Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.955
Filtrar
1.
Nat Commun ; 12(1): 5220, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471104

RESUMO

Advancement in human induced pluripotent stem cell (iPSC) neuron and microglial differentiation protocols allow for disease modeling using physiologically relevant cells. However, iPSC differentiation and culturing protocols have posed challenges to maintaining consistency. Here, we generated an automated, consistent, and long-term culturing platform of human iPSC neurons, astrocytes, and microglia. Using this platform we generated a iPSC AD model using human derived cells, which showed signs of Aß plaques, dystrophic neurites around plaques, synapse loss, dendrite retraction, axon fragmentation, phospho-Tau induction, and neuronal cell death in one model. We showed that the human iPSC microglia internalized and compacted Aß to generate and surround the plaques, thereby conferring some neuroprotection. We investigated the mechanism of action of anti-Aß antibodies protection and found that they protected neurons from these pathologies and were most effective before pTau induction. Taken together, these results suggest that this model can facilitate target discovery and drug development efforts.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Diferenciação Celular , Humanos , Cinética , Placa Amiloide , Sinapses/metabolismo
2.
J Toxicol Sci ; 46(9): 425-435, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34470994

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 enters host cells by binding with the receptor angiotensin-converting enzyme 2 (ACE2). While ACE2 is expressed in multiple cell types, it has been implicated in the clinical progression of COVID-19 as an entry point for SARS-CoV-2 into respiratory cells. Human respiratory cells, such as airway and alveolar epithelial type II (ATII) cells, are considered essential for COVID-19 research; however, primary human respiratory cells are difficult to obtain. In the present study, we generated ATII and club cells from human induced pluripotent stem cells (hiPSCs) for SARS-CoV-2 infection and drug testing. The differentiated cells expressed ATII markers (SFTPB, SFTPC, ABCA3, SLC34A2) or club cell markers (SCGB1A1 and SCGB3A2). Differentiated cells, which express ACE2 and TMPRSS2, were infected with SARS-CoV-2. Remdesivir treatment decreased intracellular SARS-CoV-2 viral replication and, furthermore, treatment with bleomycin showed cytotoxicity in a concentration-dependent manner. These data suggest that hiPSC-derived AT2 and club cells provide a useful in vitro model for drug development.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Células Epiteliais Alveolares/efeitos dos fármacos , Antivirais/farmacologia , Bleomicina/toxicidade , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Testes de Toxicidade , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , COVID-19/tratamento farmacológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Fenótipo , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Replicação Viral/efeitos dos fármacos
3.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360992

RESUMO

Several protocols exist for generating megakaryocytes (MKs) and platelets from human induced pluripotent stem cells (hiPSCs) with limited efficiency. We observed previously that mesoderm induction improved endothelial and stromal differentiation. We, therefore, hypothesized that a protocol modification prior to hemogenic endothelial cell (HEC) differentiation will improve MK progenitor (MKP) production and increase platelet output. We further asked if basic media composition affects MK maturation. In an iterative process, we first compared two HEC induction protocols. We found significantly more HECs using the modified protocol including activin A and CHIR99021, resulting in significantly increased MKs. MKs released comparable platelet amounts irrespective of media conditions. In a final validation phase, we obtained five-fold more platelets per hiPSC with the modified protocol (235 ± 84) compared to standard conditions (51 ± 15; p < 0.0001). The regenerative potency of hiPSC-derived platelets was compared to adult donor-derived platelets by profiling angiogenesis-related protein expression. Nineteen of 24 angiogenesis-related proteins were expressed equally, lower or higher in hiPSC-derived compared to adult platelets. The hiPSC-platelet's coagulation hyporeactivity compared to adult platelets was confirmed by thromboelastometry. Further stepwise improvement of hiPSC-platelet production will, thus, permit better identification of platelet-mediated regenerative mechanisms and facilitate manufacture of sufficient amounts of functional platelets for clinical application.


Assuntos
Plaquetas/citologia , Diferenciação Celular , Técnicas de Reprogramação Celular/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Megacariócitos/citologia , Células Cultivadas , Meios de Cultura/química , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
4.
Nat Commun ; 12(1): 4897, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385432

RESUMO

Precise control of mammalian gene expression is facilitated through epigenetic mechanisms and nuclear organization. In particular, insulated chromosome structures are important for regulatory control, but the phenotypic consequences of their boundary disruption on developmental processes are complex and remain insufficiently understood. Here, we generated deeply sequenced Hi-C data for human pluripotent stem cells (hPSCs) that allowed us to identify CTCF loop domains that have highly conserved boundary CTCF sites and show a notable enrichment of individual developmental regulators. Importantly, perturbation of such a boundary in hPSCs interfered with proper differentiation through deregulated distal enhancer-promoter activity. Finally, we found that germline variations affecting such boundaries are subject to purifying selection and are underrepresented in the human population. Taken together, our findings highlight the importance of developmental gene isolation through chromosomal folding structures as a mechanism to ensure their proper expression.


Assuntos
Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Genoma Humano/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Elementos Reguladores de Transcrição/genética , Sítios de Ligação/genética , Western Blotting , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Linhagem Celular , Elementos Facilitadores Genéticos/genética , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA/métodos
5.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360966

RESUMO

Neurodegenerative diseases affect millions of people worldwide and are characterized by the chronic and progressive deterioration of neural function. Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), represent a huge social and economic burden due to increasing prevalence in our aging society, severity of symptoms, and lack of effective disease-modifying therapies. This lack of effective treatments is partly due to a lack of reliable models. Modeling neurodegenerative diseases is difficult because of poor access to human samples (restricted in general to postmortem tissue) and limited knowledge of disease mechanisms in a human context. Animal models play an instrumental role in understanding these diseases but fail to comprehensively represent the full extent of disease due to critical differences between humans and other mammals. The advent of human-induced pluripotent stem cell (hiPSC) technology presents an advantageous system that complements animal models of neurodegenerative diseases. Coupled with advances in gene-editing technologies, hiPSC-derived neural cells from patients and healthy donors now allow disease modeling using human samples that can be used for drug discovery.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Descoberta de Drogas/métodos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Medicina de Precisão/métodos
6.
Nat Commun ; 12(1): 5041, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413299

RESUMO

In vivo reprogramming provokes a wide range of cell fate conversion. Here, we discover that in vivo induction of higher levels of OSKM in mouse somatic cells leads to increased expression of primordial germ cell (PGC)-related genes and provokes genome-wide erasure of genomic imprinting, which takes place exclusively in PGCs. Moreover, the in vivo OSKM reprogramming results in development of cancer that resembles human germ cell tumors. Like a subgroup of germ cell tumors, propagated tumor cells can differentiate into trophoblasts. Moreover, these tumor cells give rise to induced pluripotent stem cells (iPSCs) with expanded differentiation potential into trophoblasts. Remarkably, the tumor-derived iPSCs are able to contribute to non-neoplastic somatic cells in adult mice. Mechanistically, DMRT1, which is expressed in PGCs, drives the reprogramming and propagation of the tumor cells in vivo. Furthermore, the DMRT1-related epigenetic landscape is associated with trophoblast competence of the reprogrammed cells and provides a therapeutic target for germ cell tumors. These results reveal an unappreciated route for somatic cell reprogramming and underscore the impact of reprogramming in development of germ cell tumors.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias/patologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Reprogramação Celular/fisiologia , Epigênese Genética , Feminino , Impressão Genômica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/metabolismo , Fatores de Transcrição/genética
7.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360897

RESUMO

Inherited cardiomyopathies are among the major causes of heart failure and associated with significant mortality and morbidity. Currently, over 70 genes have been linked to the etiology of various forms of cardiomyopathy, some of which are X-linked. Due to the lack of appropriate cell and animal models, it has been difficult to model these X-linked cardiomyopathies. With the advancement of induced pluripotent stem cell (iPSC) technology, the ability to generate iPSC lines from patients with X-linked cardiomyopathy has facilitated in vitro modelling and drug testing for the condition. Nonetheless, due to the mosaicism of the X-chromosome inactivation, disease phenotypes of X-linked cardiomyopathy in heterozygous females are also usually more heterogeneous, with a broad spectrum of presentation. Recent advancements in iPSC procedures have enabled the isolation of cells with different lyonisation to generate isogenic disease and control cell lines. In this review, we will summarise the current strategies and examples of using an iPSC-based model to study different types of X-linked cardiomyopathy. The potential application of isogenic iPSC lines derived from a female patient with heterozygous Danon disease and drug screening will be demonstrated by our preliminary data. The limitations of an iPSC-derived cardiomyocyte-based platform will also be addressed.


Assuntos
Genes Ligados ao Cromossomo X , Doença de Depósito de Glicogênio Tipo IIb/genética , Doença de Depósito de Glicogênio Tipo IIb/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Doença de Depósito de Glicogênio Tipo IIb/classificação , Doença de Depósito de Glicogênio Tipo IIb/patologia , Heterozigoto , Humanos , Masculino , Mosaicismo , Inativação do Cromossomo X
8.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360639

RESUMO

LMNA-related dilated cardiomyopathy is an inherited heart disease caused by mutations in the LMNA gene encoding for lamin A/C. The disease is characterized by left ventricular enlargement and impaired systolic function associated with conduction defects and ventricular arrhythmias. We hypothesized that LMNA-mutated patients' induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) display electrophysiological abnormalities, thus constituting a suitable tool for deciphering the arrhythmogenic mechanisms of the disease, and possibly for developing novel therapeutic modalities. iPSC-CMs were generated from two related patients (father and son) carrying the same E342K mutation in the LMNA gene. Compared to control iPSC-CMs, LMNA-mutated iPSC-CMs exhibited the following electrophysiological abnormalities: (1) decreased spontaneous action potential beat rate and decreased pacemaker current (If) density; (2) prolonged action potential duration and increased L-type Ca2+ current (ICa,L) density; (3) delayed afterdepolarizations (DADs), arrhythmias and increased beat rate variability; (4) DADs, arrhythmias and cessation of spontaneous firing in response to ß-adrenergic stimulation and rapid pacing. Additionally, compared to healthy control, LMNA-mutated iPSC-CMs displayed nuclear morphological irregularities and gene expression alterations. Notably, KB-R7943, a selective inhibitor of the reverse-mode of the Na+/Ca2+ exchanger, blocked the DADs in LMNA-mutated iPSC-CMs. Our findings demonstrate cellular electrophysiological mechanisms underlying the arrhythmias in LMNA-related dilated cardiomyopathy.


Assuntos
Arritmias Cardíacas/patologia , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Lamina Tipo A/genética , Mutação , Miócitos Cardíacos/patologia , Potenciais de Ação , Adulto , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Diferenciação Celular , Fenômenos Eletrofisiológicos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Linhagem
9.
Theranostics ; 11(16): 7879-7895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335970

RESUMO

Rationale: Previous studies have shown that human embryonic stem cell-derived cardiomyocytes improved myocardial recovery when administered to infarcted pig and non-human primate hearts. However, the engraftment of intramyocardially delivered cells is poor and the effectiveness of clinically relevant doses of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in large animal models of myocardial injury remains unknown. Here, we determined whether thymosin ß4 (Tb4) could improve the engraftment and reparative potency of transplanted hiPSC-CMs in a porcine model of myocardial infarction (MI). Methods: Tb4 was delivered from injected gelatin microspheres, which extended the duration of Tb4 administration for up to two weeks in vitro. After MI induction, pigs were randomly distributed into 4 treatment groups: the MI Group was injected with basal medium; the Tb4 Group received gelatin microspheres carrying Tb4; the CM Group was treated with 1.2 × 108 hiPSC-CMs; and the Tb4+CM Group received both the Tb4 microspheres and hiPSC-CMs. Myocardial recovery was assessed by cardiac magnetic resonance imaging (MRI), arrhythmogenesis was monitored with implanted loop recorders, and tumorigenesis was evaluated via whole-body MRI. Results: In vitro, 600 ng/mL of Tb4 protected cultured hiPSC-CMs from hypoxic damage by upregulating AKT activity and BcL-XL and promoted hiPSC-CM and hiPSC-EC proliferation. In infarcted pig hearts, hiPSC-CM transplantation alone had a minimal effect on myocardial recovery, but co-treatment with Tb4 significantly enhanced hiPSC-CM engraftment, induced vasculogenesis and the proliferation of cardiomyocytes and endothelial cells, improved left ventricular systolic function, and reduced infarct size. hiPSC-CM implantation did not increase incidence of ventricular arrhythmia and did not induce tumorigenesis in the immunosuppressed pigs. Conclusions: Co-treatment with Tb4-microspheres and hiPSC-CMs was safe and enhanced the reparative potency of hiPSC-CMs for myocardial repair in a large-animal model of MI.


Assuntos
Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Timosina/farmacologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , China , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Regeneração , Transplante de Células-Tronco/métodos , Suínos , Timosina/metabolismo , Timosina/fisiologia
10.
PLoS One ; 16(8): e0255976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411149

RESUMO

BACKGROUND: Cardiac injury associated with cytokine release frequently occurs in SARS-CoV-2 mediated coronavirus disease (COVID19) and mortality is particularly high in these patients. The mechanistic role of the COVID19 associated cytokine-storm for the concomitant cardiac dysfunction and associated arrhythmias is unclear. Moreover, the role of anti-inflammatory therapy to mitigate cardiac dysfunction remains elusive. AIMS AND METHODS: We investigated the effects of COVID19-associated inflammatory response on cardiac cellular function as well as its cardiac arrhythmogenic potential in rat and induced pluripotent stem cell derived cardiomyocytes (iPS-CM). In addition, we evaluated the therapeutic potential of the IL-1ß antagonist Canakinumab using state of the art in-vitro confocal and ratiometric high-throughput microscopy. RESULTS: Isolated rat ventricular cardiomyocytes were exposed to control or COVID19 serum from intensive care unit (ICU) patients with severe ARDS and impaired cardiac function (LVEF 41±5%; 1/3 of patients on veno-venous extracorporeal membrane oxygenation; CK 154±43 U/l). Rat cardiomyocytes showed an early increase of myofilament sensitivity, a decrease of Ca2+ transient amplitudes and altered baseline [Ca2+] upon exposure to patient serum. In addition, we used iPS-CM to explore the long-term effect of patient serum on cardiac electrical and mechanical function. In iPS-CM, spontaneous Ca2+ release events were more likely to occur upon incubation with COVID19 serum and nuclear as well as cytosolic Ca2+ release were altered. Co-incubation with Canakinumab had no effect on pro-arrhythmogenic Ca2+ release or Ca2+ signaling during excitation-contraction coupling, nor significantly influenced cellular automaticity. CONCLUSION: Serum derived from COVID19 patients exerts acute cardio-depressant and chronic pro-arrhythmogenic effects in rat and iPS-derived cardiomyocytes. Canakinumab had no beneficial effect on cellular Ca2+ signaling during excitation-contraction coupling. The presented method utilizing iPS-CM and in-vitro Ca2+ imaging might serve as a novel tool for precision medicine. It allows to investigate cytokine related cardiac dysfunction and pharmacological approaches useful therein.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Arritmias Cardíacas , COVID-19 , Sinalização do Cálcio/efeitos dos fármacos , Miócitos Cardíacos , SARS-CoV-2/metabolismo , Adulto , Idoso , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , COVID-19/complicações , COVID-19/tratamento farmacológico , COVID-19/metabolismo , COVID-19/patologia , Cálcio/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia
11.
Stem Cell Res ; 54: 102432, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34214899

RESUMO

Aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a basic helix-loop-helix (bHLH/PAS) transcription factor involved in the development of paraventricular nucleus of the hypothalamus (PVH) through the heterodimerization with Single-minded 1 (SIM1) (Michaud et al., 2000). Using a Sendai virus-based approach, the four reprogramming factors OCT3/4, SOX2, KLF4 and C-MYC were delivered into Peripheral Blood Mononuclear Cell (PBMCs) from a 14-year-old girl with early onset obesity carrying a de novo variant (p.P130A) in ARNT2. The resulting iPSC line CUIMCi003-A had a normal karyotype, showed pluripotency and three germ layer differentiation capacity in vitro and was heterozygous for the de novo ARNT2 variant.


Assuntos
Células-Tronco Pluripotentes Induzidas , Adolescente , Translocador Nuclear Receptor Aril Hidrocarboneto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Obesidade/genética
12.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207766

RESUMO

Human-induced pluripotent stem cells (hiPSCs) can be applied in patient-specific cell therapy to regenerate lost tissue or organ function. Anisotropic control of the structural organization in the newly generated bone matrix is pivotal for functional reconstruction during bone tissue regeneration. Recently, we revealed that hiPSC-derived osteoblasts (hiPSC-Obs) exhibit preferential alignment and organize in highly ordered bone matrices along a bone-mimetic collagen scaffold, indicating their critical role in regulating the unidirectional cellular arrangement, as well as the structural organization of regenerated bone tissue. However, it remains unclear how hiPSCs exhibit the cell properties required for oriented tissue construction. The present study aimed to characterize the properties of hiPSCs-Obs and those of their focal adhesions (FAs), which mediate the structural relationship between cells and the matrix. Our in vitro anisotropic cell culture system revealed the superior adhesion behavior of hiPSC-Obs, which exhibited accelerated cell proliferation and better cell alignment along the collagen axis compared to normal human osteoblasts. Notably, the oriented collagen scaffold stimulated FA formation along the scaffold collagen orientation. This is the first report of the superior cell adhesion behavior of hiPSC-Obs associated with the promotion of FA assembly along an anisotropic scaffold. These findings suggest a promising role for hiPSCs in enabling anisotropic bone microstructural regeneration.


Assuntos
Colágeno/química , Adesões Focais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Osteoblastos/metabolismo , Tecidos Suporte/química , Humanos
13.
Methods Mol Biol ; 2312: 301-305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228298

RESUMO

Cell culture media are often supplemented with recombinant growth factors and cytokines to reproduce biological conditions in vitro. Basic fibroblast growth factor (bFGF) has been widely used to support the pluripotency and self-renewal activity of human induced pluripotent stem cells (hiPSCs). We had previously developed a synthetic surrogate for bFGF on the basis of a DNA aptamer that binds to one of the FGF receptors. Since DNA aptamers have advantages over recombinant proteins in terms of thermal stability and production cost, replacing recombinant growth factors in cell culture media with DNA aptamers would be of great interest. Herein, we describe our protocol for feeder-free hiPSC culture using a DNA aptamer-based mimic of bFGF.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mimetismo Molecular , Receptores de Fatores de Crescimento de Fibroblastos/agonistas , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
14.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299328

RESUMO

The blood-brain barrier (BBB) regulates the delivery of oxygen and important nutrients to the brain through active and passive transport and prevents neurotoxins from entering the brain. It also has a clearance function and removes carbon dioxide and toxic metabolites from the central nervous system (CNS). Several drugs are unable to cross the BBB and enter the CNS, adding complexity to drug screens targeting brain disorders. A well-functioning BBB is essential for maintaining healthy brain tissue, and a malfunction of the BBB, linked to its permeability, results in toxins and immune cells entering the CNS. This impairment is associated with a variety of neurological diseases, including Alzheimer's disease and Parkinson's disease. Here, we summarize current knowledge about the BBB in neurodegenerative diseases. Furthermore, we focus on recent progress of using human-induced pluripotent stem cell (iPSC)-derived models to study the BBB. We review the potential of novel stem cell-based platforms in modeling the BBB and address advances and key challenges of using stem cell technology in modeling the human BBB. Finally, we highlight future directions in this area.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/patologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Doenças Neurodegenerativas/patologia
15.
Nat Biomed Eng ; 5(8): 897-913, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239116

RESUMO

Creating in vitro models of diseases of the pancreatic ductal compartment requires a comprehensive understanding of the developmental trajectories of pancreas-specific cell types. Here we report the single-cell characterization of the differentiation of pancreatic duct-like organoids (PDLOs) from human induced pluripotent stem cells (hiPSCs) on a microwell chip that facilitates the uniform aggregation and chemical induction of hiPSC-derived pancreatic progenitors. Using time-resolved single-cell transcriptional profiling and immunofluorescence imaging of the forming PDLOs, we identified differentiation routes from pancreatic progenitors through ductal intermediates to two types of mature duct-like cells and a few non-ductal cell types. PDLO subpopulations expressed either mucins or the cystic fibrosis transmembrane conductance regulator, and resembled human adult duct cells. We also used the chip to uncover ductal markers relevant to pancreatic carcinogenesis, and to establish PDLO co-cultures with stellate cells, which allowed for the study of epithelial-mesenchymal signalling. The PDLO microsystem could be used to establish patient-specific pancreatic duct models.


Assuntos
Diferenciação Celular , Dispositivos Lab-On-A-Chip , Organoides/citologia , Ductos Pancreáticos/citologia , Animais , Biomarcadores Tumorais/metabolismo , Reprogramação Celular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Filaminas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mucinas/metabolismo , Organoides/metabolismo , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Análise de Célula Única , Taxa de Sobrevida
16.
Methods Mol Biol ; 2352: 45-55, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324179

RESUMO

Astrocytes play important roles in neurodevelopment and diseases. Previous studies described ways to derive astrocytes from somatic cells by going through iPSC or iNSC/iNPC intermediates. Here we describe a method to directly convert mouse fibroblasts into functional astrocytes using small molecules without transgenes or viral transduction. The direct chemical reprogramming method described in this study provides a more rapid way to derive astrocytes from fibroblasts.


Assuntos
Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Reprogramação Celular , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores , Diferenciação Celular/genética , Separação Celular , Células Cultivadas , Reprogramação Celular/genética , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Fatores de Transcrição/genética , Transgenes
17.
Methods Mol Biol ; 2352: 127-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324184

RESUMO

Human motor neurons are important materials for the research of the pathogenesis and drug discovery of motor neuron diseases. Various methods to generate motor neurons (MNs) from embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) by the addition of signaling molecules have been reported. However, they require multiple steps and complicated processes. Here we describe an approach for generating human MNs from ESCs/iPSCs using a single Sendai virus vector encoding three transcription factors-Lhx3, Ngn2, and Isl1. This approach enabled us to generate MNs in one step, adding Sendai virus vector in culture medium. This simple method significantly reduces the efforts to generate MNs, and it provides a useful tool for motor neuron disease research.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Vetores Genéticos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/citologia , Vírus Sendai , Diferenciação Celular/genética , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Vírus Sendai/genética , Fatores de Transcrição/genética , Transgenes
18.
Genes (Basel) ; 12(6)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208537

RESUMO

Congenital heart defects (CHD) are developmental malformations affecting the heart and the great vessels. Early heart development requires temporally regulated crosstalk between multiple cell types, signaling pathways, and mechanical forces of early blood flow. While both genetic and environmental factors have been recognized to be involved, identifying causal genes in non-syndromic CHD has been difficult. While variants following Mendelian inheritance have been identified by linkage analysis in a few families with multiple affected members, the inheritance pattern in most familial cases is complex, with reduced penetrance and variable expressivity. Furthermore, most non-syndromic CHD are sporadic. Improved sequencing technologies and large biobank collections have enabled genome-wide association studies (GWAS) in non-syndromic CHD. The ability to generate human to create human induced pluripotent stem cells (hiPSC) and further differentiate them to organotypic cells enables further exploration of genotype-phenotype correlations in patient-derived cells. Here we review how these technologies can be used in unraveling the genetics and molecular mechanisms of heart development.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Cardiopatias Congênitas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Bancos de Espécimes Biológicos , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
19.
Cell Death Dis ; 12(7): 677, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226515

RESUMO

Muscular dystrophies are debilitating neuromuscular disorders for which no cure exists. As this disorder affects both cardiac and skeletal muscle, patients would benefit from a cellular therapy that can simultaneously regenerate both tissues. The current protocol to derive bipotent mesodermal progenitors which can differentiate into cardiac and skeletal muscle relies on the spontaneous formation of embryoid bodies, thereby hampering further clinical translation. Additionally, as skeletal muscle is the largest organ in the human body, a high myogenic potential is necessary for successful regeneration. Here, we have optimized a protocol to generate chemically defined human induced pluripotent stem cell-derived mesodermal progenitors (cdMiPs). We demonstrate that these cells contribute to myotube formation and differentiate into cardiomyocytes, both in vitro and in vivo. Furthermore, the addition of valproic acid, a clinically approved small molecule, increases the potential of the cdMiPs to contribute to myotube formation that can be prevented by NOTCH signaling inhibitors. Moreover, valproic acid pre-treated cdMiPs injected in dystrophic muscles increase physical strength and ameliorate the functional performances of transplanted mice. Taken together, these results constitute a novel approach to generate mesodermal progenitors with enhanced myogenic potential using clinically approved reagents.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mesoderma/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Receptores Notch/metabolismo , Ácido Valproico/farmacologia , Animais , Linhagem da Célula , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Mesoderma/citologia , Mesoderma/metabolismo , Mesoderma/transplante , Camundongos , Camundongos Knockout , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/transplante , Força Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatologia , Distrofias Musculares/cirurgia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Fenótipo , Ratos , Transdução de Sinais
20.
Stem Cell Res ; 54: 102438, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34214898

RESUMO

Friedreich's ataxia (FRDA) is a rare neurodegenerative disorder which is caused by triplet repeat expansion (GAA) in the first intron of FXN gene. In this present study, we generated induced pluripotent stem cells (iPSC) lines from fibroblasts of three unrelated FRDA patients using integration-free episomal vectors. All iPSC lines express the pluripotency markers such as OCT4 and SSEA4, display normal karyotypes and can differentiate into all three germ layers via in vivo teratoma formation assay.


Assuntos
Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Proteínas de Ligação ao Ferro , Ataxia de Friedreich/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Íntrons/genética , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Expansão das Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...