have been extensively investigated, the influence of Hg on hematopoietic stem cells (HSC) remains elusive. The aim of this study was to investigate the effects of Hg on HSC. B10.S (H-2s) and DBA/2 mice (H-2d) were treated with Hg chloride (25, 50 or 100 µM HgCl2) or methyl Hg (1.25, 3.75 or 6.25 µM MeHg) via drinking water for 4 weeks, and thereafter, HSC in the bone marrow (BM) were evaluated. The number of HSC in B10.S mice was increased after treatment with 50 µM HgCl2 and decreased after treatment with 100 µM HgCl2; the number of HSC in DBA/2 mice was reduced after treatment with 50 µM HgCl2 and unaffected after treatment with 25 µM HgCl2. These effects from the HgCl2 treatments were associated with alterations of HSC proliferation, IFNγ expression and BM-resident macrophages. In vivo neutralization of IFNγ diminished the HgCl2-driven HSC proliferation, and in vivo replenishment of recombinant IFNγ eliminated the HgCl2 suppression of HSC proliferation and allowed HgCl2 enhancement of proliferation, suggesting a pivotal role of IFNγ in HSC proliferation regulated by HgCl2. In vivo depletion of macrophages and an in vitro co-culture assay indicated that BM-resident macrophages promoted HSC proliferation during HgCl2 exposure. Furthermore, the induction of BM-resident macrophages was critically dependent on IFNγ. In contrast, MeHg did not influence HSC in B10.S or DBA/2 mice. Collectively, HgCl2, but not MeHg, affects HSC through regulating IFNγ-dependent BM-resident macrophages in mice. These findings reveal a previously unknown toxicity of Hg.


Assuntos
Comunicação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interferon gama/metabolismo , Macrófagos/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Animais , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Compostos de Metilmercúrio/toxicidade , Camundongos Endogâmicos DBA , Transdução de Sinais/efeitos dos fármacos
15.
Ital J Pediatr ; 44(1): 63, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855330

RESUMO

BACKGROUND: To compare the effect of xinruibai (Pegfilgrastim) and filgrastim injections on white blood cell and platelet (PLT) recovery, adverse events, post-operative complications, and cost effectiveness after allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS: Children who underwent allo-HSCT at our hospital from January 2014 to May 2017 due to thalassemia major, aplastic anemia, leukemia, and mucopolysaccharidosis were included. Among the children, 53 received xinruibai injections and 33 received filgrastim injections. RESULTS: There were no significant differences in the average time to neutrophil and platelet recovery, the incidence of post-operative complications after allo-HSCT, the number of red blood cell and PLT infusions, or the incidence of adverse events related to the injection between two groups (P >  0.05). The pain score was 3.06 (SD 0.41) for the xinruibai group and 25.18 (SD 6.22) for the filgrastim group, indicating significant differences between the two groups (P <  0.001). No difference was found in the hospitalization cost. The cost of the granulocyte-colony stimulating factor (G-CSF) was 257.11 ± 61.87 Euro in the xinruibai group and 214.79 ± 0.00 Euro in the filgrastim group, showing significant difference (P <  0.001). CONCLUSIONS: Xinruibai injection was more convenient, simple, effective, and safer than filgrastim.


Assuntos
Análise Custo-Benefício , Filgrastim/administração & dosagem , Fármacos Hematológicos/administração & dosagem , Neoplasias Hematológicas/cirurgia , Transplante de Células-Tronco Hematopoéticas/métodos , Polietilenoglicóis/administração & dosagem , Aloenxertos , Criança , Pré-Escolar , Estudos de Coortes , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Filgrastim/economia , Rejeição de Enxerto , Sobrevivência de Enxerto , Fármacos Hematológicos/economia , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Injeções Subcutâneas , Masculino , Polietilenoglicóis/economia , Prognóstico , Estudos Retrospectivos , Medição de Risco , Estatísticas não Paramétricas , Resultado do Tratamento
16.
Ann Lab Med ; 38(5): 395-401, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29797808

RESUMO

Mitochondria are the powerhouses of the cell as well as the primary site of hematopoiesis, which also occurs in the cytoplasm. Hematopoietic stem cells (HSCs) are characterized by a very high turnover rate, and are thus considered to be relatively free from the age-related insults generated by mitochondria. However, HSCs are also subject to these age-related insults, including the incidence of myeloid proliferative diseases, marrow failure, hematopoietic neoplasms, and deterioration of the adaptive human immune system. Recently, NAD⁺ dietary supplements, known as niacin or vitamin B3, including tryptophan, nicotinic acid, nicotinamide, and the newly identified NAD⁺ precursor nicotinamide riboside, have been shown to play a role in restoring adult stem cell function through the amelioration of mitochondrial dysfunction. This insight motivated a study that focused on reversing aging-related cellular dysfunction in adult mouse muscle stem cells by supplementing their diet with nicotinamide riboside. The remedial effect of nicotinamide riboside enhanced mitochondrial function in these muscle stem cells in a SIRT1-dependent manner, affecting cellular respiration, membrane potential, and production of ATP. Accordingly, numerous studies have demonstrated that sirtuins, under nuclear/mitochondrial control, have age-specific effects in determining HSC phenotypes. Based on the evidence accumulated thus far, we propose a clinical intervention for the restoration of aged HSC function by improving mitochondrial function through NAD⁺ precursor supplementation.


Assuntos
Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Mitocôndrias/genética , NAD/metabolismo , Niacina/farmacologia , Niacinamida/farmacologia , Sirtuínas/metabolismo
17.
Mol Biotechnol ; 60(7): 455-467, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29730712

RESUMO

Umbilical cord blood (UCB)-derived hematopoietic stem cells (HSCs) are considered because of their self-renewing, differentiating, proliferating, and readily available properties. Moreover, HSCs' homing to the hematopoietic microenvironment is an important step in their transplantation process. But low content of progenitor cells in one unit of UCB and defect in the bone marrow (BM) homing limit their applications. Hence, we decided to correct this deficiency with ex vivo incubation of CD133+ cells using fucosyltransferase VI and GDP-fucose. Then C-X-C chemokines receptor-4 (CXCR4), very late activation antigen-4 (VLA4), very late activation antigen-5 (VLA5), lymphocyte function-associated antigen-1 (LFA-1), and E-cadherin (E-cad) genes expressions were investigated with the goal of homing evaluation. The purity of MACS isolated CD133+ cells and confirmation of fucosylation were done by flow cytometry, and the viability of cells seeded on protein-coated poly L-lactic acid (PLLA) scaffold was proven via MTT assay. Scanning electron microscopy (SEM), CFU assays, and expression assays of CXCR4, VLA4, VLA5, LFA-1 and E-cad by real-time PCR were performed, too. Flow cytometry data showed that isolated cells were suitable for fucosyltransferase VI (FT-VI) incubation and expansion on nanoscaffolds. MTT, CFU assays, and SEM micrographs demonstrated fibronectin (FN)-collagen-selectin (FCS)-coated scaffold serve as best environment for viability, clonogenicity, and cell attachment. High levels of homing genes expression were also observed in cells seeded on FCS-coated scaffolds. Also, CXCR4 flow cytometry analysis confirmed real-time data. FCS-PLLA scaffolds provided optimal conditions for viability of FT-VI-treated CD133+ cells, and clonogenicity with the goal of improving homing following UCB-HSCs transplantation.


Assuntos
Antígeno AC133/análise , Sangue Fetal/citologia , Fucosiltransferases/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Guanosina Difosfato Fucose/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Antígeno AC133/efeitos dos fármacos , Caderinas/genética , Caderinas/metabolismo , Movimento Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Microambiente Celular , Células-Tronco Hematopoéticas/metabolismo , Humanos , Integrina alfa4beta1/genética , Integrina alfa4beta1/metabolismo , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Nanofibras , Tecidos Suporte
18.
Eur J Haematol ; 101(1): 57-67, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29645296

RESUMO

OBJECTIVE: Philadelphia-negative myeloproliferative neoplasms (MPNs) commonly share hyperactive JAK-STAT signaling affecting hematopoietic stem cells (HSC) and their progeny. The JAK1/2 inhibitor Ruxolitinib has remarkable clinical efficacy, including spleen reduction, improvement of constitutional symptoms, and bone marrow (BM) fibrosis reversal. Whether this is due to inhibition of JAK2-mutated HSC only, or whether Ruxolitinib also affects BM stroma is not known. METHODS: This study investigated potential effects of Ruxolitinib on BM mesenchymal stromal cells (MSC), which are not only major regulators of hematopoiesis but also contribute to fibrosis, from 10 healthy donors and 7 JAK2V617F -positive MPN patients. RESULTS: Ruxolitinib moderately inhibited the growth of healthy donor MSC (HD-MSC) and MSC from JAK2V617F+ MPN patients (P-MSC) in short- and long-term assays. The clonogenic potential of HD-MSC was not affected by Ruxolitinib. JAK-STAT signaling, however, was markedly inhibited in both HD-MSC and P-MSC, the latter of which showed higher expression of fibrosis-associated and hematopoiesis-maintenance genes. Moreover, Ruxolitinib reduced MSC secretion of MCP-1 and IL-6. CONCLUSION: Ruxolitinib affected JAK2 signaling in MSC at clinically relevant doses, which is likely to contribute to the normalization of the inflammatory milieu in MPNs. Thus, combined HSC and stroma-directed interventions have the potential to improve constitutional symptoms and reduce stromal proliferation in MPNs.


Assuntos
Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/efeitos dos fármacos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/enzimologia , Medula Óssea/imunologia , Medula Óssea/patologia , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Feminino , Fibrose , Células-Tronco Hematopoéticas/enzimologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/patologia , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Janus Quinase 1/genética , Janus Quinase 1/imunologia , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/enzimologia , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/genética , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/imunologia , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/imunologia , Transtornos Mieloproliferativos/patologia , Cultura Primária de Células , Transdução de Sinais
19.
Diabetes ; 67(7): 1380-1394, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29703845

RESUMO

Fat accumulates in bone marrow (BM) of patients with diabetes. In this study, we investigated the mechanisms and consequences of this phenomenon. BM mesenchymal stromal cells (BM-MSCs) from patients with type 2 diabetes (T2D) constitutively express adipogenic markers and robustly differentiate into adipocytes (ADs) upon in vitro induction as compared with BM-MSCs from subjects without diabetes. Moreover, BM-ADs from subjects with T2D (T2D BM-ADs) paracrinally stimulate a transcriptional adipogenic program in BM-MSCs. Antagonism of MCP-1, a chemokine pivotally expressed in T2D BM-ADs, prevented the T2D BM-AD secretome from converting BM-MSCs into ADs. Mechanistic validation of human data was next performed in an obese T2D mouse model. Systemic antagonism of MCP-1 improved metabolic control, reduced BM fat, and increased osteocyte density. It also indirectly re-established the abundance of long-term versus short-term hematopoietic stem cells. We reveal a diabetic feedback loop in which 1) BM-MSCs are constitutively inclined to make ADs, and 2) mature BM-ADs, via secreted MCP-1, relentlessly fuel BM-MSC determination into new fat. Pharmacological inhibition of MCP-1 signaling can contrast this vicious cycle, restoring, at least in part, the balance between adipogenesis and hematopoiesis in BM from subjects with T2D.


Assuntos
Adipócitos/metabolismo , Células da Medula Óssea/patologia , Quimiocina CCL2/metabolismo , Diabetes Mellitus Tipo 2 , Células-Tronco Hematopoéticas/patologia , Células-Tronco Mesenquimais/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Adiposidade/efeitos dos fármacos , Adiposidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/metabolismo , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/genética , Quimiocina CCL2/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Retroalimentação Fisiológica/fisiologia , Feminino , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade
20.
PLoS One ; 13(4): e0196400, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698469

RESUMO

Treatment with lysine deacetylase inhibitors (KDACi) for haematological malignancies, is accompanied by haematological side effects including thrombocytopenia, suggesting that modulation of protein acetylation affects normal myeloid development, and specifically megakaryocyte development. In the current study, utilising ex-vivo differentiation of human CD34+ haematopoietic progenitor cells, we investigated the effects of two functionally distinct KDACi, valproic acid (VPA), and nicotinamide (NAM), on megakaryocyte differentiation, and lineage choice decisions. Treatment with VPA increased the number of megakaryocyte/erythroid progenitors (MEP), accompanied by inhibition of megakaryocyte differentiation, whereas treatment with NAM accelerated megakaryocyte development, and stimulated polyploidisation. Treatment with both KDACi resulted in no significant effects on erythrocyte differentiation, suggesting that the effects of KDACi primarily affect megakaryocyte lineage development. H3K27Ac ChIP-sequencing analysis revealed that genes involved in myeloid development, as well as megakaryocyte/erythroid (ME)-lineage differentiation are uniquely modulated by specific KDACi treatment. Taken together, our data reveal distinct effects of specific KDACi on megakaryocyte development, and ME-lineage decisions, which can be partially explained by direct effects on promoter acetylation of genes involved in myeloid differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Megacariócitos/citologia , Acetilação , Antígenos CD34/metabolismo , Plaquetas/citologia , Plaquetas/metabolismo , Linhagem da Célula , Células Cultivadas , Células Eritroides/citologia , Células Eritroides/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Histonas/genética , Humanos , Megacariócitos/metabolismo , Niacinamida/farmacologia , Regiões Promotoras Genéticas , Ácido Valproico/sangue , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA