Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.584
Filtrar
1.
Bratisl Lek Listy ; 120(9): 686-689, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475555

RESUMO

BACKGROUND: The lipografting is increasingly used in the field of plastic surgery. Widely used harvesting technique of fatderived stem-cells is lipoaspiration. There exist two big streams of fat harvesting for lipografting: mechanical liposuction and manual liposuction. METHODS: Two harvested specimens were compared in this prospective blind study in the means of stem-cells viability and their ability to grow in cell-cultures. Techniques to compare were: manual lipoaspiration with 50 ml syringe and WAL (water-jet assisted liposuction). RESULTS: Twenty specimens from ten patients were investigated in the tissue bank. There were no differences in the amount of live stem-cells between two groups. Also no differences were found between both harvesting techniques in the mean of cell ability to grow in cell-cultures. CONCLUSION: It can be concluded that there are no statistically significant differences in the number, vitality and viability of stem cells when comparing two ways of mesenchymal stem cell collection, both manual and machine sampling (WAL). When cultured in vitro, both samples collected from each patient also appeared to be able to multiply with no statistical differences (Tab. 2, Fig. 2, Ref. 18).


Assuntos
Tecido Adiposo/citologia , Lipectomia/métodos , Células-Tronco Mesenquimais/citologia , Células Cultivadas , Humanos , Estudos Prospectivos
2.
Adv Exp Med Biol ; 1169: 243-256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31487028

RESUMO

Heterogeneity among different subpopulations of human umbilical cord mesenchymal stem cell (hUCMSCs) lines is an ubiquitous phenomenon, with such variability being related to several factors including the identity of the individual donor, tissue source (Wharton's jelly vs. umbilical cord blood), culture conditions, as well as random variations in the cloning expansion process. In this chapter, we provide a general overview on the sources as well as available experimental techniques for proper identification of heterogeneity in hUCMSCs. Finally, we provide a brief discussion on the current scientific evidence regarding the potential superiority of subpopulations of hUCMSCs for specific clinical applications. Taking into account the exponential growth on the available experimental data on hUCMSCs in the past few years, this chapter is not intended to be comprehensive in nature, but rather is intended to provide a general overview about the central role which the topic of heterogeneity has in both basic science and clinical research in umbilical cord stem cells.


Assuntos
Células-Tronco Mesenquimais , Cordão Umbilical , Diferenciação Celular , Células Cultivadas , Sangue Fetal/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Geleia de Wharton
3.
Gene ; 720: 144096, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31476405

RESUMO

Biologically active materials and polymeric materials used in tissue engineering have been one of the most attractive research areas in the past decades, especially the use of easily accessible materials from the patients that reduces or eliminates any patient's immune response. In this study, electrospun nanofibrous scaffolds were fabricated by using polyvinyl-alcohol (PVA), chitosan and hydroxyapatite (HA) polymers and platelet-rich plasma (PRP) as a bioactive substance isolated from human blood. Fabricated scaffold's structure and cytotoxicity were evaluated using scanning electron microscope and MTT assays. Scaffolds osteoinductivity was investigated by osteogenic differentiation of the mesenchymal stem cells (MSCs) at the in vitro level and then its osteoconductivity was examined by implanting at the critical-sized rat calvarial defect. The in vitro results showed that scaffolds have a good structure and good biocompatibility. Alkaline phosphatase activity, calcium content and gene expression assays were also demonstrated that their highest amount was detected in MSCs-seeded PVA-chitosan-HA(PRP) scaffold. For this reason, this scaffold alone and along with the MSCs was implanted to the animal defects. The in vivo results demonstrated that in the animals implanted with PVA-chitosan-HA(PRP), the defect was repaired to a good extent, but in those animals that received MSCs-seeded PVA-chitosan-HA(PRP), the defects was almost filled. It can be concluded that, PVA-chitosan-HA(PRP) alone or when stem cells cultured on them, has a great potential to use as an effective bone implant.


Assuntos
Diferenciação Celular , Nanofibras/química , Osteogênese , Plasma Rico em Plaquetas/química , Procedimentos Cirúrgicos Reconstrutivos , Crânio/cirurgia , Animais , Células Cultivadas , Quitosana/química , Durapatita/química , Masculino , Células-Tronco Mesenquimais/citologia , Álcool de Polivinil/química , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual , Tecidos Suporte
4.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 41(4): 443-451, 2019 Aug 30.
Artigo em Chinês | MEDLINE | ID: mdl-31484604

RESUMO

Objective To analyze the differences in biological functions between bone marrow(BM)-derived CD106 +mesenchymal stem cells(MSCs)and the CD106 - subgroup. Methods The MSCs from normal BM were isolated and expanded.The subgroups of CD106 + and CD106 -MSCs were sorted.The cell proliferation and adhesion functions,chemotactic activities,adipogenic and osteogenic potentials,senescence,and senescence protein 21(p21)were detected.The capacity of translocation into nucleus of nuclear factor-kappa B(NF-κB)when stimulated by tumor necrosis factor(TNF-α)was measured. Results The proliferative ability was higher in CD106 +MSCs than that in CD106 -MSCs.In 48 hours,the value of optical density(OD)was significantly higher in CD106 +MSCs than that in CD106 - subgroup(1.004±0.028 vs. 0.659±0.023,t=3.946,P=0.0225).In 72 hours,this phenomenon was even more pronounced(2.574±0.089 vs. 1.590±0.074,t=11.240,P=0.0000).The adhesive capacity of CD106 +MSCs was significantly stronger than that of CD106 - subgroup(0.648±0.018 vs. 0.418±0.023,t=7.869,P=0.0002).Besides,the metastasis ability of CD106 +MSCs were significantly stronger than that of CD106 - subgroup(114.500±4.481 vs.71.000±4.435,t=6.900,P=0.0005).The CD106 +MSCs had signifcnatly lower proportions of senescent cells.The expression of aging protein p21 in CD106 +MSCs was significantly lower than that in CD106 -MSCs [(17.560±1.421)% vs.(45.800±2.569)%,t=9.618,P=0.0000].Furthermore,there were no visible pigmenting cells after ß-galactosidase staining in CD106 +MSCs subgroup.However,in CD106 -MSCs,some colored green cells were detected.The rate of NF-κB translocation into nucleus after stimulated by TNF-α was significantly higher in CD106 +MSCs than CD106 - MSCs [(37.780±3.268)% vs.(7.30±1.25)%,t=8.713,P=0.0001]. Conclusion Bone marrow-derived CD106 +MSCs possess more powerful biological functions than CD106 -MSCs.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , NF-kappa B/metabolismo , Transporte Proteico , Fator de Necrose Tumoral alfa/farmacologia
5.
BMC Vet Res ; 15(1): 269, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362739

RESUMO

BACKGROUND: Reported efficacy of platelet-rich plasma (PRP) in regenerative medicine is contradictory. We validated the effects of PRP on proliferation of canine bone marrow-derived multipotent mesenchymal stromal cells (K9BMMSCs) in vitro. PRP was extracted from blood of six dogs with osteoarthritis. K9BMMSCs were established from bone marrow and characterized for CD90 and CD19 expression by immunocytochemistry. Effects of PRP concentrations on viability of matching autologous K9BMMSCs were validated using MTS assay. RESULTS: Positive CD90 and negative CD19 expression confirmed MSC origin. PRP at 40% volume/volume concentration increased, while PRP at 80 and 100% v/v concentrations suppressed viability of tested K9BMMSCs. CONCLUSION: PRP concentration plays an important role in K9BMMSCs viability, which could affect tissue repairs in vivo.


Assuntos
Células da Medula Óssea/citologia , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Plasma Rico em Plaquetas/metabolismo , Animais , Antígenos CD19/genética , Sobrevivência Celular , Células Cultivadas , Cães , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Plasma Rico em Plaquetas/química , Antígenos Thy-1/genética
6.
Braz J Med Biol Res ; 52(8): e8318, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31411247

RESUMO

Currently, there is great clinical need for suitable synthetic grafts that can be used in vascular diseases. Synthetic grafts have been successfully used in medium and large arteries, however, their use in small diameter vessels is limited and presents a high failure rate. In this context, the aim of this study was to develop tissue engineering scaffolds, using poly(trimethylene carbonate-co-L-lactide) (PTMCLLA), for application as small diameter vascular grafts. For this, copolymers with varying trimethylene carbonate/lactide ratios - 20/80, 30/70, and 40/60 - were submitted to electrospinning and the resulting scaffolds were evaluated in terms of their physicochemical and biological properties. The scaffolds produced with PTMCLLA 20/80, 30/70, and 40/60 showed smooth fibers with an average diameter of 771±273, 606±242, and 697±232 nm, respectively. When the degradation ratio was evaluated, the three scaffold groups had a similar molecular weight (Mw) on the final day of analysis. PTMCLLA 30/70 and 40/60 scaffolds exhibited greater flexibility than the PTMCLLA 20/80. However, the PTMCLLA 40/60 scaffolds showed a large wrinkling and their biological properties were not evaluated. The PTMCLLA 30/70 scaffolds supported the adhesion and growth of mesenchymal stem cells (MSCs), endothelial progenitor cells, and smooth muscle cells (SMCs). In addition, they provided a spreading of MSCs and SMCs. Given the results, the electrospun scaffolds produced with PTMCLLA 30/70 copolymer can be considered promising candidates for future applications in vascular tissue engineering.


Assuntos
Prótese Vascular , Dioxanos/química , Poliésteres/química , Tecidos Suporte/química , Proliferação de Células , Células Cultivadas/citologia , Células Progenitoras Endoteliais/citologia , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia
7.
Life Sci ; 234: 116743, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408660

RESUMO

AIMS: The present study aimed to investigate the mechanism of bone repair mediated by recombination BMP-2 (rhBMP-2)/recombination CXC chemokine ligand-13 (rhCXCL13)-loaded hollow hydroxyapatite (HA) microspheres/chitosan (CS) composite. MATERIALS AND METHODS: Firstly, the biological activity of rhBMP-2 and rhCXCL13 released from the complex was investigated. Secondly, the effect of rhBMP-2 sustained release solution on ALP activity and rhCXCL13 sustained release solution on cell migration of rat bone marrow mesenchyme stem cells was tested. Thirdly, osteoblasts differentiation test, X-ray scoring and three-point bending test were performed. Finally, the mRNAs expression of osteogenic marker genes and the protein expression of Runx2 was tested by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting (WB), respectively. KEY FINDINGS: RhBMP-2 could significantly promote the proliferation and differentiation, and RhCXCL13 could promote the migration of rat bone marrow MSCs. Detection of ALP activity and calcium salt deposition showed that rhBMP-2 and rhCXCL13 could significantly improve the biological activity and promote cell differentiation ability. X-ray scoring of radius and flexural strength test showed that rhBMP-2 and rhCXCL13 could promote bone healing and improve the bending resistance of bone tissue. The in vitro molecular experiments including RT-PCR and WB further demonstrated the roles of rhBMP-2 and rhCXCL13 in bone formation and bone repair. SIGNIFICANCE: Our results indicated that the hollow HA microspheres/CS composite could be effective as a delivery vehicle for rhBMP-2 and rhCXCL13 in bone regeneration and bone repair. In this process, rhBMP-2 may promote bone regeneration by regulating bone marrow MSCs cells recruited by rhCXCL13.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Quimiocina CXCL13/administração & dosagem , Quitosana/análogos & derivados , Preparações de Ação Retardada/química , Durapatita/química , Osteogênese/efeitos dos fármacos , Tecidos Suporte/química , Fator de Crescimento Transformador beta/administração & dosagem , Animais , Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiocina CXCL13/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Coelhos , Ratos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Fator de Crescimento Transformador beta/farmacologia
8.
Biomed Khim ; 65(4): 339-346, 2019 Jun.
Artigo em Russo | MEDLINE | ID: mdl-31436176

RESUMO

Secretion of 21 cytokines, chemokines and growth factors (LIF, SCF, SDF-1a, SCGF-b, M-CSF, MCP-3, MIF, MIG, TRAIL, GRO-a; IL-1a, IL-2ra, IL-3, IL-12(p40), IL-16, IL-18, HGF, TNF-b, b-NGF, IFN-a2, CTACK) has been studied in vitro in the culture of human adipose-derived multipotent mesenchymal stromal cells (hAMMSCs) in conditions of its osteogenic differentiation caused by 14-day contact with calcium phosphate (CP) surface with different roughness. Bilateral X-ray amorphous CP coatings were prepared on the samples of commercially pure titanium in the anodal regime using a micro-arc method. An aqueous solution prepared from 20 wt% phosphoric acid, 6 wt% dissolved hydrohyapatite nanopowder (particle diameter 10-30 nm with single agglomerates up to 100 nm), and 9 wt% dissolved calcium carbonate was used to obtain CP coating. hAMMSCs isolated from lipoaspirate were co-cultured after 4 passages with the CP-coated samples at final concentration of 1.5´105 viable karyocytes per 1.5 mL of standard nutrition medium (without osteogenic stimulators) for 14 days (a determination of [CD45,34,14,20], CD73, CD90 и CD105 cell immunophenotype; an analysis of secretory activity) and 21 days (alizarin red S staining of culture) with medium replacement every 3-4 days. Under conditions of in vitro contact with rough CP coating hAMMSCs differentiated into osteoblasts synthesizing the mineralized bone matrix; this was accompanied by 2-3-fold increasing ratio of [CD45,34,14,20]+ hemopoietic cells. The following humoral factors of hemopoietic niches acted as the signal molecules escalating in vitro the hemopoietic base in 14 days of differentiating three-dimensional culture of hAMMSCs: either leukemia inhibitory factor (LIF) and stem cell factor (SCF) cytokines under mean index of CP roughness Ra=2.4-2.6 mm or stromal derived factor-1 (SDF-1a, CXCL12 chemokine) under Ra=3.1-4.4 mm.


Assuntos
Fosfatos de Cálcio/farmacologia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Osteogênese , Células-Tronco Pluripotentes/citologia , Tecido Adiposo/química , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Estromais/citologia
9.
Graefes Arch Clin Exp Ophthalmol ; 257(9): 1915-1924, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31321523

RESUMO

PURPOSE: In vivo microenvironments are critical to tissue homeostasis and wound healing, and the cornea is regulated by a specific microenvironment complex that consists of cell-cell interactions, air-liquid interfaces, and fluid flow stimulation. In this study, we aimed to clarify the effects of and the correlations among these three component factors on the cell kinetics of corneal epithelial cells. METHODS: Human corneal epithelial-transformed (HCE-T) cells were cocultured with either primary rat corneal fibroblasts or NIH 3T3 fibroblasts. We employed a double-dish culture method to create an air-liquid interface and a gyratory shaker to create fluid flow stimulation. Morphometric and protein expression analyses were performed for the HCE-T cells. RESULTS: Both the primary rat fibroblasts and the NIH 3T3 cells promoted HCE-T cell proliferation, and the presence of fluid flow synergistically enhanced this effect and inhibited the apoptosis of HCE-T cells. Moreover, fluid flow enhanced the emergence of myofibroblasts when cocultured with primary rat fibroblasts or NIH 3T3 cells. Extracellular signal-regulated kinase and p38 signaling were regulated either synergistically or independently by both fluid flow and cellular interaction between the HCE-T and NIH 3T3 cells. CONCLUSION: The cell-cell interaction and fluid flow stimulation in the air-liquid interface synergistically or independently regulated the behavior of HCE-T cells. Fluid flow accelerated the phenotypic change from corneal fibroblasts and NIH 3T3 cells to myofibroblasts. Elucidation of the multicomponent interplay in this microenvironment will be critical to the homeostasis and regeneration of the cornea and other ocular tissues.


Assuntos
Lesões da Córnea/metabolismo , Epitélio Anterior/metabolismo , Células-Tronco Mesenquimais/citologia , Cicatrização/fisiologia , Animais , Western Blotting , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Lesões da Córnea/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Epitélio Anterior/patologia , Homeostase , Humanos , Imuno-Histoquímica , Ratos , Ratos Wistar , Transdução de Sinais
10.
Egypt J Immunol ; 26(1): 55-67, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31332996

RESUMO

Diabetes Mellitus (D.M.) is a disease with a high and increasing prevalence. The Insulin- producing Cells (IPCs) derived from the Wharton's jelly of human umbilical cord transplantation was thought to be the most promising strategy for treating Diabetes. This study aimed to evaluate IPCs immune modulatory changes occurred after transplanted through two different routes and the effect of these changes on their therapeutic efficiency in relation to transplantation microenvironment. Insulin Producing Cells was induced to differentiate from human Umbilical Cord-Mesenchymal Stem Cells and characterized by morphology under phase contrast inverted microscope and staining of secretory granules by DTZ (diphenylthiocarbonazone) stain, then therapeutic effect was evaluated both in vitro and in vivo through glucose challenge test and hyperglycemia correction in STZ (streptozotocin)- induced diabetic rats. Immune-modulatory changes evaluated by cell- mediated lysis assay and Syber green quantification of immune inflammatory cytokines (IFN- , TGF- ß and IL-10) gene expression by real-time PCR. We observed that in spite of the weak immunogenicity of induced IPCs derived from HUC-MSCs in vitro, but when transplanted in vivo especially through the intra portal vein they could induce an immune response when interact with the disease microenvironment resulting in different degree of inflammatory response. Therefore, the relationship between disease microenvironment and immune alteration should be examined before transplantation therapy.


Assuntos
Diabetes Mellitus Experimental/imunologia , Insulinas , Transplante de Células-Tronco Mesenquimais , Geleia de Wharton/citologia , Animais , Diferenciação Celular , Citocinas/imunologia , Diabetes Mellitus Experimental/terapia , Humanos , Células-Tronco Mesenquimais/citologia , Ratos , Cordão Umbilical/citologia
11.
J Biol Regul Homeost Agents ; 33(4): 1019-1022, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347346

RESUMO

Mesenchymal stem cells (MSCs) are able to exert immunomodulatory and anti-inflammatory actions. Thanks to these properties, MSCs may be a promising alternative approach for the treatment of inflammatory disease. Important cytokines involved in inflammation are those included in the IL-1 family. Interleukin-37 (IL-37) is one of the member able to suppress both innate and adaptive immunity. Recently, it was found that MSCs and their derivatives can modulate IL-37, and MSCs expressing IL-37 seem to have an enhanced therapeutic efficacy.


Assuntos
Interleucina-1/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Citocinas , Humanos , Inflamação
12.
J Photochem Photobiol B ; 197: 111515, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31255939

RESUMO

An extraordinary arrangement of research is as yet going on in the area of orthopedic implants advancement to determine different issues being looked by the engineering today. In spite of a few detriments of the orthopedic metallic inserts, they keep on being utilized, essentially as a result of their unrivaled mechanical properties. We investigated the conceivable utilization of silicon carbide (SiC) as a nano-ceramic covering material of titanium (Ti)-based all out femoral substitution implants. The thought is to keep wear garbage arrangement from the delicate titanium exterior. Silicon carbide is a hard and firmly holding bio-ceramic surface substance, and in light of these physico-chemical properties, it isn't actually degradable, just like the case with apatite (HA). To improve cytocompatibility and osseous-integration, we deposited anodized titanium nanotubes (TiO2) inserts, by electrochemical deposition method (EDM), with silicon carbide (SiC) with apatite (SiC@HA). The deposition was affirmed by SEM, while phase composition properties were assessed by XRD. Calcium affidavit, osteocalcin creation, and articulation of bone genes were essentially higher in rodent osteoblast cell culture on SiC@HA-covered anodized titanium nanotubes than in cells cultured on uncoated anodized titanium nanotubes. Implantation into rodent femurs likewise demonstrated that the SiC@HA-covered substance had unrivaled osseous-integration movement in correlation with that of customary inserts, as evaluated by in vivo tomography and histology. Therefore, anodized titanium nanotubes covered with SiC@HA holds guarantee as an orthopedic implant substance.


Assuntos
Regeneração Óssea , Compostos Inorgânicos de Carbono/química , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Nanopartículas/química , Compostos de Silício/química , Titânio/química , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Adesão Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/uso terapêutico , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fraturas do Fêmur/terapia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteocalcina/metabolismo , Próteses e Implantes , Ratos
13.
J Photochem Photobiol B ; 197: 111536, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31326846

RESUMO

The latent utilization of biomaterials that are osteo-conducive in the advancement of healing bone fracture has fascinated extensive consideration. This work includes the synthesis of silver nanoparticles (AgNPs) with the help of a Bauhinia acuminate plant flower extract through an ecofriendly synthetic process without any use of harmful reductants. In the fabrication of AgNPs, Bauhinia acuminate plant flower extract bio constituents acts as both stabilizing and reducing agent. The studies of Fourier transform infrared (FTIR) and X-ray diffraction (XRD) techniques confirmed the formation of AgNPS. TEM images revealed that AgNPs are uniform with average particle size of 17 nm. Further, this work explored if silver nanoparticles (AgNPs) might endorse the osteogenesis and proliferation of mesenchymal stem cells (MSCs) and advance the curing of bone fractures. We also exhibited that the prepared AgNPs could promote the in -vitro osteogenic differentiation and proliferation of MSCs'. Also, the prepared AgNps could stimulate the proliferation of mMSCs at specific concentrations of 6-20 µM. Further, cell viability studies showed that AgNPs exhibited no reduction in mouse mesenchymal stem cell viability at <4 µM. Further, these results indicated the induction effects of AgNPs on osteogenic differentiation and proliferation on MSCs, as well as the advancement of meniscus injury healing.


Assuntos
Bauhinia/química , Nanopartículas Metálicas/química , Osteogênese , Extratos Vegetais/química , Prata/química , Animais , Bauhinia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flores/química , Flores/metabolismo , Consolidação da Fratura/efeitos dos fármacos , Química Verde , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas Metálicas/toxicidade , Camundongos , Microscopia Eletrônica de Transmissão , Osteogênese/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier
14.
J Photochem Photobiol B ; 197: 111545, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31326847

RESUMO

Proper waste utilization in order to promote value added product is a promising scientific practice in recent era. Inspiring from the recurring trend, we propose a single step oxidative pyrolysis derived fluorescent carbon dots (C-dots) from Allium sativum peel, which is a natural, nontoxic, and waste raw material. Because of its excellent optical properties, and photostability this C-dots have been used in versatile area of applications. Due to its immediate water dispersing character, C-dots reinforced Poly(acrylic acid) (PAA) films revealed improvement in uniaxial stretching behavior and can be used as transparent sunlight conversion film. The nanocomposite film has been tested against rigorous simulated sunlight which proved almost identical sunlight conversion behavior with no photo-bleachable character which is definitely added an extra quality of transparent polymer films. Moreover, the C-dots dispersion has been used as in vitro biomarker for living cells owing to its ease in solubility, biocompatibility, non-cytotoxicity and bright fluorescence even in subcutaneous environment. For this case, adipose derived mesenchymal stem cells (ADMSCs) have been chosen and injected to rabbit ear skin to perform two-photon imaging experiment. The present work opens a new avenue towards the large-scale synthesis of bio-waste based fluorescent C-dots, paving the way for their versatile applications.


Assuntos
Allium/química , Nitrogênio/química , Fotodegradação/efeitos da radiação , Pontos Quânticos/química , Enxofre/química , Luz Solar , Resinas Acrílicas/química , Tecido Adiposo/citologia , Allium/metabolismo , Animais , Materiais Biocompatíveis/química , Carbono/química , Sobrevivência Celular/efeitos dos fármacos , Frutas/química , Frutas/metabolismo , Química Verde , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Microscopia de Fluorescência , Pontos Quânticos/toxicidade , Coelhos , Pele/efeitos dos fármacos , Pele/patologia , Solubilidade
15.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 35(6): 505-511, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31292054

RESUMO

Objective To investigate the effects of fibroblast growth factor 2 (FGF-2) on the cytoskeleton and morphology of rat bone marrow mesenchymal stem cells (BMSCs). Methods Morphological and cytoskeleton changes of BMSCs were observed by scanning electron microscopy and rhodamine-phalloidin staining in TranswellTM co-culture system of rat vascular endothelial cells (RAECs) and BMSCs. The content of FGF-2 in cell supernatants were detected by ELISA, and the mRNA expression of FGF-2 in both conventional and co-cultured cells were evaluated by real-time quantitative PCR. NVP-BGJ398, an inhibitor of FGF-2 receptor was added into the co-culture system to block FGF-2 signal and its effect on BMSCs skeleton was observed. Recombinant FGF-2 was supplemented into the conventional medium of BMSCs to further verify the effect of exogenous FGF-2. Results After co-cultured with RAECs, BMSCs gradually stretched, contracted and formed a large number of filopodia. The content of FGF-2 increased in the co-culture system and was mainly secreted by RAECs. Cytoskeleton remodeling of BMSCs was significantly blocked by the inhibitor of FGF-2 receptor and the cells were mostly short spindle-shaped and arranged in a spiral pattern. Exogenous FGF-2 promoted the contraction and edge stretching of BMSCs, forming filopodia with staggered distribution. Conclusion FGF-2 secreted by RAECs induces cytoskeletal remodeling of BMSCs.


Assuntos
Citoesqueleto , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Mesenquimais/citologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Proteínas Recombinantes/farmacologia
16.
Int J Nanomedicine ; 14: 4755-4765, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308656

RESUMO

Background: Many techniques and methods have been used clinically to relieve pain from cartilage repair, but the long-term effect is still unsatisfactory. Purpose: The objective of this study was to form an artificial chondroid tissue gene enhanced tissue engineering system to repair cartilage defects via nanosized liposomes. Methods: Cationic nanosized liposomes were prepared and characterized using transmission electron microscope (TEM) and dynamic laser light scattering (DLS). The rat mesenchymal stem cells (rMSCs) were isolated, cultivated, and induced by SRY (Sex-Determining Region Y)-Box 9 (Sox9) via cationic nanosized liposomes. The induced rMSCs were mixed with a thermo-sensitive chitosan hydrogel and subcutaneously injected into the nude mice. Finally, the newly-formed chondroid tissue obtained in the injection parts, and the transparent parts were detected by HE, collagen II, and safranin O. Results: It was found that the presently prepared cationic nanosized liposomes had the diameter of 85.76±3.48 nm and the zeta potential of 15.76±2.1 mV. The isolated rMSCs proliferation was fibroblast-like, with a cultivated confluence of 90% confluence in 5-8 days, and stained positive for CD29 and CD44 while negative for CD34 and CD45. After transfection with cationic nanosized liposomes, we observed changes of cellular morphology and a higher expression of SOX9 compared with control groups, which indicated that rMSCs could differentiate into chondrocyte in vitro. By mixing transfected rMSCs with the thermo-sensitive hydrogel of chitosan in nude mice, chondroid tissue was successfully obtained, demonstrating that rMSCs can differentiate into chondrogenic cells in vivo. Conclusion: This study explored new ways to improve the quality of tissue engineered cartilage, thus accelerating clinical transformation and reducing patient pain.


Assuntos
Condrogênese , Técnicas de Transferência de Genes , Nanopartículas/química , Engenharia Tecidual/métodos , Animais , Cátions , Diferenciação Celular , Forma Celular , Células Cultivadas , Condrogênese/efeitos dos fármacos , Géis , Lipossomos/química , Lipossomos/ultraestrutura , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Nus , Ratos Sprague-Dawley , Fatores de Transcrição SOX9/metabolismo , Temperatura Ambiente
17.
Life Sci ; 232: 116632, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31278944

RESUMO

AIMS: The inflammation modulation effects of mesenchymal stromal cell-derived exosomes (MSC-EXO) are well established. We aimed to explore the mechanism behind the inflammatory responses of numerous exosomal cargo molecules that have been neglected in molecular biology research, and to develop an exosomal cargo delivery system that can exert a stronger therapeutic effect on myocardial ischemia-reperfusion (I/R) injury. MAIN METHODS: Computational approaches were used to identify key exosomal miRNAs and their downstream mRNAs that are expressed in the inflammatory response. Direct interactions between miRNA-181a and the c-Fos mRNA complex were confirmed by luciferase reporter assay. MSC-EXO carrying miRNA-181a-overexpressing lentiviruses were intramyocardially injected into a mouse model of myocardial I/R injury. I/R progression was evaluated through echocardiography and immunofluorescence microscopy. KEY FINDINGS: miRNA-181a provided substantial coverage against a host of immune-related genes through the miRNA-mRNA network. miRNA-181a delivery by MSC-EXO combined the immune-suppressing effect of miRNA-181a and the cell targeting capability of MSC-EXO to exert a stronger therapeutic effect on myocardium I/R injury. SIGNIFICANCE: We showed the potential of MSC-EXO as a tool for the specific delivery of small RNAs in vivo. This study shed new light on the potential application of miRNA-181a-overexpressing MSC-EXO as a therapeutic strategy for myocardial I/R injury.


Assuntos
Células-Tronco Mesenquimais/metabolismo , MicroRNAs/sangue , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Exossomos , Humanos , Inflamação/terapia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
18.
Zhonghua Gan Zang Bing Za Zhi ; 27(6): 424-429, 2019 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-31357757

RESUMO

Objective: To explore the effect of substrate mechanical microenvironment and cell-cell interaction on differentiation of bone marrow mesenchymal stem cells (BMSCs), intrahepatic cellular function and phenotype. Methods: Bone marrow mesenchymal stem cells (BMSCs)-hepatocytes (HCs) and BMSCs-hepatic stellate cells (HSCs) were co-cultured on polyvinyl alcohol (PVA) hydrogel substrates at different stiffness (4.50 ± 0.47 kPa, 19.00 ± 3.51 kPa and 37.00 ± 2.09 kPa) by non-contact co-culture method. Furthermore, the effect of substrate mechanical microenvironment on BMSCs, HCs and HSCs and the activation and proliferation of HCs under different co-cultured condition was studied. A Student's t-test was used to compare the two groups. Results: The expression ofα-smooth muscle actin (α-SMA) and collagenα1- I (Col1A1) in BMSCs and HSCs cultured on its own increased with increase of substrate stiffness. After 72 h, the expression of albumin (ALB) of HCs on three stiff substrates was significantly higher than that of 24 and 48 h. Moreover, the expression of ALB of HCs increased with the increase of substrate stiffness. During the co-culture of BMSCs and HSCs, BMSCs of all three stiffness substrates promoted the expression ofα-SMA, Col1A1 in HSCs, but reduced the expression of PPARγin HSCs cells, thererby promoted the activation of HSCs, with apparent stiffness at 37 kPa. HSCs promoted the expression of ABL in BMSCs at three stiff substrates, but inhibited the expression of alpha-SMA and Col1A1 in BMSCs at 37 kPa, suggesting that co-culture had inhibited the differentiation of BMSCs myofibroblasts, and promoted the differentiation of hepatocyte-like cells, especially at high stiff substrates. In the co-culture of BMSCs and hepatic parenchymal cells, BMSCs had promoted the proliferation of hepatic parenchymal cells at 4.5 kPa. Further, hepatic parenchymal cells had inhibited the expression ofα-SMA in BMSCs, and promoted the expression of Alb, with inhibition of BMSCs differentiation towards myofibroblasts. Conclusion: The differentiation of BMSCs affects the substrate mechanical microenvironment, co-culture of HCs and HSCs. Simultaneously, affecting the function of hepatocytes in relation to the mechanical state of the substrates.


Assuntos
Células da Medula Óssea , Comunicação Celular , Técnicas de Cultura de Células , Diferenciação Celular , Células Estreladas do Fígado , Células-Tronco Mesenquimais , Animais , Células da Medula Óssea/citologia , Comunicação Celular/fisiologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Microambiente Celular/fisiologia , Células Estreladas do Fígado/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley
19.
Biomater Sci ; 7(9): 3906-3917, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31322163

RESUMO

Cardiovascular diseases represent a major socio-economic burden. In recent years, considerable effort has been invested in optimizing cell delivery strategies to advance cell transplantation therapies to restore heart function for example after an infarct. A particular issue is that the implantation of cells using a non-electroconductive matrix potentially causes arrhythmia. Here, we demonstrate that our hydrazide-functionalized nanotubes-pericardial matrix-derived electroconductive biohybrid hydrogel provides a suitable environment for maturation of human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. hiPSC-derived cardiomyocytes exhibited an improved contraction amplitude (>500%) on conductive hydrogels compared to cells cultured on Matrigel®. This was accompanied by increased cellular alignment, enhanced connexin 43 expression, and improved sarcomere organization suggesting maturation of the hiPSC-derived cardiomyocytes. Sarcomeric length of these cells increased from 1.3 to 1.7 µm. Moreover, 3D cell-laden engineered tissues exhibited enhanced calcium handling as well as positive response to external electrical and pharmaceutical stimulation. Collectively, our data indicate that our biohybrid hydrogels consisting of solubilized nanostructured pericardial matrix and electroconductive positively charged hydrazide-conjugated carbon nanotubes provide a promising material for stem cell-based cardiac tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Nanotubos de Carbono/química , Pericárdio/química , Tecidos Suporte/química , Biomarcadores/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Conexina 43/metabolismo , Combinação de Medicamentos , Condutividade Elétrica , Humanos , Laminina/química , Células-Tronco Mesenquimais/citologia , Tamanho da Partícula , Proteoglicanas/química
20.
Life Sci ; 232: 116669, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31326566

RESUMO

AIMS: This study investigated the effects of hyaluronic acid (HA), a commonly used osteogenic medium referred to as DAG, and the combined administration of HA and DAG (CG) on the osteogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs), and the underlying mechanism. MAIN METHODS: The phenotype of hAMSCs was detected by flow cytometry and immunocytochemical staining. Alkaline phosphatase (ALP) and calcium deposition assays were employed for evaluating the osteogenic differentiation of hAMSCs. The expression of osteogenesis-related genes and proteins was determined by quantitative reverse transcription PCR (qRT-PCR) and Western blotting, respectively. Meanwhile, the molecular mechanism of osteogenic differentiation of hAMSCs was detected by PCR array and qRT-PCR. KEY FINDINGS: The results showed that treatment with CG could significantly stimulate hAMSC ALP activity and calcium deposition compared to treatment with DAG, while HA had little effect. The expression of osteogenesis-related molecules and stemness-related molecules was up-regulated at the mRNA and protein levels in all three groups, and this up-regulation was most significant in the CG group. In addition, treatment with CG significantly increased the gene expressions involved in regulation of the TGF-ß/Smad signalling pathway compared to treatment with DAG. Furthermore, the pro-osteogenic differentiation effects as well as the up-regulated expression of genes observed in the CG treatment group were significantly inhibited when the cells were pre-treated with SB431542, an inhibitor of the TGF-ß/Smad pathway. SIGNIFICANCE: These results suggest that HA in combination with DAG could significantly enhance the osteogenic differentiation of hAMSCs, potentially via the TGF-ß/Smad signalling pathway.


Assuntos
Âmnio/citologia , Diferenciação Celular/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Humanos , Ácido Hialurônico/química , Células-Tronco Mesenquimais/citologia , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA