Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.991
Filtrar
1.
J Surg Res ; 245: 1-12, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31394402

RESUMO

BACKGROUND: The process of aortic injury, repair, and remodeling during aortic aneurysm and dissection is poorly understood. We examined the activation of bone marrow (BM)-derived and resident aortic cells in response to aortic injury in a mouse model of sporadic aortic aneurysm and dissection. MATERIALS AND METHODS: Wild-type C57BL/6 mice were transplanted with green fluorescent protein (GFP)+ BM cells. For 4 wk, these mice were either unchallenged with chow diet and saline infusion or challenged with high-fat diet and angiotensin II infusion. We then examined the aortic recruitment of GFP+ BM-derived cells, growth factor production, and the differentiation potential of GFP+ BM-derived and GFP- resident aortic cells. RESULTS: Aortic challenge induced recruitment of GFP+ BM cells and activation of GFP- resident aortic cells, both of which produced growth factors. Although BM cells and resident aortic cells equally contributed to the fibroblast populations, we did not detect the differentiation of BM cells into smooth muscle cells. Interestingly, aortic macrophages were both of BM-derived (45%) and of non-BM-derived (55%) origin. We also observed a significant increase in stem cell antigen-1 (Sca-1)+ stem/progenitor cells and neural/glial antigen 2 (NG2+) cells in the aortic wall of challenged mice. Although some of the Sca-1+ cells and NG2+ cells were BM derived, most of these cells were resident aortic cells. Sca-1+ cells produced growth factors and differentiated into fibroblasts and NG2+ cells. CONCLUSIONS: BM-derived and resident aortic cells are activated in response to aortic injury and contribute to aortic inflammation, repair, and remodeling by producing growth factors and differentiating into fibroblasts and inflammatory cells.


Assuntos
Aneurisma Dissecante/patologia , Aorta/patologia , Aneurisma Aórtico/patologia , Aneurisma Dissecante/etiologia , Aneurisma Dissecante/imunologia , Animais , Aorta/citologia , Aorta/imunologia , Aneurisma Aórtico/complicações , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Fibroblastos/imunologia , Fibroblastos/metabolismo , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo
2.
Zhonghua Nei Ke Za Zhi ; 58(11): 819-822, 2019 Nov 01.
Artigo em Chinês | MEDLINE | ID: mdl-31665857

RESUMO

The efficacy and safety of co-transplantation of unrelated donor peripheral blood stem cells (UD-PBSCs) combined with umbilical cord mesenchymal stem cells (UC-MSCs) in refractory severe aplastic anemia-Ⅱ(RSAA-Ⅱ) were analyzed retrospectively. Fifteen patients with RSAA-Ⅱ underwent UD-PBSCs and UC-MSCs co-transplantation, among whom 14 cases had hematopoietic reconstitution without severe graft versus-host disease (GVHD). The 5-year overall survival rate was 78.57%. Combination of UD-PBSCs and UC-MSCs transplantation could be a safe and effective option for RSAA-Ⅱ.


Assuntos
Anemia Aplástica/cirurgia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/fisiologia , Cordão Umbilical/fisiologia , Doadores não Relacionados , Anemia Aplástica/imunologia , Anemia Aplástica/mortalidade , Anemia Aplástica/patologia , China/epidemiologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/mortalidade , Células-Tronco Hematopoéticas/imunologia , Humanos , Células-Tronco Mesenquimais , Células-Tronco de Sangue Periférico , Estudos Retrospectivos , Taxa de Sobrevida , Doadores de Tecidos , Condicionamento Pré-Transplante/métodos , Resultado do Tratamento , Cordão Umbilical/imunologia
3.
Fish Shellfish Immunol ; 93: 801-814, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31419534

RESUMO

The signaling mediated by small non-proteinogenic molecules, which probably have the capacity to serve as a bridge amongst complex systems is one of the most exiting challenges for the study. In the current report, stem cells differentiation of the immune system in Nile tilapia treated with sub-basal doses of GABA evaluated as c-kit+ and Sca-1+ cells disappearance on pronephros, thymus, spleen and peripheral blood mononuclear cells by flow cytometry was assessed. Explanation of biological response was performed by molecular docking approach and multiparametric analysis. Stem cell differentiation depends on a delicate balance of negative and positive interactions of this neurotransmitter with receptors and transcription factors involved in this process. This in turn depends on the type of interaction with hematopoietic niche to differentiate into primordial, early or late hematopoiesis as well as from the dose delivery. In fish treated with the low doses of GABA (0.1% over basal value) primordial hematopoiesis is regulated by interaction of glutamate (Glu) with the Ly-6 antigen. Early hematopoiesis was influenced by the bond of GABA near or adjacent to turns of FLTR3-Ig-IV domain. During late hematopoiesis, negative regulation by structural modifications on PU.1/IRF-4 complex, IL-7Rα and GM-CSFR mainly prevails. Results of molecular docking were in agreement with the percentages of the main blood cells lineages estimated in pronephros by flow cytometry. Current study provides the first evidences about the role of inhibitory and excitatory neurotransmitters such as GABA and Glu, respectively with the most transcriptional factors and receptors involved on hematopoiesis in adult Nile tilapia.


Assuntos
Ciclídeos/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Antígenos Ly/genética , Antígenos Ly/imunologia , Diferenciação Celular/fisiologia , Ciclídeos/imunologia , Células-Tronco Hematopoéticas/imunologia , Sistema Imunitário/fisiologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/imunologia , Ácido gama-Aminobutírico/farmacologia
4.
Mol Immunol ; 114: 314-322, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31442915

RESUMO

Hematopoietic development occurs in the bone marrow, and this process begins with hematopoietic stem cells (HSCs). Ubc9 is a unique E2-conjugating enzyme required for SUMOylation, an evolutionarily conserved post-translational modification system. We herein show that a conditional Ubc9 deletion in the hematopoietic system caused decreased thymus weight and reduced lymphocyte to myeloid cell ratio. Importantly, Ubc9 deletion in the hematopoietic system only selectively impaired the development of common lymphoid progenitors (CLPs) in the bone marrow and perturbed their potential to differentiate into lymphocytes, thereby decreasing the number of T/B cells in the periphery. Ubc9 was found to be required for CLP viability, and therefore, Ubc9 deficiency rendered CLPs to undergo apoptosis and attenuated their proliferation. Thus, Ubc9 plays a critical role in the regulation of CLP function during hematopoietic development in the bone marrow.


Assuntos
Medula Óssea/imunologia , Hematopoese/imunologia , Células-Tronco Hematopoéticas/imunologia , Enzimas de Conjugação de Ubiquitina/deficiência , Enzimas de Conjugação de Ubiquitina/imunologia , Animais , Apoptose/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Masculino , Camundongos , Células Progenitoras Mieloides/imunologia , Linfócitos T/imunologia
5.
Nat Commun ; 10(1): 3496, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375680

RESUMO

The timely mobilization of hematopoietic stem and progenitor cells (HSPCs) is essential for maintaining hematopoietic and tissue leukocyte homeostasis. Understanding how HSPCs migrate between bone marrow (BM) and peripheral tissues is of great significance in the clinical setting, where therapeutic strategies for modulating their migration capacity determine the clinical outcome. Here, we identify an epigenetic regulator, Phc2, as a critical modulator of HSPC trafficking. The genetic ablation of Phc2 in mice causes a severe defect in HSPC mobilization through the derepression of Vcam1 in bone marrow stromal cells (BMSCs), ultimately leading to a systemic immunodeficiency. Moreover, the pharmacological inhibition of VCAM-1 in Phc2-deficient mice reverses the symptoms. We further determine that Phc2-dependent Vcam1 repression in BMSCs is mediated by the epigenetic regulation of H3K27me3 and H2AK119ub. Together, our data demonstrate a cell-extrinsic role for Phc2 in controlling the mobilization of HSPCs by finely tuning their bone marrow niche.


Assuntos
Movimento Celular/genética , Repressão Epigenética , Células-Tronco Hematopoéticas/imunologia , Complexo Repressor Polycomb 2/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Animais , Transplante de Medula Óssea/efeitos adversos , Movimento Celular/imunologia , Células Cultivadas , Metilação de DNA/imunologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Histonas/genética , Histonas/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Complexo Repressor Polycomb 2/genética , Cultura Primária de Células , Molécula 1 de Adesão de Célula Vascular/antagonistas & inibidores
6.
Autoimmun Rev ; 18(8): 751-760, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31181324

RESUMO

Neutrophils derive from hematopoietic stem cells (HSCs) with systemic inflammation driving their activation and differentiation to myeloid progenitors to ensure enhanced myelopoiesis. Epigenetic reprograming and re-education of these HSCs produces neutrophils primed towards elimination of pathogens and increased inflammatory response. Neutrophils -an important component of acute inflammation- are not present in chronic inflammatory tissues leading to the false assumption that they may not be as important for the latter. Activated neutrophils may release Neutrophil Extracellular Traps (NETs) during a distinct form of cell death, named NETosis; NETs are rich in bioactive molecules that promote thrombosis (including atherothrombosis), inflammation and fibrosis. Thus, although neutrophils may not be present in chronic inflammatory lesions, their remnants may amplify the inflammatory response beyond their short life-span in the tissues. Herein, we review current evidence supporting a role of neutrophils and NETosis in tissue injury and dysfunction in systemic autoimmunity using as disease paradigms Systemic Lupus Erythematosus (SLE) and the ANCA-associated vasculitides (AAV). We also discuss the mechanisms involved and their potential as targets for novel therapy and drug repositioning.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Neutrófilos/imunologia , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/terapia , Morte Celular , Diferenciação Celular , Armadilhas Extracelulares/imunologia , Fibrose , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Inflamação/terapia , Lúpus Eritematoso Sistêmico/patologia , Lúpus Eritematoso Sistêmico/terapia , Mielopoese , Neutrófilos/patologia
7.
Ann Hematol ; 98(8): 1877-1883, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31144019

RESUMO

Secondary poor graft function (sPGF) is defined as secondary cytopenia after initial engraftment of allogeneic stem cell transplantation (allo-SCT). It has been shown to be associated with poor prognosis; however, there are very few reports on the incidence, risk factors, and outcomes of sPGF. Between January 2015 and December 2015, 564 patients, who received transplantation at Peking University People's Hospital, were retrospectively reviewed. Among the 490 patients who achieved initial engraftment of both neutrophils and platelets, 28 patients developed sPGF. The cumulative incidence of sPGF on day 100 was 5.7%. The median time of sPGF was 54.5 (34-91) days after transplantation. Low (< median) CD34+ cell dose (p = 0.019, HR 3.07 (95% CI, 1.207-7.813)), Epstein-Barr Virus (EBV) reactivation (p = 0.009, HR 3.648 (95%CI, 1.382-9.629)), and cytomegalovirus (CMV) reactivation (p = 0.003, HR 7.827 (95%CI, 2.002-30.602)) were identified as independent risk factors for sPGF. There was no significant difference in PGF incidence between the matched sibling donor (MSD) group and haploidentical donor (HID) group (p = 0.44). The overall survival of patients with sPGF at 1 year after transplantation was significantly poorer than that of patients with good graft function (GGF) (50.5% versus 87.2%, p < 0.001). In conclusion, sPGF developed in 5.7% patients after allo-SCT, especially in patients with CMV, EBV reactivation, or infusion with a low dose of CD34+ cells. The prognosis of sPGF is still poor owing to a lack of standard treatment.


Assuntos
Infecções por Citomegalovirus/virologia , Infecções por Vírus Epstein-Barr/virologia , Doença Enxerto-Hospedeiro/virologia , Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia/terapia , Síndromes Mielodisplásicas/terapia , Ativação Viral/imunologia , Adolescente , Adulto , Idoso , Antígenos CD34/imunologia , Criança , Pré-Escolar , Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/mortalidade , Infecções por Citomegalovirus/patologia , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções por Vírus Epstein-Barr/mortalidade , Infecções por Vírus Epstein-Barr/patologia , Feminino , Sobrevivência de Enxerto/fisiologia , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/mortalidade , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/virologia , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Humanos , Leucemia/mortalidade , Leucemia/patologia , Leucemia/virologia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/virologia , Prognóstico , Estudos Prospectivos , Fatores de Risco , Análise de Sobrevida , Transplante Haploidêntico
8.
Biomed Res Int ; 2019: 4650695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906773

RESUMO

Purpose: Oxaliplatin is a platinum-based chemotherapeutic agent demonstrating significant antitumor efficacy. Unlike conventional anticancer agents which are immunosuppressive, oxaliplatin has the capacity to stimulate immunological effects in response to the presentation of damage associated molecular patterns (DAMPs) elicited upon cell death. However, the effects of oxaliplatin treatment on systemic immune responses remain largely unknown. Aims of this study were to investigate the effects of oxaliplatin treatment on the proportions of (1) splenic T cells, B cells, macrophages, pro-/anti-inflammatory cytokines, gene expression of splenic cytokines, chemokines, and mediators; (2) double-positive and single-positive CD4+ and CD8+ T thymocytes; (3) bone-marrow hematopoietic stem and progenitor cells. Methods: Male BALB/c mice received intraperitoneal injections of oxaliplatin (3mg/kg/d) or sterile water tri-weekly for 2 weeks. Leukocyte populations within the spleen, thymus, and bone-marrow were assessed using flow cytometry. RT-PCR was performed to characterise changes in splenic inflammation-associated genes. Results: Oxaliplatin treatment reduced spleen size and cellularity (CD45+ cells), increased the proportion of CD4+, CD8+, and Treg cells, and elevated TNF-α expression. Oxaliplatin was selectively cytotoxic to B cells but had no effect on splenic macrophages. Oxaliplatin treatment altered the gene expression of several cytokines, chemokines, and cell mediators. Oxaliplatin did not deplete double-positive thymocytes but increased the single-positive CD8+ subset. There was also an increase in activated (CD69+) CD8+ T cells. Bone-marrow hematopoietic progenitor pool was demonstrably normal following oxaliplatin treatment when compared to the vehicle-treated cohort. Conclusion: Oxaliplatin does not cause systemic immunosuppression and, instead, has the capacity to induce beneficial antitumor immune responses.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Oxaliplatina/administração & dosagem , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Quimiocinas/genética , Quimiocinas/imunologia , Citocinas/genética , Citocinas/imunologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/imunologia , Humanos , Imunidade Celular/imunologia , Masculino , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Oxaliplatina/imunologia , Baço/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Timócitos/efeitos dos fármacos , Timócitos/imunologia
9.
J Immunol ; 202(8): 2493-2501, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842275

RESUMO

The limited number of hematopoietic stem cells (HSC) within a single unit of human cord blood currently limits its use as an alternate graft source. However, we have developed a strategy using 5-aza-2'-deoxycytidine (5azaD) and trichostatin A (TSA), which expands transplantable HSC 7- to 10-fold. In our current studies, we have assessed the allostimulatory capacity of the 5azaD/TSA-expanded grafts. The coexpression of immunophenotypic dendritic cell (DC) markers, such as HLA-DR/CD86 and HLA-DR/CD11c as determined by flow cytometry, and the allostimulatory capacity of 5azaD/TSA-expanded cells as determined by MLC were both significantly lower than control. It has been previously demonstrated that STAT3 is indispensable for the differentiation of DC from HSC. Real-time quantitative PCR analysis revealed that 5azaD/TSA-expanded cells expressed more STAT3 transcript than control while also expressing increased transcripts for STAT3 inhibitors including SHP1, p21, and GATA1. Western blot analysis indicates that chromatin-modifying agent-expanded grafts displayed a reduced ratio of p-STAT3 to total STAT3 than control cultures, which is likely indicative of STAT3 inactivity in 5azD/TSA-expanded grafts. Culturing 5azaD/TSA-expanded cord blood cells in extended cultures reveals that they are still capable of generating DC. Notably, STAT3 inactivity was transient because the transcript levels of STAT3 and its inhibitors, including SHP1, were comparable between 5azaD/TSA and control cultures following extended culture. Taken together, our studies indicate that the reduced allostimulatory capacity of 5azaD/TSA-expanded cells is likely because of reversible inhibition of STAT3-dependent DC differentiation. These results suggest that a graft composed of 5azaD/TSA-expanded cells possesses relatively less allostimulatory response but is still capable of generating DC in permissive conditions.


Assuntos
Antígenos de Diferenciação/imunologia , Cromatina/imunologia , Decitabina/farmacologia , Sangue Fetal/imunologia , Células-Tronco Hematopoéticas/imunologia , Ácidos Hidroxâmicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Células-Tronco Hematopoéticas/citologia , Humanos
10.
J Immunol Res ; 2019: 3954890, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719457

RESUMO

The liver is well known as the center of glucose and lipid metabolism in the human body. It also functions as an immune organ. Previous studies have suggested that liver nonparenchymal cells are crucial in the progression of NAFLD. In recent years, NAFLD's threat to human health has been becoming a global issue. And by far, there is no effective treatment for NAFLD. Liver nonparenchymal cells are stimulated by lipid antigens, adipokines, or other factors, and secreted immune factors can alter the expression of key proteins such as SREBP-1c, ChREBP, and PPARγ to regulate lipid metabolism, thus affecting the pathological process of NAFLD. Interestingly, some ncRNAs (including miRNAs and lncRNAs) participate in the pathological process of NAFLD by changing body fat homeostasis. And even some ncRNAs could regulate the activity of HSCs, thereby affecting the progression of inflammation and fibrosis in the course of NAFLD. In conclusion, immunotherapy could be an effective way to treat NAFLD.


Assuntos
Tecido Adiposo/fisiologia , Homeostase , Metabolismo dos Lipídeos , Fígado/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Transdução de Sinais , Animais , Fibrose , Glucose/metabolismo , Células-Tronco Hematopoéticas/imunologia , Humanos , Inflamação , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , RNA não Traduzido/genética
11.
Cell Tissue Res ; 376(1): 19-24, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30762129

RESUMO

The thymus is a primary lymphoid organ where T lymphocyte proliferation and selection takes place. The different subsets of lymphocytes leave the thymus as recent thymic emigrants. Peripheral dendritic cells migrate to the thymus. In addition to the homing of hematopoietic progenitor cells to the thymus, there is evidence for lymphocyte entry from peripheral lymphoid tissues mainly into the medulla. The entry sites are the venules in the medullary part near to the cortex with a higher endothelium. Furthermore, there are also B lymphocytes in the thymus. The thymus is not only a primary lymphoid organ but is well integrated in lymphocyte traffic as shown in several different species.


Assuntos
Movimento Celular , Linfócitos , Timo/fisiologia , Animais , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Linfócitos/citologia , Linfócitos/imunologia
12.
J Immunol ; 202(8): 2287-2295, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30804042

RESUMO

NKAP is a multifunctional nuclear protein that associates with the histone deacetylase HDAC3. Although both NKAP and HDAC3 are critical for hematopoietic stem cell (HSC) maintenance and survival, it was not known whether these two proteins work together. To assess the importance of their association in vivo, serial truncation and alanine scanning was performed on NKAP to identify the minimal binding site for HDAC3. Mutation of either Y352 or F347 to alanine abrogated the association of NKAP with HDAC3, but did not alter NKAP localization or expression. Using a linked conditional deletion/re-expression system in vivo, we demonstrated that re-expression of the Y352A NKAP mutant failed to restore HSC maintenance and survival in mice when endogenous NKAP expression was eliminated using Mx1-cre and poly-IC, whereas re-expression of wild type NKAP maintained the HSC pool. However, Y352A NKAP did restore proliferation in murine embryonic fibroblasts when endogenous NKAP expression was eliminated using ER-cre and tamoxifen. Therefore, Y352 in NKAP is critical for association with HDAC3 and for HSC maintenance and survival but is not important for proliferation of murine embryonic fibroblasts, demonstrating that NKAP functions in different complexes in different cell types.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Histona Desacetilases/imunologia , Proteínas Repressoras/imunologia , Substituição de Aminoácidos , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/imunologia , Fibroblastos/citologia , Fibroblastos/imunologia , Células HEK293 , Células-Tronco Hematopoéticas/citologia , Histona Desacetilases/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteínas Repressoras/genética
13.
Nat Biotechnol ; 37(3): 293-302, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742125

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for multiple disorders, but deficiency and dysregulation of T cells limit its utility. Here we report a biomaterial-based scaffold that mimics features of T cell lymphopoiesis in the bone marrow. The bone marrow cryogel (BMC) releases bone morphogenetic protein-2 to recruit stromal cells and presents the Notch ligand Delta-like ligand-4 to facilitate T cell lineage specification of mouse and human hematopoietic progenitor cells. BMCs subcutaneously injected in mice at the time of HSCT enhanced T cell progenitor seeding of the thymus, T cell neogenesis and diversification of the T cell receptor repertoire. Peripheral T cell reconstitution increased ~6-fold in mouse HSCT and ~2-fold in human xenogeneic HSCT. Furthermore, BMCs promoted donor CD4+ regulatory T cell generation and improved survival after allogeneic HSCT. In comparison to adoptive transfer of T cell progenitors, BMCs increased donor chimerism, T cell generation and antigen-specific T cell responses to vaccination. BMCs may provide an off-the-shelf approach for enhancing T cell regeneration and mitigating graft-versus-host disease in HSCT.


Assuntos
Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Linfócitos T Reguladores/imunologia , Tecidos Suporte , Transferência Adotiva/métodos , Animais , Medula Óssea , Quimerismo , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/terapia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Camundongos , Linfócitos T Reguladores/citologia , Transplante Heterólogo/métodos , Transplante Homólogo
14.
Nat Commun ; 10(1): 366, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664659

RESUMO

Comprehensive preclinical studies of Myelodysplastic Syndromes (MDS) have been elusive due to limited ability of MDS stem cells to engraft current immunodeficient murine hosts. Here we report a MDS patient-derived xenotransplantation model in cytokine-humanized immunodeficient "MISTRG" mice that provides efficient and faithful disease representation across all MDS subtypes. MISTRG MDS patient-derived xenografts (PDX) reproduce patients' dysplastic morphology with multi-lineage representation, including erythro- and megakaryopoiesis. MISTRG MDS-PDX replicate the original sample's genetic complexity and can be propagated via serial transplantation. MISTRG MDS-PDX demonstrate the cytotoxic and differentiation potential of targeted therapeutics providing superior readouts of drug mechanism of action and therapeutic efficacy. Physiologic humanization of the hematopoietic stem cell niche proves critical to MDS stem cell propagation and function in vivo. The MISTRG MDS-PDX model opens novel avenues of research and long-awaited opportunities in MDS research.


Assuntos
Modelos Animais de Doenças , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Síndromes Mielodisplásicas/imunologia , Nicho de Células-Tronco/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Biomarcadores/metabolismo , Citocinas/genética , Citocinas/imunologia , Expressão Gênica , Técnicas de Introdução de Genes , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Transgênicos , Síndromes Mielodisplásicas/patologia , Transplante Heterólogo
15.
Leukemia ; 33(7): 1759-1772, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30651631

RESUMO

RPS14, CSNK1A1, and miR-145 are universally co-deleted in the 5q- syndrome, but mouse models of each gene deficiency recapitulate only a subset of the composite clinical features. We analyzed the combinatorial effect of haploinsufficiency for Rps14, Csnk1a1, and miRNA-145, using mice with genetically engineered, conditional heterozygous inactivation of Rps14 and Csnk1a1 and stable knockdown of miR-145/miR-146a. Combined Rps14/Csnk1a1/miR-145/146a deficiency recapitulated the cardinal features of the 5q- syndrome, including (1) more severe anemia with faster kinetics than Rps14 haploinsufficiency alone and (2) pathognomonic megakaryocyte morphology. Macrophages, regulatory cells of erythropoiesis and the innate immune response, were significantly increased in Rps14/Csnk1a1/miR-145/146a deficient mice as well as in 5q- syndrome patient bone marrows and showed activation of the innate immune response, reflected by increased expression of S100A8, and decreased phagocytic function. We demonstrate that Rps14/Csnk1a1/miR-145 and miR-146a deficient macrophages alter the microenvironment and induce S100A8 expression in the mesenchymal stem cell niche. The increased S100A8 expression in the mesenchymal niche was confirmed in 5q- syndrome patients. These data indicate that intrinsic defects of the 5q- syndrome hematopoietic stem cell directly alter the surrounding microenvironment, which in turn affects hematopoiesis as an extrinsic mechanism.


Assuntos
Anemia Macrocítica/imunologia , Anemia/imunologia , Caseína Quinase Ialfa/fisiologia , Haploinsuficiência , MicroRNAs/fisiologia , Proteínas Ribossômicas/fisiologia , Microambiente Tumoral/imunologia , Anemia/metabolismo , Anemia/patologia , Anemia Macrocítica/metabolismo , Anemia Macrocítica/patologia , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Calgranulina A/genética , Calgranulina A/metabolismo , Deleção Cromossômica , Cromossomos Humanos Par 5/imunologia , Cromossomos Humanos Par 5/metabolismo , Eritropoese , Feminino , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Megacariócitos/imunologia , Megacariócitos/metabolismo , Megacariócitos/patologia , Camundongos , Camundongos Knockout , Fenótipo , Células Tumorais Cultivadas
16.
BMC Immunol ; 20(1): 2, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616506

RESUMO

BACKGROUND: The use of immunodeficient mice transplanted with human hematopoietic stem cells is an accepted approach to study human-specific infectious diseases such as HIV-1 and to investigate multiple aspects of human immune system development. However, mouse and human are different in sialylation patterns of proteins due to evolutionary mutations of the CMP-N-acetylneuraminic acid hydroxylase (CMAH) gene that prevent formation of N-glycolylneuraminic acid from N-acetylneuraminic acid. How changes in the mouse glycoproteins' chemistry affect phenotype and function of transplanted human hematopoietic stem cells and mature human immune cells in the course of HIV-1 infection are not known. RESULTS: We mutated mouse CMAH in the NOD/scid-IL2Rγc-/- (NSG) mouse strain, which is widely used for the transplantation of human cells, using the CRISPR/Cas9 system. The new strain provides a better environment for human immune cells. Transplantation of human hematopoietic stem cells leads to broad B cells repertoire, higher sensitivity to HIV-1 infection, and enhanced proliferation of transplanted peripheral blood lymphocytes. The mice showed no effect on the clearance of human immunoglobulins and enhanced transduction efficiency of recombinant adeno-associated viral vector rAAV2/DJ8. CONCLUSION: NSG-cmah-/- mice expand the mouse models suitable for human cells transplantation, and this new model has advantages in generating a human B cell repertoire. This strain is suitable to study different aspects of the human immune system development, provide advantages in patient-derived tissue and cell transplantation, and could allow studies of viral vectors and infectious agents that are sensitive to human-like sialylation of mouse glycoproteins.


Assuntos
Glicoproteínas/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1 , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/virologia , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Loci Gênicos , Infecções por HIV/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Knockout , Fenótipo
18.
Blood Rev ; 34: 34-44, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30467067

RESUMO

Allogeneic hematopoietic cell transplantation (HCT) provides the best chance for cure for many patients with malignant and nonmalignant hematologic disorders. Recent advances in selecting candidates and determining risk, procedure safety, utilization in older patients, use of alternative donors, and new or novel application of anti-cancer, immunosuppressive and antimicrobial agents have improved outcomes and expanded the role of HCT in hematologic disorders. Relapse remains the predominant cause of failure but enlightened use of new targeted and immunotherapeutic agents in combination with HCT promises to reduce relapse and further improve HCT outcomes.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Animais , Comorbidade , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Teste de Histocompatibilidade , Humanos , Controle de Infecções/métodos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Doadores de Tecidos , Condicionamento Pré-Transplante/efeitos adversos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo
19.
Cancer Res ; 79(3): 663-675, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30514753

RESUMO

Chronic myeloid leukemia (CML) is a chronic disease resulting in myeloid cell expansion through expression of the BCR-ABL1 fusion transcript. Tyrosine kinase inhibitors (TKI) have significantly increased survival of patients with CML, and deep responders may consider stopping the treatment. However, more than 50% of patients relapse and restart TKI, subsequently suffering unknown toxicity. Because CML is a model immune system-sensitive disease, we hypothesize that chimeric antigen receptor (CAR) T cells targeting IL1 receptor-associated protein (IL1RAP) in quiescent CML stem cells may offer an opportunity for a permanent cure. In this study, we produced and molecularly characterized a specific monoclonal anti-IL1RAP antibody from which fragment antigen-binding nucleotide coding sequences were cloned as a single chain into a lentiviral backbone and secured with the suicide gene iCASP9/rimiducid system. Our CAR T-cell therapy exhibited cytotoxicity against both leukemic stem cells and, to a lesser extent, monocytes expressing IL1RAP, with no apparent effect on the hematopoietic system, including CD34+ stem cells. This suggests IL1RAP as a tumor-associated antigen for immunotherapy cell targeting. IL1RAP CAR T cells were activated in the presence of IL1RAP+ cell lines or primary CML cells, resulting in secretion of proinflammatory cytokines and specifically killing in vitro and in a xenograft murine model. Overall, we demonstrate the proof of concept of a CAR T-cell immunotherapy approach in the context of CML that is applicable for young patients and primary TKI-resistant, intolerant, or allograft candidate patients. SIGNIFICANCE: These findings present the first characterization and proof of concept of a chimeric antigen receptor directed against IL1RAP expressed by leukemic stem cells in the context of CML.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Imunoterapia Adotiva/métodos , Proteína Acessória do Receptor de Interleucina-1/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Animais , Anticorpos Monoclonais/imunologia , Engenharia Celular/métodos , Citotoxicidade Imunológica , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Exp Med ; 216(1): 152-175, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30530755

RESUMO

Organism aging is characterized by increased inflammation and decreased stem cell function, yet the relationship between these factors remains incompletely understood. This study shows that aged hematopoietic stem and progenitor cells (HSPCs) exhibit increased ground-stage NF-κB activity, which enhances their responsiveness to undergo differentiation and loss of self-renewal in response to inflammation. The study identifies Rad21/cohesin as a critical mediator of NF-κB signaling, which increases chromatin accessibility in the vicinity of NF-κB target genes in response to inflammation. Rad21 is required for normal differentiation, but limits self-renewal of hematopoietic stem cells (HSCs) during aging and inflammation in an NF-κB-dependent manner. HSCs from aged mice fail to down-regulate Rad21/cohesin and inflammation/differentiation signals in the resolution phase of inflammation. Inhibition of cohesin/NF-κB reverts hypersensitivity of aged HSPCs to inflammation-induced differentiation and myeloid-biased HSCs with disrupted/reduced expression of Rad21/cohesin are increasingly selected during aging. Together, Rad21/cohesin-mediated NF-κB signaling limits HSPC function during aging and selects for cohesin-deficient HSCs with myeloid-skewed differentiation.


Assuntos
Envelhecimento/imunologia , Proteínas de Ciclo Celular/imunologia , Proliferação de Células , Proteínas Cromossômicas não Histona/imunologia , Células-Tronco Hematopoéticas/imunologia , NF-kappa B/imunologia , Transdução de Sinais/imunologia , Envelhecimento/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Inflamação/genética , Inflamação/imunologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA