Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Physiol Rep ; 9(17): e15014, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523264

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening people's lives and impacting their health. It is still unclear whether people engaged in physical activity are at an increased risk of SARS-CoV-2 infection and severe forms of COVID-19. In order to provide data to help answer this question, we, therefore, investigated the effects of endurance training on the levels of host proteins involved in SARS-CoV-2 infection in mice. Eight-week-old C57BL/6J mice were subjected to treadmill running (17-25 m/min, 60-90 min, 5 sessions/week, 8 weeks). After the intervention, the levels of angiotensin-converting enzyme 2 (ACE2; host receptor for SARS-CoV-2), transmembrane protease serine 2 (TMPRSS2; host protease priming fusion of SARS-CoV-2 to host cell membranes), FURIN (host protease that promotes binding of SARS-CoV-2 to host receptors), and Neuropilin-1 (host coreceptor for SARS-CoV-2) were measured in 10 organs that SARS-CoV-2 can infect (larynx, trachea, lung, heart, jejunum, ileum, colon, liver, kidney, and testis). Six organs (heart, lung, jejunum, liver, trachea, and ileum) showed changes in the levels of at least one of the proteins. Endurance training increased ACE2 levels in heart (+66.4%), lung (+37.1%), jejunum (+24.7%) and liver (+27.4%), and FURIN in liver (+17.9%) tissue. In contrast, endurance training decreased Neuropilin-1 levels in liver (-39.7%), trachea (-41.2%), and ileum (-39.7%), and TMPRSS2 in lung (-11.3%). Taken together, endurance training altered the levels of host proteins involved in SARS-CoV-2 cell entry in an organ-dependent manner.


Assuntos
COVID-19/virologia , Condicionamento Físico Animal , Resistência Física , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/enzimologia , Furina/metabolismo , Interações Hospedeiro-Patógeno , Masculino , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Corrida , Serina Endopeptidases/metabolismo
2.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576002

RESUMO

Recently, inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) have been proposed as potential therapeutic agents for COVID-19. Studying effects of amino acid mutations in the conformation of drug targets is necessary for anticipating drug resistance. In this study, with the structure of the SARS-CoV-2 Mpro complexed with a non-covalent inhibitor, we performed molecular dynamics (MD) simulations to determine the conformation of the complex when single amino acid residue in the active site is mutated. As a model of amino acid mutation, we constructed mutant proteins with one residue in the active site mutated to alanine. This method is called virtual alanine scan. The results of the MD simulations showed that the conformation and configuration of the ligand was changed for mutants H163A and E166A, although the structure of the whole protein and of the catalytic dyad did not change significantly, suggesting that mutations in His163 and Glu166 may be linked to drug resistance.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , SARS-CoV-2 , Alanina , Substituição de Aminoácidos , COVID-19/enzimologia , COVID-19/genética , Domínio Catalítico/genética , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Humanos , SARS-CoV-2/enzimologia , SARS-CoV-2/genética
3.
BMC Pulm Med ; 21(1): 275, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425811

RESUMO

BACKGROUND: How cigarette smoke (CS) and chronic obstructive pulmonary disease (COPD) affect severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection and severity is controversial. We investigated the effects of COPD and CS on the expression of SARS-CoV-2 entry receptor ACE2 in vivo in COPD patients and controls and in CS-exposed mice, and the effects of CS on SARS-CoV-2 infection in human bronchial epithelial cells in vitro. METHODS: We quantified: (1) pulmonary ACE2 protein levels by immunostaining and ELISA, and both ACE2 and/or TMPRSS2 mRNA levels by RT-qPCR in two independent human cohorts; and (2) pulmonary ACE2 protein levels by immunostaining and ELISA in C57BL/6 WT mice exposed to air or CS for up to 6 months. The effects of CS exposure on SARS-CoV-2 infection were evaluated after in vitro infection of Calu-3 cells and differentiated human bronchial epithelial cells (HBECs), respectively. RESULTS: ACE2 protein and mRNA levels were decreased in peripheral airways from COPD patients versus controls but similar in central airways. Mice exposed to CS had decreased ACE2 protein levels in their bronchial and alveolar epithelia versus air-exposed mice. CS treatment decreased viral replication in Calu-3 cells, as determined by immunofluorescence staining for replicative double-stranded RNA (dsRNA) and western blot for viral N protein. Acute CS exposure decreased in vitro SARS-CoV-2 replication in HBECs, as determined by plaque assay and RT-qPCR. CONCLUSIONS: ACE2 levels were decreased in both bronchial and alveolar epithelial cells from COPD patients versus controls, and from CS-exposed versus air-exposed mice. CS-pre-exposure potently inhibited SARS-CoV-2 replication in vitro. These findings urge to investigate further the controversial effects of CS and COPD on SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/enzimologia , Fumar Cigarros/metabolismo , Doença Pulmonar Obstrutiva Crônica/enzimologia , SARS-CoV-2/fisiologia , Fumaça , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/genética , Animais , Brônquios , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Gravidade do Paciente , Alvéolos Pulmonares , RNA Mensageiro/metabolismo , Mucosa Respiratória/metabolismo , Serina Endopeptidases/genética , Tabaco , Replicação Viral
5.
Genes (Basel) ; 12(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34356057

RESUMO

The virus responsible for the COVID-19 global health crisis, SARS-CoV-2, has been shown to utilize the ACE2 protein as an entry point to its target cells. The virus has been shown to rely on the actions of TMPRSS2 (a serine protease), as well as FURIN (a peptidase), for the critical priming of its spike protein. It has been postulated that variations in the sequence and expression of SARS-CoV-2's receptor (ACE2) and the two priming proteases (TMPRSS2 and FURIN) may be critical in contributing to SARS-CoV-2 infectivity. This study aims to examine the different expression levels of FURIN in various tissues and age ranges in light of ACE2 and TMPRSS2 expression levels using the LungMAP database. Furthermore, we retrieved expression quantitative trait loci (eQTLs) of the three genes and their annotation. We analyzed the frequency of the retrieved variants in data from various populations and compared it to the Egyptian population. We highlight FURIN's potential interplay with the immune response to SARS-CoV-2 and showcase a myriad of variants of the three genes that are differentially expressed across populations. Our findings provide insights into potential genetic factors that impact SARS-CoV-2 infectivity in different populations and shed light on the varying expression patterns of FURIN.


Assuntos
Alelos , Enzima de Conversão de Angiotensina 2 , COVID-19 , Bases de Dados de Ácidos Nucleicos , Furina , Regulação Enzimológica da Expressão Gênica , Frequência do Gene , Predisposição Genética para Doença , SARS-CoV-2/metabolismo , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/biossíntese , Enzima de Conversão de Angiotensina 2/genética , COVID-19/enzimologia , COVID-19/genética , Biologia Computacional , Feminino , Furina/biossíntese , Furina/genética , Humanos , Masculino , SARS-CoV-2/genética , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética
6.
Genes (Basel) ; 12(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356070

RESUMO

Chronic inflammatory lung diseases are characterized by uncontrolled immune response in the airways as their main pathophysiological manifestation. The lack of specific diagnostic and therapeutic biomarkers for many pulmonary diseases represents a major challenge for pulmonologists. The majority of the currently approved therapeutic approaches are focused on achieving disease remission, although there is no guarantee of complete recovery. It is known that angiotensin-converting enzyme 2 (ACE2), an important counter-regulatory component of the renin-angiotensin-aldosterone system (RAAS), is expressed in the airways. It has been shown that ACE2 plays a role in systemic regulation of the cardiovascular and renal systems, lungs and liver by acting on blood pressure, electrolyte balance control mechanisms and inflammation. Its protective role in the lungs has also been presented, but the exact pathophysiological mechanism of action is still elusive. The aim of this study is to review and discuss recent findings about ACE2, including its potential role in the pathophysiology of chronic inflammatory lung diseases:, i.e., chronic obstructive pulmonary disease, asthma, and pulmonary hypertension. Additionally, in the light of the coronavirus 2019 disease (COVID-19), we will discuss the role of ACE2 in the pathophysiology of this disease, mainly represented by different grades of pulmonary problems. We believe that these insights will open up new perspectives for the future use of ACE2 as a potential biomarker for early diagnosis and monitoring of chronic inflammatory lung diseases.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Asma/diagnóstico , Teste para COVID-19 , COVID-19/enzimologia , Hipertensão Pulmonar/diagnóstico , Pulmão/enzimologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Asma/enzimologia , Asma/genética , COVID-19/genética , Humanos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/genética , Inflamação/diagnóstico , Inflamação/enzimologia , Inflamação/genética , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/genética , Sistema Renina-Angiotensina
7.
Antiviral Res ; 194: 105147, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375715

RESUMO

The SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2) was previously engineered into a high affinity tetravalent format (ACE2-Fc-TD) that is a potential decoy protein in SARS-CoV-2 infection.We report that this protein shows greatly enhanced binding to SARS-CoV-2 spike proteins of the SARS-CoV-2 variants of concern B.1.1.7 (alpha variant, originally isolated in the United Kingdom) and B.1.351 (beta variant, originally isolated in South Africa) with picomolar compared with nanomolar Kd values. In addition, ACE2-Fc-TD displays greater neutralization of SARS-CoV-2 pseudotype viruses compared to a dimeric ACE2-Fc, with enhanced activity on variant B.1.351. This tetrameric decoy protein would be a valuable addition to SARS-CoV-2 therapeutic approaches, especially where vaccination cannot be used but also should there be any future coronavirus pandemics.


Assuntos
Enzima de Conversão de Angiotensina 2/farmacologia , Antivirais/metabolismo , COVID-19/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , COVID-19/tratamento farmacológico , COVID-19/enzimologia , COVID-19/virologia , Linhagem Celular , Humanos , Cinética , Mutação , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
Microvasc Res ; 138: 104232, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34416267

RESUMO

The mechanisms by which the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) induces neurological complications remain to be elucidated. We aimed to identify possible effects of hypoxia on the expression of SARS-CoV-2 cell entry mediators, angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane protease serine 2 (TMPRSS2) protein, in human brain endothelial cells, in vitro. hCMEC/D3 cells were exposed to different oxygen tensions: 20% (Control group), 8% or 2% O2 (Hypoxia groups). Cells were harvested 6-, 24- and 48 h following hypoxic challenge for assessment of mRNA and protein, using qPCR and Western Blot. The response of the brain endothelial cells to hypoxia was replicated using modular incubator chambers. We observed an acute increase (6 h, p < 0.05), followed by a longer-term decrease (48 h, p < 0.05) in ACE2 mRNA and protein expression, accompanied by reduced expression of TMPRSS2 protein levels (48 h, p < 0.05) under the more severe hypoxic condition (2% O2). No changes in levels of von Willebrand Factor (vWF - an endothelial cell damage marker) or interleukin 6 (IL-6 - a pro-inflammatory cytokine) mRNA were observed. We conclude that hypoxia regulates brain endothelial cell ACE2 and TMPRSS2 expression in vitro, which may indicate human brain endothelial susceptibility to SARS-CoV-2 infection and subsequent brain sequelae.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Encéfalo/irrigação sanguínea , COVID-19/virologia , Células Endoteliais/virologia , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/genética , COVID-19/enzimologia , Hipóxia Celular , Linhagem Celular , Células Endoteliais/enzimologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Serina Endopeptidases/genética
9.
Cells ; 10(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440765

RESUMO

Sarcoidosis is a multisystem disease characterized by the development and accumulation of granulomas, the hallmark of an inflammatory process induced by environmental and/or infectious and or genetic factors. This auto-inflammatory disease mainly affects the lungs, the gateway to environmental aggressions and viral infections. We have shown previously that genetic predisposition to sarcoidosis occurring in familial cases is related to a large spectrum of pathogenic variants with, however, a clustering around mTOR (mammalian Target Of Rapamycin)-related pathways and autophagy regulation. The context of the COVID-19 pandemic led us to evaluate whether such genetic defects may increase the risk of a severe course of SARS-CoV2 infection in patients with sarcoidosis. We extended a whole exome screening to 13 families predisposed to sarcoidosis and crossed the genes sharing mutations with the list of genes involved in the SARS-CoV2 host-pathogen protein-protein interactome. A similar analysis protocol was applied to a series of 100 healthy individuals. Using ENRICH.R, a comprehensive gene set enrichment web server, we identified the functional pathways represented in the set of genes carrying deleterious mutations and confirmed the overrepresentation of autophagy- and mitophagy-related functions in familial cases of sarcoidosis. The same protocol was applied to the set of genes common to sarcoidosis and the SARS-CoV2-host interactome and found a significant enrichment of genes related to mitochondrial factors involved in autophagy, mitophagy, and RIG-I-like (Retinoic Acid Inducible Gene 1) Receptor antiviral response signaling. From these results, we discuss the hypothesis according to which sarcoidosis is a model for studying genetic abnormalities associated with host response to viral infections as a consequence of defects in autophagy and mitophagy processes.


Assuntos
Autofagia , COVID-19/fisiopatologia , Sarcoidose/fisiopatologia , COVID-19/enzimologia , Genômica , Humanos , Mitofagia , Proteínas Serina-Treonina Quinases , Sarcoidose/enzimologia , Sequenciamento Completo do Exoma
10.
Aging (Albany NY) ; 13(17): 20886-20895, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413267

RESUMO

The potential role of abnormal ACE2 expression after SARS-CoV-2 infection in the prognosis of breast cancer is still ambiguous. In this study, we analyzed ACE2 changes in breast cancer and studied the correlation between ACE2 and the prognosis and further analyzed the relationship between immune infiltration and the prognosis of different breast cancer subtypes. Finally, we inferred the prognosis of breast cancer patients after SARS-CoV-2 infection. We found that ACE2 expression decreased significantly in breast cancer, except for basal-like subtype. Decreased ACE2 expression level was correlated with abnormal immune infiltration and poorer prognosis of luminal B breast cancer (RFS: HR 0.76, 95%CI=0.63-0.92, p=0.005; DMFS: HR 0.70, 95%CI=0.49-1.00, p=0.046). The expression of ACE2 was strongly positively correlated with the immune infiltration level of CD8+ T cell (r=0.184, p<0.001), CD4+ T cell (r=0.104, p=0.02) and neutrophils (r=0.101, p=0.02). ACE2 expression level in the luminal subtype was positively correlated with CD8A and CD8B markers in CD8+ T cells, and CEACAM3, S100A12 in neutrophils. In conclusion, breast tumor tissues might undergo a further decrease in the expression level of ACE2 after SARS-CoV-2 infection, which could contribute to further deterioration of immune infiltration and worsen the prognosis of luminal B breast cancer after SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/virologia , COVID-19/enzimologia , COVID-19/imunologia , Linfócitos do Interstício Tumoral/imunologia , SARS-CoV-2/fisiologia , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/enzimologia , Chlorocebus aethiops , Feminino , Humanos , Estimativa de Kaplan-Meier , Camundongos , Prognóstico , Células Vero
11.
Artigo em Inglês | MEDLINE | ID: mdl-34263708

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic of the coronavirus disease in 2019. RNA-dependent RNA polymerase (RdRp) plays an essential role in RNA replication and transcription in SARS-CoV-2. In this study, we focused on the RNA template component of viral RdRp structure and analyzed human microRNAs (miRNAs) targeting specific sequences in this RNA. By examining miRNA databases and using an in vitro RNA-RNA interaction assay, we observed hsa-miR-15b-5p interacting with the RNA component of viral RdRp. Our findings provide evidence that hsa-miR15b-5p may suppresses viral infection and proliferation by targeting the RNA template component of SARS-CoV-2 RdRp.


Assuntos
COVID-19/metabolismo , Regulação Viral da Expressão Gênica , MicroRNAs/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Biomarcadores/metabolismo , COVID-19/enzimologia , COVID-19/genética , COVID-19/virologia , Bases de Dados Genéticas , Humanos , Técnicas In Vitro , SARS-CoV-2 , Transcrição Genética
12.
Int J Biol Sci ; 17(9): 2348-2355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239361

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to more than 150 million infections and about 3.1 million deaths up to date. Currently, drugs screened are urgently aiming to block the infection of SARS-CoV-2. Here, we explored the interaction networks of kinase and COVID-19 crosstalk, and identified phosphoinositide 3-kinase (PI3K)/AKT pathway as the most important kinase signal pathway involving COVID-19. Further, we found a PI3K/AKT signal pathway inhibitor capivasertib restricted the entry of SARS-CoV-2 into cells under non-cytotoxic concentrations. Lastly, the signal axis PI3K/AKT/FYVE finger-containing phosphoinositide kinase (PIKfyve)/PtdIns(3,5)P2 was revealed to play a key role during the cellular entry of viruses including SARS-CoV-2, possibly providing potential antiviral targets. Altogether, our study suggests that the PI3K/AKT kinase inhibitor drugs may be a promising anti-SARS-CoV-2 strategy for clinical application, especially for managing cancer patients with COVID-19 in the pandemic era.


Assuntos
COVID-19/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , COVID-19/enzimologia , Chlorocebus aethiops , Simulação por Computador , Humanos , Neoplasias/enzimologia , Neoplasias/mortalidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor Cross-Talk , Células Vero
13.
Immunol Lett ; 237: 33-41, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34228987

RESUMO

OBJECTIVE: In this study, we focused on the interaction between SARS-CoV-2 and host Type I Interferon (IFN) response, so as to identify whether IFN effects could be influenced by the products of SARS-CoV-2. METHODS: All the structural and non-structural proteins of SARS-CoV-2 were transfected and overexpressed in the bronchial epithelial cell line BEAS-2B respectively, and typical antiviral IFN-stimulated gene (ISG) ISG15 expression was detected by qRT-PCR. RNA-seq based transcriptome analysis was performed between control and Spike (S) protein-overexpressed BEAS-2B cells. The expression of ACE2 and IFN effector JAK-STAT signaling activation were detected in control and S protein-overexpressed BEAS-2B cells by qRT-PCR or/and Western blot respectively. The interaction between S protein with STAT1 and STAT2, and the association between JAK1 with downstream STAT1 and STAT2 were measured in BEAS-2B cells by co-immunoprecipitation (co-IP). RESULTS: S protein could activate IFN effects and downstream ISGs expression. By transcriptome analysis, overexpression of S protein induced a set of genes expression, including series of ISGs and the SARS-CoV-2 receptor ACE2. Mechanistically, S protein enhanced the association between the upstream JAK1 and downstream STAT1 and STAT2, so as to promote STAT1 and STAT2 phosphorylation and ACE2 expression. CONCLUSION: SARS-CoV-2 S protein enhances ACE2 expression via facilitating IFN effects, which may help its infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Brônquios/efeitos dos fármacos , COVID-19/virologia , Células Epiteliais/efeitos dos fármacos , Interferon alfa-2/farmacologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Brônquios/enzimologia , Brônquios/virologia , COVID-19/enzimologia , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Janus Quinase 1/metabolismo , Fosforilação , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo , Regulação para Cima
14.
Bioengineered ; 12(1): 2836-2850, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34227905

RESUMO

Angiotensin I-converting enzyme 2 (ACE2), type II transmembrane serine protease 2 and 4 (TMPRSS2 and TMPRSS4) are important receptors for SARS-CoV-2 infection. In this study, the full-length tree shrewACE2 gene was cloned and sequenced, and its biological information was analyzed. The expression levels of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs of the tree shrew were detected. The results showed that the full-length ACE2 gene in tree shrews was 2,786 bp, and its CDS was 2,418 bp, encoding 805 amino acids. Phylogenetic analysis based on the CDS of ACE2 revealed that tree shrews were more similar to rabbits (85.93%) and humans (85.47%) but far from mice (82.81%) and rats (82.58%). In silico analysis according to the binding site of SARS-CoV-2 with the ACE2 receptor of different species predicted that tree shrews had potential SARS-CoV-2 infection possibility, which was similar to that of rabbits, cats and dogs but significantly higher than that of mice and rats. In addition, various tissues or organs of tree shrews expressed ACE2, TMPRSS2 and TMPRSS4. Among them, the kidney most highly expressed ACE2, followed by the lung and liver. The esophagus, lung, liver, intestine and kidney had relatively high expression levels of TMPRSS2 and TMPRSS4. In general, we reported for the first time the expression of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs in tree shrews. Our results revealed that tree shrews could be used as a potential animal model to study the mechanism underlying SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/etiologia , Proteínas de Membrana/genética , SARS-CoV-2 , Serina Endopeptidases/genética , Tupaiidae/genética , Tupaiidae/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Bioengenharia , COVID-19/enzimologia , COVID-19/genética , Biologia Computacional , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Homologia Estrutural de Proteína , Distribuição Tecidual , Tupaiidae/virologia
15.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34319869

RESUMO

Rapid repurposing of existing drugs as new therapeutics for COVID-19 has been an important strategy in the management of disease severity during the ongoing SARS-CoV-2 pandemic. Here, we used high-throughput docking to screen 6000 compounds within the DrugBank library for their potential to bind and inhibit the SARS-CoV-2 3 CL main protease, a chymotrypsin-like enzyme that is essential for viral replication. For 19 candidate hits, parallel in vitro fluorescence-based protease-inhibition assays and Vero-CCL81 cell-based SARS-CoV-2 replication-inhibition assays were performed. One hit, diclazuril (an investigational anti-protozoal compound), was validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro (IC50 value of 29 µM) and modestly inhibited SARS-CoV-2 replication in Vero-CCL81 cells. Another hit, lenvatinib (approved for use in humans as an anti-cancer treatment), could not be validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro, but serendipitously exhibited a striking functional synergy with the approved nucleoside analogue remdesivir to inhibit SARS-CoV-2 replication, albeit this was specific to Vero-CCL81 cells. Lenvatinib is a broadly-acting host receptor tyrosine kinase (RTK) inhibitor, but the synergistic effect with remdesivir was not observed with other approved RTK inhibitors (such as pazopanib or sunitinib), suggesting that the mechanism-of-action is independent of host RTKs. Furthermore, time-of-addition studies revealed that lenvatinib/remdesivir synergy probably targets SARS-CoV-2 replication subsequent to host-cell entry. Our work shows that combining computational and cellular screening is a means to identify existing drugs with repurposing potential as antiviral compounds. Future studies could be aimed at understanding and optimizing the lenvatinib/remdesivir synergistic mechanism as a therapeutic option.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , COVID-19/tratamento farmacológico , COVID-19/virologia , Quimases/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Animais , Antivirais/farmacologia , COVID-19/enzimologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade
16.
Respir Res ; 22(1): 200, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233672

RESUMO

BACKGROUND: The first step in SARS-CoV-2 infection is binding of the virus to angiotensin converting enzyme 2 (ACE2) on the airway epithelium. Asthma affects over 300 million people world-wide, many of whom may encounter SARS-CoV-2. Epidemiologic data suggests that asthmatics who get infected may be at increased risk of more severe disease. Our objective was to assess whether maintenance inhaled corticosteroids (ICS), a major treatment for asthma, is associated with airway ACE2 expression in asthmatics. METHODS: Large airway epithelium (LAE) of asthmatics treated with maintenance ICS (ICS+), asthmatics not treated with ICS (ICS-), and healthy controls (controls) was analyzed for expression of ACE2 and other coronavirus infection-related genes using microarrays. RESULTS: As a group, there was no difference in LAE ACE2 expression in all asthmatics vs controls. In contrast, subgroup analysis demonstrated that LAE ACE2 expression was higher in asthmatics ICS+ compared to ICS‾ and ACE2 expression was higher in male ICS+ compared to female ICS+ and ICS‾ of either sex. ACE2 expression did not correlate with serum IgE, absolute eosinophil level, or change in FEV1 in response to bronchodilators in either ICS- or ICS+. CONCLUSION: Airway ACE2 expression is increased in asthmatics on long-term treatment with ICS, an observation that should be taken into consideration when assessing the use of inhaled corticosteroids during the pandemic.


Assuntos
Corticosteroides/administração & dosagem , Enzima de Conversão de Angiotensina 2/metabolismo , Asma/tratamento farmacológico , Receptores Virais/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Administração por Inalação , Corticosteroides/efeitos adversos , Adulto , Enzima de Conversão de Angiotensina 2/genética , Asma/diagnóstico , Asma/enzimologia , Asma/genética , COVID-19/enzimologia , COVID-19/virologia , Estudos de Casos e Controles , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Virais/genética , Mucosa Respiratória/enzimologia , SARS-CoV-2/patogenicidade , Fatores de Tempo , Regulação para Cima , Internalização do Vírus , Adulto Jovem
17.
Artigo em Inglês | MEDLINE | ID: mdl-34285711

RESUMO

COVID-19 is the newly born pandemic caused by the SARS-CoV-2 virus, which is the recently emerged betacoronavirus that crosses the species barrier. It predominantly infects pneumocytes of the respiratory tract, but due to the presence of angiotensin-converting enzyme II (ACE2) on other cells like surface enterocytes of the upper esophagus and colon, these are also considered as the primary sites of infection. ACE2 receptor served as a cellular entry point for SARS-CoV-2. The expression of the ACE2 receptors is regulated by several factors such as age, tobacco smoking, inflammatory signaling, ACE inhibitors, angiotensin receptor blockers, and comorbidities (chronic obstructive pulmonary disease (COPD), tuberculosis, cerebrovascular disease, coronary heart disease, hypertension, and diabetes). Therefore, scientists are trying to explore the in-depth knowledge of ACE2 and considered it as a potential indirect target for COVID-19 therapeutics. In this focused review, we discussed in detail ACE2 expressions and regulation by different factors in the primary or vulnerable sites of SARS-CoV-2 infections. Clinical trials of rhACE2 in COVID-19 patients are ongoing, and if the outcome of the trials proves positive, it will be a breakthrough for the management of COVID-19. Finally, we suggest that targeting the ACE2 (a master regulator) in a balanced way could serve as a potential option against the management of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/enzimologia , COVID-19/virologia , SARS-CoV-2/fisiologia , Animais , COVID-19/tratamento farmacológico , Humanos , Fatores de Risco , Internalização do Vírus
18.
Front Immunol ; 12: 690416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276680

RESUMO

The AID (activation-induced cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme catalytic subunit) family with its multifaceted mode of action emerges as potent intrinsic host antiviral system that acts against a variety of DNA and RNA viruses including coronaviruses. All family members are cytosine-to-uracil deaminases that either have a profound role in driving a strong and specific humoral immune response (AID) or restricting the virus itself by a plethora of mechanisms (APOBECs). In this article, we highlight some of the key aspects apparently linking the AID/APOBECs and SARS-CoV-2. Among those is our discovery that APOBEC4 shows high expression in cell types and anatomical parts targeted by SARS-CoV-2. Additional focus is given by us to the lymphoid structures and AID as the master regulator of germinal center reactions, which result in antibody production by plasma and memory B cells. We propose the dissection of the AID/APOBECs gene signature towards decisive determinants of the patient-specific and/or the patient group-specific antiviral response. Finally, the patient-specific mapping of the AID/APOBEC polymorphisms should be considered in the light of COVID-19.


Assuntos
Desaminase APOBEC-1/genética , COVID-19/enzimologia , COVID-19/imunologia , Citidina Desaminase/genética , SARS-CoV-2/genética , Transcriptoma , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , COVID-19/virologia , Centro Germinativo/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Humoral/genética , Plasmócitos/imunologia , Polimorfismo Genético , Edição de RNA/genética , RNA Viral/genética
20.
Am J Pathol ; 191(9): 1511-1519, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102107

RESUMO

Chemosensory changes are well-reported symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The virus targets cells for entry by binding of its spike protein to cell-surface angiotensin-converting enzyme 2 (ACE2). It is not known whether ACE2 is expressed on taste receptor cells (TRCs), or whether TRCs are infected directly. in situ hybridization probe and an antibody specific to ACE2 indicated presence of ACE2 on a subpopulation of TRCs (namely, type II cells in taste buds in taste papillae). Fungiform papillae of a SARS-CoV-2+ patient exhibiting symptoms of coronavirus disease 2019 (COVID-19), including taste changes, were biopsied. Presence of replicating SARS-CoV-2 in type II cells was verified by in situ hybridization. Therefore, taste type II cells provide a potential portal for viral entry that predicts vulnerabilities to SARS-CoV-2 in the oral cavity. The continuity and cell turnover of a patient's fungiform papillae taste stem cell layer were disrupted during infection and had not completely recovered 6 weeks after symptom onset. Another patient experiencing post-COVID-19 taste disturbances also had disrupted stem cells. These results demonstrate the possibility that novel and sudden taste changes, frequently reported in COVID-19, may be the result of direct infection of taste papillae by SARS-CoV-2. This may result in impaired taste receptor stem cell activity and suggest that further work is needed to understand the acute and postacute dynamics of viral kinetics in the human taste bud.


Assuntos
Enzima de Conversão de Angiotensina 2/biossíntese , COVID-19 , Regulação Enzimológica da Expressão Gênica , SARS-CoV-2/metabolismo , Células-Tronco , Papilas Gustativas , COVID-19/enzimologia , COVID-19/patologia , COVID-19/virologia , Feminino , Humanos , Masculino , Células-Tronco/enzimologia , Células-Tronco/patologia , Células-Tronco/virologia , Papilas Gustativas/enzimologia , Papilas Gustativas/patologia , Papilas Gustativas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...