Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.669
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445612

RESUMO

Prostate cancer is a common cause of death worldwide. Here, we isolated cancer stem cells (CSCs) from four adenocarcinomas of the prostate (Gleason scores from 3 + 3 up to 4 + 5). CSCs were characterized by the expression of the stem cell markers TWIST, the epithelial cell adhesion molecule (EPCAM), the transcription factors SNAI1 (SNAIL) and SNAI2 (SLUG) and cancer markers such as CD44 and prominin-1 (CD133). All investigated CSC populations contained a fraction highly positive for aldehyde dehydrogenase (ALDH) function and displayed robust expressions of programmed cell death 1 (PD-1) ligands. Furthermore, we investigated immunotherapeutic approaches but had no success even with the clinically used PD-1 inhibitor pembrolizumab. In addition, we studied another death-inducing pathway via interferon gamma signaling and detected high-level upregulations of human leukocyte antigen A (HLA-A) and beta 2-microglobulin (B2M) with only moderate killing efficacy. To examine further killing mechanisms in prostate cancer stem cells (PCSCs), we analyzed NF-κB signaling. Surprisingly, two patient-specific populations of PCSCs were found: one with canonical NF-κB signaling and another one with blunted NF-κB activation, which can be efficiently killed by tumor necrosis factor (TNF). Thus, culturing of PCSCs and analysis of respective NF-κB induction potency after surgery might be a powerful tool for optimizing patient-specific treatment options, such as the use of TNF-inducing chemotherapeutics and/or NF-κB inhibitors.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Matadoras Naturais/patologia , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Fator de Necrose Tumoral alfa/farmacologia , Antineoplásicos Imunológicos/farmacologia , Apoptose , Proliferação de Células , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Masculino , NF-kappa B/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas
2.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445421

RESUMO

The Hedgehog (HH) signaling pathway plays an important role in embryonic development and adult organ homeostasis. Aberrant activity of the Hedgehog signaling pathway induces many developmental disorders and cancers. Recent studies have investigated the relationship of this pathway with various cancers. GPCR-like protein Smoothened (SMO) and the glioma-associated oncogene (GLI1) are the main effectors of Hedgehog signaling. Physalin A, a bioactive substance derived from Physalis alkekengi, inhibits proliferation and migration of breast cancer cells and mammospheres formation. Physalin A-induced apoptosis and growth inhibition of mammospheres, and reduced transcripts of cancer stem cell (CSC) marker genes. Physalin A reduced protein expressions of SMO and GLI1/2. Down-regulation of SMO and GLI1 using siRNA inhibited mammosphere formation. Physalin A reduced mammosphere formation by reducing GLI1 gene expression. Down-regulation of GLI1 reduced CSC marker genes. Physalin A reduced protein level of YAP1. Down-regulation of YAP1 using siRNA inhibited mammosphere formation. Physalin A reduced mammosphere formation through reduction of YAP1 gene expression. Down-regulation of YAP1 reduced CSC marker genes. We showed that treatment of MDA-MB-231 breast cancer cells with GLI1 siRNA induced inhibition of mammosphere formation and down-regulation of YAP1, a Hippo pathway effector. These results show that Hippo signaling is regulated by the Hedgehog signaling pathway. Physalin A also inhibits the canonical Hedgehog and Hippo signaling pathways, CSC-specific genes, and the formation of mammospheres. These findings suggest that physalin A is a potential therapeutic agent for targeting CSCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Vitanolídeos/farmacologia , Proteína GLI1 em Dedos de Zinco/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
3.
Ann Clin Lab Sci ; 51(4): 521-528, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34452890

RESUMO

OBJECTIVE: Radioresistance-induced locoregional recurrence remains a major cause of low survival rates. However, the mechanism of treatment failure in these lung cancer patients has not been determined. In the current study, we tried to explore the potential molecular mechanism. METHODS: The fractionated irradiations were continued until the total concentration reached 80 Gy, and we established radioresistant subclones derived from A549 lines (designated as A549/R). The MTT assay, wound healing assay, transwell assay, and soft agar colony formation assay were employed to detect the proliferation, migration, invasion, and clonogenicity of the cells, respectively. Western blot and Fluorescence Activating Cell Sorter (FACS) indicated the expression of the markers. RESULTS: A549/R cells proliferated more slowly than the parental A549 cells. A significant acceleration in cell migration and invasion was revealed in A549/R cells compared with A549 cells. The expression levels of mesenchymal markers (N-cadherin, vimentin, claudin-1, and Snail) increased, while epithelial markers (E-cadherin and ß-catenin) decreased in A549/R cells. Meanwhile, the expression levels of stemness markers (Oct4, Notch1, and CD133) increased in A549/R cells, and A549/R cells showed more sphere-forming activity compared with A549 cells. CONCLUSION: Fractionated irradiation could promote epithelial-mesenchymal transition and enhance the migration, invasion, and stemness-like properties in A549 cells, elucidating the possible radioresistance mechanisms of the cancer cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Raios gama , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Células A549 , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Movimento Celular , Proliferação de Células , Fracionamento da Dose de Radiação , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação
4.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360875

RESUMO

Single prostate stem cells can generate stem and progenitor cells to form prostaspheres in 3D culture. Using a prostasphere-based label retention assay, we recently identified keratin 13 (KRT13)-enriched prostate stem cells at single-cell resolution, distinguishing them from daughter progenitors. Herein, we characterized the epithelial cell lineage hierarchy in prostaspheres using single-cell RNA-seq analysis. Keratin profiling revealed three clusters of label-retaining prostate stem cells; cluster I represents quiescent stem cells (PSCA, CD36, SPINK1, and KRT13/23/80/78/4 enriched), while clusters II and III represent active stem and bipotent progenitor cells (KRT16/17/6 enriched). Gene set enrichment analysis revealed enrichment of stem and cancer-related pathways in cluster I. In non-label-retaining daughter progenitor cells, three clusters were identified; cluster IV represents basal progenitors (KRT5/14/6/16 enriched), while clusters V and VI represent early and late-stage luminal progenitors, respectively (KRT8/18/10 enriched). Furthermore, MetaCore analysis showed enrichment of the "cytoskeleton remodeling-keratin filaments" pathway in cancer stem-like cells from human prostate cancer specimens. Along with common keratins (KRT13/23/80/78/4) in normal stem cells, unique keratins (KRT10/19/6C/16) were enriched in cancer stem-like cells. Clarification of these keratin profiles in human prostate stem cell lineage hierarchy and cancer stem-like cells can facilitate the identification and therapeutic targeting of prostate cancer stem-like cells.


Assuntos
Queratinas/metabolismo , Células-Tronco Neoplásicas , Neoplasias da Próstata , RNA/metabolismo , Adulto , Células Cultivadas , Humanos , Masculino , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Cultura Primária de Células , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Análise de Célula Única , Adulto Jovem
5.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360879

RESUMO

Globally, breast cancer has remained the most commonly diagnosed cancer and the leading cause of cancer death among women. Breast cancer is a highly heterogeneous and phenotypically diverse group of diseases, which require different selection of treatments. Breast cancer stem cells (BCSCs), a small subset of cancer cells with stem cell-like properties, play essential roles in breast cancer progression, recurrence, metastasis, chemoresistance and treatments. Epigenetics is defined as inheritable changes in gene expression without alteration in DNA sequence. Epigenetic regulation includes DNA methylation and demethylation, as well as histone modifications. Aberrant epigenetic regulation results in carcinogenesis. In this review, the mechanism of epigenetic regulation involved in carcinogenesis, therapeutic resistance and metastasis of BCSCs will be discussed, and finally, the therapies targeting these biomarkers will be presented.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinogênese/genética , Epigênese Genética , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Código das Histonas/efeitos dos fármacos , Código das Histonas/genética , Humanos
6.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445562

RESUMO

Synaptonemal complex protein 3 (SCP3), a member of the Cor1 family, has been implicated in cancer progression, and therapeutic resistance, as well as cancer stem cell (CSC)-like properties. Previously, we demonstrated that SCP3 promotes these aggressive phenotypes via hyperactivation of the AKT signaling pathway; however, the underlying mechanisms responsible for SCP3-induced AKT activation remain to be elucidated. In this study, we demonstrated that the EGF-EGFR axis is the primary route through which SCP3 acts to activate AKT signaling. SCP3 triggers the EGFR-AKT pathway through transcriptional activation of EGF. Notably, neutralization of secreted EGF by its specific monoclonal antibody reversed SCP3-mediated aggressive phenotypes with a concomitant reversal of EGFR-AKT activation. In an effort to elucidate the molecular mechanisms underlying SCP3-induced transcriptional activation of EGF, we identified Jun activation domain-binding protein 1 (JAB1) as a binding partner of SCP3 using a yeast two-hybrid (Y2H) assay system, and we demonstrated that SCP3 induces EGF transcription through physical interaction with JAB1. Thus, our findings establish a firm molecular link among SCP3, EGFR, and AKT by identifying the novel roles of SCP3 in transcriptional regulation. We believe that these findings hold important implications for controlling SCP3high therapeutic-refractory cancer.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fator de Crescimento Epidérmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Complexo do Signalossomo COP9/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeo Hidrolases/genética , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
7.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445353

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. Additionally, the efficacy of targeted molecular therapies with multiple tyrosine kinase inhibitors is limited. In this study, we focused on the cellular signaling pathways common to diverse HCC cells and used quantitative reverse phase protein array (RPPA) and statistical analyses to elucidate the molecular mechanisms determining its malignancy. We examined the heterogeneity of 17 liver cancer cell lines by performing cluster analysis of their expression of CD90 and EpCAM cancer stem cell markers. Gaussian mixture model clustering identified three dominant clusters: CD90-positive and EpCAM-negative (CD90+), EpCAM-positive and CD90-negative (EpCAM+) and EpCAM-negative and CD90-negative (Neutral). A multivariate analysis by partial least squares revealed that the former two cell populations showed distinct patterns of protein expression and phosphorylation in the EGFR and EphA2 signaling pathways. The CD90+ cells exhibited higher abundance of AKT, EphA2 and its phosphorylated form at Ser897, whereas the EpCAM+ cells exhibited higher abundance of ERK, RSK and its phosphorylated form. This demonstrates that pro-oncogenic, ligand-independent EphA2 signaling plays a dominant role in CD90+ cells with higher motility and metastatic activity than EpCAM+ cells. We also showed that an AKT inhibitor reduced the proliferation and survival of CD90+ cells but did not affect those of EpCAM+ cells. Taken together, our results suggest that AKT activation may be a key pro-oncogenic regulator in HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias Hepáticas/patologia , Receptor EphA2/fisiologia , Antígenos Thy-1/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor EphA2/metabolismo , Transdução de Sinais
8.
Theranostics ; 11(16): 7844-7868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335968

RESUMO

Radiotherapy is one of the curative treatment options for localized prostate cancer (PCa). The curative potential of radiotherapy is mediated by irradiation-induced oxidative stress and DNA damage in tumor cells. However, PCa radiocurability can be impeded by tumor resistance mechanisms and normal tissue toxicity. Metabolic reprogramming is one of the major hallmarks of tumor progression and therapy resistance. Specific metabolic features of PCa might serve as therapeutic targets for tumor radiosensitization and as biomarkers for identifying the patients most likely to respond to radiotherapy. The study aimed to characterize a potential role of glutaminase (GLS)-driven glutamine catabolism as a prognostic biomarker and a therapeutic target for PCa radiosensitization. Methods: We analyzed primary cell cultures and radioresistant (RR) derivatives of the conventional PCa cell lines by gene expression and metabolic assays to identify the molecular traits associated with radiation resistance. Relative radiosensitivity of the cell lines and primary cell cultures were analyzed by 2-D and 3-D clonogenic analyses. Targeting of glutamine (Gln) metabolism was achieved by Gln starvation, gene knockdown, and chemical inhibition. Activation of the DNA damage response (DDR) and autophagy was assessed by gene expression, western blotting, and fluorescence microscopy. Reactive oxygen species (ROS) and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) were analyzed by fluorescence and luminescence probes, respectively. Cancer stem cell (CSC) properties were investigated by sphere-forming assay, CSC marker analysis, and in vivo limiting dilution assays. Single circulating tumor cells (CTCs) isolated from the blood of PCa patients were analyzed by array comparative genome hybridization. Expression levels of the GLS1 and MYC gene in tumor tissues and amino acid concentrations in blood plasma were correlated to a progression-free survival in PCa patients. Results: Here, we found that radioresistant PCa cells and prostate CSCs have a high glutamine demand. GLS-driven catabolism of glutamine serves not only for energy production but also for the maintenance of the redox state. Consequently, glutamine depletion or inhibition of critical regulators of glutamine utilization, such as GLS and the transcription factor MYC results in PCa radiosensitization. On the contrary, we found that a combination of glutamine metabolism inhibitors with irradiation does not cause toxic effects on nonmalignant prostate cells. Glutamine catabolism contributes to the maintenance of CSCs through regulation of the alpha-ketoglutarate (α-KG)-dependent chromatin-modifying dioxygenase. The lack of glutamine results in the inhibition of CSCs with a high aldehyde dehydrogenase (ALDH) activity, decreases the frequency of the CSC populations in vivo and reduces tumor formation in xenograft mouse models. Moreover, this study shows that activation of the ATG5-mediated autophagy in response to a lack of glutamine is a tumor survival strategy to withstand radiation-mediated cell damage. In combination with autophagy inhibition, the blockade of glutamine metabolism might be a promising strategy for PCa radiosensitization. High blood levels of glutamine in PCa patients significantly correlate with a shorter prostate-specific antigen (PSA) doubling time. Furthermore, high expression of critical regulators of glutamine metabolism, GLS1 and MYC, is significantly associated with a decreased progression-free survival in PCa patients treated with radiotherapy. Conclusions: Our findings demonstrate that GLS-driven glutaminolysis is a prognostic biomarker and therapeutic target for PCa radiosensitization.


Assuntos
Glutamina/metabolismo , Neoplasias da Próstata/metabolismo , Tolerância a Radiação/genética , Animais , Autofagia , Proteína 5 Relacionada à Autofagia/metabolismo , Biomarcadores Farmacológicos , Linhagem Celular Tumoral , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Masculino , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Oxirredução , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204510

RESUMO

Glioblastoma, a subset of aggressive brain tumors, deploy several means to increase blood vessel supply dedicated to the tumor mass. This includes typical program borrowed from embryonic development, such as vasculogenesis and sprouting angiogenesis, as well as unconventional processes, including co-option, vascular mimicry, and transdifferentiation, in which tumor cells are pro-actively engaged. However, these neo-generated vascular networks are morphologically and functionally abnormal, suggesting that the vascularization processes are rather inefficient in the tumor ecosystem. In this review, we reiterate the specificities of each neovascularization modality in glioblastoma, and, how they can be hampered mechanistically in the perspective of anti-cancer therapies.


Assuntos
Glioblastoma/metabolismo , Glioblastoma/patologia , Neovascularização Patológica/metabolismo , Animais , Biomarcadores , Comunicação Celular , Diferenciação Celular , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/etiologia , Glioblastoma/terapia , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Tolerância a Radiação , Transdução de Sinais , Microambiente Tumoral
10.
Anticancer Res ; 41(8): 4117-4126, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281882

RESUMO

BACKGROUND/AIM: Cancer stem cells (CSCs) contribute to resistance against neoadjuvant chemotherapy (NAC) in esophageal squamous cell carcinoma (ESCC). We conducted a retrospective observational study for the relationship between the expression levels of CSC markers in biopsy specimens prior to 5-fluorouracil plus cisplatin (FP)-NAC and the pathological responses. PATIENTS AND METHODS: We included 171 patients with ESCC who underwent the FP-NAC followed by radical resection. Biopsy specimens prior to the FP-NAC were obtained and immunochemically stained for CD44, CD133, and CD24. RESULTS: The biopsy specimens of the non-responders had the CD44high/CD24low expression at high levels, which was found as an independent predictor of not only FP-NAC resistance but also poor overall survival by multivariate analyses. CONCLUSION: CD44high/CD24low expression in the biopsy specimens prior to FP-NAC may be a predictor of FP-NAC resistance and poor prognosis of ESCC patients.


Assuntos
Antígenos CD/metabolismo , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Fluoruracila/uso terapêutico , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/cirurgia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/cirurgia , Esofagectomia , Feminino , Humanos , Masculino , Terapia Neoadjuvante , Células-Tronco Neoplásicas/metabolismo , Estudos Retrospectivos
11.
Molecules ; 26(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299605

RESUMO

Scientific evidence supports the early deregulation of epigenetic profiles during breast carcinogenesis. Research shows that cellular transformation, carcinogenesis, and stemness maintenance are regulated by epigenetic-specific changes that involve microRNAs (miRNAs). Dietary bioactive compounds such as blueberry polyphenols may modulate susceptibility to breast cancer by the modulation of CSC survival and self-renewal pathways through the epigenetic mechanism, including the regulation of miRNA expression. Therefore, the current study aimed to assay the effect of polyphenol enriched blueberry preparation (PEBP) or non-fermented blueberry juice (NBJ) on the modulation of miRNA signature and the target proteins associated with different clinical-pathological characteristics of breast cancer such as stemness, invasion, and chemoresistance using breast cancer cell lines. To this end, 4T1 and MB-MDM-231 cell lines were exposed to NBJ or PEBP for 24 h. miRNA profiling was performed in breast cancer cell cultures, and RT-qPCR was undertaken to assay the expression of target miRNA. The expression of target proteins was examined by Western blotting. Profiling of miRNA revealed that several miRNAs associated with different clinical-pathological characteristics were differentially expressed in cells treated with PEBP. The validation study showed significant downregulation of oncogenic miR-210 expression in both 4T1 and MDA-MB-231 cells exposed to PEBP. In addition, expression of tumor suppressor miR-145 was significantly increased in both cell lines treated with PEBP. Western blot analysis showed a significant increase in the relative expression of FOXO1 in 4T1 and MDA-MB-231 cells exposed to PEBP and in MDA-MB-231 cells exposed to NBJ. Furthermore, a significant decrease was observed in the relative expression of N-RAS in 4T1 and MDA-MB-231 cells exposed to PEBP and in MDA-MB-231 cells exposed to NBJ. Our data indicate a potential chemoprevention role of PEBP through the modulation of miRNA expression, particularly miR-210 and miR-145, and protection against breast cancer development and progression. Thus, PEBP may represent a source for novel chemopreventative agents against breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteína Forkhead Box O1/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Polifenóis/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Mirtilos Azuis (Planta)/química , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Polifenóis/química
12.
Toxicol Lett ; 350: 185-193, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303791

RESUMO

A therapeutic strategy for prostate cancer (PCa) involves the use of 9-cis-retinoic acid (9cRA) to induce cancer stem cells (CSCs) differentiation and apoptosis. Polyinosinic:polycytidylic acid (PIC) is a Toll-like receptor 3 (TLR3) agonist that induces tumor cells apoptosis after activation. PIC+9cRA combination activates retinoic acid receptor ß (RARß) re-expression, leading to CSC differentiation and growth arrest. Since inorganic arsenic (iAs) targets prostatic stem cells (SCs), we hypothesized that arsenic-transformed SCs (As-CSCs) show an impaired TLR3-associated anti-tumor pathway and, therefore, are unresponsive to PIC activation. We evaluated TLR3-mediated activation of anti-tumor pathway based in RARß expression, on As-CSC and iAs-transformed epithelial cells (CAsE-PE). As-CSCs and CAsE-PE showed lower TLR3 and RARß basal expression compared to their respective isogenic controls WPE-Stem and RWPE-1. Also, iAs transformants showed reduced expression of mediators in TLR3 pathway. Importantly, As-CSCs were irresponsive to PIC+9cRA in terms of increased RARß and decreased SC-markers expression, while CAsE-PE, a heterogeneous cell line having a small SC population, were partially responsive. These observations indicate that iAs can impair TLR3 expression and anti-tumor pathway activated by PIC+9cRA in SCs and prostatic epithelial cells. These findings suggest that TLR3-activation based therapy may be an ineffective therapeutic alternative for iAs-associated PCa.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Compostos de Sódio/toxicidade , Receptores Toll-Like/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Variação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/fisiopatologia , Compostos de Sódio/metabolismo , Receptores Toll-Like/metabolismo
13.
Anticancer Res ; 41(7): 3299-3308, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230125

RESUMO

BACKGROUND/AIM: Heparanase (HPSE) is relevant to therapy resistance in many malignancies yet is largely unstudied in Hodgkin's lymphoma. Here, we investigated links between HPSE, cancer stem cell (CSC) features and radioresistance in KM-H2 and L428 Hodgkin's lymphoma cells. MATERIALS AND METHODS: Firstly, HPSE expression in unsorted and sorted CSCs was assessed. Post-irradiation, HPSE and CSC-related gene expression changes were then quantified. Clonogenic ability was investigated with and without artificial changes in HPSE expression pre and post irradiation. RESULTS: HPSE was highly expressed in L428 but barely present in KM-H2 cells. HPSE was overexpressed in sorted L428 CSCs. Irradiation induced HPSE and expression of CSC markers. High HPSE-expressing L428 cells showed higher clonogenic ability than low HPSE-expressing KM-H2 cells after irradiation. Down-regulation of HPSE in L428 cells reduced their clonogenic capability post-radiation, whilst overexpression of HPSE in KM-H2 cells increased colony formation. CONCLUSION: HPSE expression is associated with CSC features and contributes to radioresistance in Hodgkin's lymphoma cells.


Assuntos
Glucuronidase/metabolismo , Doença de Hodgkin/metabolismo , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação/fisiologia , Adulto , Linhagem Celular Tumoral , Regulação para Baixo/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino
14.
Anticancer Res ; 41(7): 3459-3470, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230141

RESUMO

BACKGROUND/AIM: Studies have reported that the expression of c-Met and PrPC improves tumor progression. However, not much is known about their relationship. We hypothesized that c-Met and PrPC interact with each other, and enhance cancer stem cell (CSC) characteristics. MATERIALS AND METHODS: Magnetic activated cell sorting was used to examine the interaction between c-Met and PrPC The effects of the interaction on downstream signals, stem cell marker expression, and sphere formation of colorectal cancer (CRC) cells were investigated. RESULTS: We demonstrated the increased expression and binding levels of c-Met and PrPC in CRC cells compared to normal colon epithelial cells. We revealed that the c-Met and PrPC interaction induced the ERK activation and Oct4 upregulation. The inhibition of c-Met by crizotinib reduced ERK activation and Oct4 expression and suppressed CSC properties. CONCLUSION: c-Met and PrPC interact with each other, and targeting c-Met using crizotinib could be a powerful strategy for CRC therapy.


Assuntos
Neoplasias Colorretais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas PrPC/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Crizotinibe/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
15.
Anticancer Res ; 41(7): 3689-3698, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230168

RESUMO

BACKGROUND/AIM: SPARC-related modular calcium-binding protein 2 (SMOC2), a secreted matricellular protein, is reported to be involved in cancer progression such as cell cycle, angiogenesis, and invasion. In this study, we aimed to investigate the expression of SMOC2 in various gastric lesions and assessed its prognostic value in a large cohort of gastric cancer (GC) patients. PATIENTS AND METHODS: SMOC2 mRNA levels were measured by quantitative real-time PCR using 26 matched fresh-frozen GC samples. SMOC2 protein expression was determined by immunohistochemistry on tissue microarrays including 734 GC specimens and its correlations with clinicopathological features and survival were evaluated. RESULTS: The transcription level of SMOC2 was higher in GC samples compared to normal mucosa (p=0.006). Its expression levels were associated with the intestinal stem cell (ISC) marker, LGR5, but there were no correlations with EPHB2 and OLFM4 or the candidate cancer stem cell markers CD133 and CD44. SMOC2 expression was significantly increased in the intestinal metaplasia and was further increased in gastric adenomas and early gastric cancers (EGC). In total, 34% of GCs were positive for SMOC2, and SMOC2 positivity was higher in old (p=0.001) and male (p<0.001) patients, and in well-differentiated GC (p<0.001). SMOC2 expression had a negative association with perineural invasion (p<0.001) and tumor stage (p<0.001). In survival analysis, SMOC2-positive GC patients had much better clinical outcomes in overall survival rates (p<0.001) compared to SMOC2-negative GC patients. The prognostic impact of SMOC2 remained significant both in intestinal (p<0.001) and diffuse-type GC (p<0.001). Remarkably, a multivariate analysis demonstrated SMOC2 as an independent prognostic marker [hazard ratio (HR)=0.732, p=0.045] along with venous invasion (p=0.012), tumor stage (p<0.001) and CDX2 (p=0.028). CONCLUSION: Our results suggest that SMOC2 can be a prognostic marker for better clinical outcomes in GC.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Idoso , Feminino , Humanos , Mucosa Intestinal/patologia , Masculino , Estadiamento de Neoplasias/métodos , Células-Tronco Neoplásicas/patologia , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
16.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298877

RESUMO

Growing evidence suggests that breast cancer originates from a minor population of cancer cells termed cancer stem cells (CSCs), which can be identified by aldehyde dehydrogenase (ALDH) activity-based flow cytometry analysis. However, novel therapeutic drugs for the eradication of CSCs have not been discovered yet. Recently, drug repositioning, which finds new medical uses from existing drugs, has been expected to facilitate drug discovery. We have previously reported that sphingosine kinase 1 (SphK1) induced proliferation of breast CSCs. In the present study, we focused on the immunosuppressive agent FTY720 (also known as fingolimod or Gilenya), since FTY720 is known to be an inhibitor of SphK1. We found that FTY720 blocked both proliferation of ALDH-positive cells and formation of mammospheres. In addition, we showed that FTY720 reduced the expression of stem cell markers such as Oct3/4, Sox2 and Nanog via upregulation of protein phosphatase 2A (PP2A). These results suggest that FTY720 is an effective drug for breast CSCs in vitro.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Cloridrato de Fingolimode/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteína Fosfatase 2/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imunossupressores/farmacologia , Células MCF-7 , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203589

RESUMO

Pancreatic ductal adenocarcinoma is one of the deadliest tumors. This neoplasia is characterized by an important cellular and phenotypic heterogeneity. In particular, it has been shown that at least two subtypes can be found: basal-like, which presents stem-like properties, and classical. Cancer stem cells have been isolated and characterized from these tumors, showing their dependance on general and tissue-specific stem transcription factors and signaling pathways. Nevertheless, little is known about their tissue microenvironment and cell non-autonomous regulators, such as long-non-coding RNAs. (lncRNAs). In this review, we summarize the current knowledge about the positive and negative effects of lncRNAs in the stemness phenotype of pancreatic ductal adenocarcinoma cancer (PDAC).


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/genética , RNA Longo não Codificante/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , RNA Longo não Codificante/genética
18.
Int J Mol Sci ; 22(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34202966

RESUMO

Ginger (Zingiber officinale Roscoe, family: Zingiberaceae), originating in South-East Asia, is one of the most used spices and condiments for foods and beverages. It is also used in traditional medicine for many human disorders including fever, gastrointestinal complications, arthritis, rheumatism, hypertension, and various infectious diseases due to its anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties. Intriguingly, many recent studies evidenced the potent chemopreventive characteristics of ginger extracts against different types of cancer. The aim of this work is to review the literature related to the use of ginger extracts as a chemotherapeutic agent and to structure the cellular and molecular mechanisms through which ginger acts in different cancer types. Data summarized from experiments (in vitro or in vivo) and clinical studies, evidenced in this review, show that ginger derivatives perpetrate its anti-tumor action through important mediators, involved in crucial cell processes, such as cell cycle arrest, induction of cancer cell death, misbalance of redox homeostasis, inhibition of cell proliferation, angiogenesis, migration, and dissemination of cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Quimioprevenção , Gengibre/química , Neoplasias/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Quimioprevenção/métodos , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Oxirredução/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
19.
Gene ; 796-797: 145805, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34197949

RESUMO

Breast Cancer Stem Cells has become the toast of many breast cancer investigators in the past two decades owing to their crucial roles in tumourigenesis, progression, differentiation, survival and chemoresistance. Despite the growing list of research data in this field, racial or ethnic comparison studies on these stem cells remain scanty. This study is a comparative racial analysis of putative breast cancer stem cells. Research articles on the clinicopathological significance of breast cancer stem cells within a period of 17 years (2003-2020) were reviewed across 5 major races (African/Black American, Asian, Caucasian/White, Hispanic/Latino, and American). The associations between the stem cells markers (CD44+/CD24-/low, BMI1, ALDH1, CD133, and GD2) and clinicopathological and clinical outcomes were analysed. A total of 40 studies were included in this study with 50% Asian, 25% Caucasian, 10% African, 5% American and 2.5% Hispanic/Latino, and 7.5% other mixed races. CD44+/CD24-/low has been associated with TNBC/Basal like phenotype across all races. It is generally associated with poor clinicopathological features such as age, tumour size, lymph node metastasis and lymphovascular invasion. In Asians, CD44+/CD24-/low was associated with DFS and OS but not in Caucasians. ALDH1 was the most studied breast CSC marker (40% of all studies on breast cancer stem cell markers) also associated with poor clinicopathological features including size, age, stage, lymph node metastasis and Nottingham Prognostic Index. ALDH1 was also associated with DFS and OS in Asians but not Caucasians. Racial variations exist in breast cancer stem cell pattern and functions but ill-defined due to multiple factors. Further research is required to better understand the role of breast CSC.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/metabolismo , Antígeno AC133/genética , Família Aldeído Desidrogenase 1/genética , Antígeno CD24/genética , Grupos de Populações Continentais/genética , Intervalo Livre de Doença , Feminino , Humanos , Receptores de Hialuronatos/genética , Complexo Repressor Polycomb 1/genética , Fatores Raciais
20.
Nat Commun ; 12(1): 4288, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257283

RESUMO

The commonly mutated human KRAS oncogene encodes two distinct KRAS4A and KRAS4B proteins generated by differential splicing. We demonstrate here that coordinated regulation of both isoforms through control of splicing is essential for development of Kras mutant tumors. The minor KRAS4A isoform is enriched in cancer stem-like cells, where it responds to hypoxia, while the major KRAS4B is induced by ER stress. KRAS4A splicing is controlled by the DCAF15/RBM39 pathway, and deletion of KRAS4A or pharmacological inhibition of RBM39 using Indisulam leads to inhibition of cancer stem cells. Our data identify existing clinical drugs that target KRAS4A splicing, and suggest that levels of the minor KRAS4A isoform in human tumors can be a biomarker of sensitivity to some existing cancer therapeutics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células A549 , Animais , Western Blotting , Proliferação de Células , Citometria de Fluxo , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...