RESUMO
In addition to acute hyperinflammatory responses, SARS-CoV-2 infections can have long-term effects on our immune system leading to, for example, post-acute sequelae of COVID-19 (PASC). In this issue of Cell, Cheong et al. show that severe infections via IL-6 induce persistent epigenetic signatures in hemopoietic stem cells and their myeloid progenitors associated with increased inflammatory potential.
Assuntos
COVID-19 , Síndrome Pós-COVID-19 Aguda , Humanos , COVID-19/genética , COVID-19/imunologia , COVID-19/patologia , Epigenômica , Células-Tronco Hematopoéticas , Síndrome Pós-COVID-19 Aguda/imunologia , Síndrome Pós-COVID-19 Aguda/patologia , SARS-CoV-2 , Imunidade Treinada , Inflamação/patologiaRESUMO
Despite intensive studies during the last 3 years, the pathology and underlying molecular mechanism of coronavirus disease 2019 (COVID-19) remain poorly defined. In this study, we investigated the spatial single-cell molecular and cellular features of postmortem COVID-19 lung tissues using in situ sequencing (ISS). We detected 10 414 863 transcripts of 221 genes in whole-slide tissues and segmented them into 1 719 459 cells that were mapped to 18 major parenchymal and immune cell types, all of which were infected by SARS-CoV-2. Compared with the non-COVID-19 control, COVID-19 lungs exhibited reduced alveolar cells (ACs) and increased innate and adaptive immune cells. We also identified 19 differentially expressed genes in both infected and uninfected cells across the tissues, which reflected the altered cellular compositions. Spatial analysis of local infection rates revealed regions with high infection rates that were correlated with high cell densities (HIHD). The HIHD regions expressed high levels of SARS-CoV-2 entry-related factors including ACE2, FURIN, TMPRSS2 and NRP1, and co-localized with organizing pneumonia (OP) and lymphocytic and immune infiltration, which exhibited increased ACs and fibroblasts but decreased vascular endothelial cells and epithelial cells, mirroring the tissue damage and wound healing processes. Sparse nonnegative matrix factorization (SNMF) analysis of niche features identified seven signatures that captured structure and immune niches in COVID-19 tissues. Trajectory inference based on immune niche signatures defined two pathological routes. Trajectory A primarily progressed with increased NK cells and granulocytes, likely reflecting the complication of microbial infections. Trajectory B was marked by increased HIHD and OP, possibly accounting for the increased immune infiltration. The OP regions were marked by high numbers of fibroblasts expressing extremely high levels of COL1A1 and COL1A2. Examination of single-cell RNA-seq data (scRNA-seq) from COVID-19 lung tissues and idiopathic pulmonary fibrosis (IPF) identified similar cell populations consisting mainly of myofibroblasts. Immunofluorescence staining revealed the activation of IL6-STAT3 and TGF-ß-SMAD2/3 pathways in these cells, likely mediating the upregulation of COL1A1 and COL1A2 and excessive fibrosis in the lung tissues. Together, this study provides a spatial single-cell atlas of cellular and molecular signatures of fatal COVID-19 lungs, which reveals the complex spatial cellular heterogeneity, organization, and interactions that characterized the COVID-19 lung pathology.
Assuntos
COVID-19 , Humanos , COVID-19/patologia , SARS-CoV-2/genética , Células Endoteliais , Análise da Expressão Gênica de Célula Única , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Pulmão/patologiaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.
Assuntos
COVID-19 , Cricetinae , Humanos , Animais , Camundongos , COVID-19/patologia , SARS-CoV-2 , Roedores , Genes Mitocondriais , Pulmão/patologiaRESUMO
The occurrence of a novel coronavirus known as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), created a serious challenge worldwide. SARS-CoV-2 has high infectivity, the ability to be transmitted even during the asymptomatic phase, and relatively low virulence, which has resulted in rapid transmission. SARS-CoV-2 can invade epithelial cells, hence, many patients infected with SARS-CoV-2 have suffered from vascular diseases (VDs) in addition to pulmonary manifestations. Accordingly, SARS-CoV-2 may can worsen the clinical condition of the patients with pre-existing VDs. Endothelial cells express angiotensin-converting enzyme 2 (ACE2). ACE2 is a biological enzyme that converts angiotensin (Ang)- 2 to Ang-(1-7). SARS-CoV-2 uses ACE2 as a cell receptor for viral entry. Thus, the SARS-CoV-2 virus promotes downregulation of ACE2, Ang-(1-7), and anti-inflammatory cytokines, as well as, an increase in Ang-2, resulting in pro-inflammatory cytokines. SARS-CoV-2 infection can cause hypertension, and endothelial damage, which can lead to intravascular thrombosis. In this review, we have concentrated on the effect of SARS-CoV-2 in peripheral vascular diseases (PVDs) and ACE2 as an enzyme in Renin-angiotensin aldosterone system (RAAS). A comprehensive search was performed on PubMed, Google Scholar, Scopus, using related keywords. Articles focusing on ("SARS-CoV-2", OR "COVID-19"), AND ("Vascular disease", OR "Peripheral vascular disease", OR interested disease name) with regard to MeSH terms, were selected. According to the studies, it is supposed that vascular diseases may increase susceptibility to severe SARS-CoV-2 infection due to increased thrombotic burden and endothelial dysfunction. Understanding SARS-CoV-2 infection mechanism and vascular system pathogenesis is crucial for effective management and treatment in pre-existing vascular diseases.
Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Doenças Vasculares Periféricas , Humanos , Angiotensina II , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/patologia , Citocinas , Células Endoteliais , Hipertensão , SARS-CoV-2 , Doenças Vasculares Periféricas/metabolismo , Doenças Vasculares Periféricas/patologiaRESUMO
We aimed to investigate changes in olfactory bulb volume and brain network in the white matter (WM) in patients with persistent olfactory disfunction (OD) following COVID-19. A cross-sectional study evaluated 38 participants with OD after mild COVID-19 and 24 controls, including Sniffin' Sticks identification test (SS-16), MoCA, and brain magnetic resonance imaging. Network-Based Statistics (NBS) and graph theoretical analysis were used to explore the WM. The COVID-19 group had reduced olfactory bulb volume compared to controls. In NBS, COVID-19 patients showed increased structural connectivity in a subnetwork comprising parietal brain regions. Regarding global network topological properties, patients exhibited lower global and local efficiency and higher assortativity than controls. Concerning local network topological properties, patients had reduced local efficiency (left lateral orbital gyrus and pallidum), increased clustering (left lateral orbital gyrus), increased nodal strength (right anterior orbital gyrus), and reduced nodal strength (left amygdala). SS-16 test score was negatively correlated with clustering of whole-brain WM in the COVID-19 group. Thus, patients with OD after COVID-19 had relevant WM network dysfunction with increased connectivity in the parietal sensory cortex. Reduced integration and increased segregation are observed within olfactory-related brain areas might be due to compensatory plasticity mechanisms devoted to recovering olfactory function.
Assuntos
COVID-19 , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Estudos Transversais , COVID-19/patologia , Encéfalo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância MagnéticaRESUMO
SARS-CoV-2 has been responsible for the recent pandemic all over the world, which has caused many complications. One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome, acute respiratory distress syndrome and many organs such as lungs, brain, and heart that are affected during the SARS-CoV-2 infection. Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, and cerebrovascular disorders) could affect the severity of the disease. Therefore, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Moreover, a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. In the current study, we investigated modifications in miRNA expression and their influence on COVID-19 disease recovery, which may be employed as a therapy strategy to minimize COVID-19-related disorders.
Assuntos
COVID-19 , MicroRNAs , Humanos , COVID-19/patologia , COVID-19/virologia , Diabetes Mellitus Tipo 2 , Inflamação/virologia , MicroRNAs/genética , SARS-CoV-2/genética , RNA Viral/metabolismoRESUMO
Coronavirus disease 2019 (COVID-19) is an acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can lead to acute respiratory distress syndrome (ARDS), multi-organ failure and death, posing significant threat to human health. Studies have found that pathological mechanisms, such as cytokine storms caused by uncontrolled innate immune system activation, release of damage-associated molecular patterns during tissue injury and a high incidence of thrombotic events, are associated with the function and dysfunction of neutrophils. Specifically, the increased formation of low-density neutrophils (LDNs) and neutrophil extracellular traps (NETs) has been shown to be closely linked with the severity and poor prognosis in patients with COVID-19. Our work focuses on understanding the increased number, abnormal activation, lung tissue infiltration, and elevated neutrophil-to-lymphocyte ratio in the pathogenesis of COVID-19. We also explore the involvement of NETs and LDNs in disease progression and thrombosis formation, along with potential therapeutic strategies targeting neutrophil and NETs formation.
Assuntos
COVID-19 , Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Humanos , COVID-19/patologia , Neutrófilos , SARS-CoV-2 , Síndrome do Desconforto Respiratório/patologiaRESUMO
Understanding the impact of SARS-CoV-2 infection and COVID-19 vaccination in pregnancy on neonatal and maternal outcomes informs clinical decision-making. Here we report a national, population-based, matched cohort study to investigate associations between SARS-CoV-2 infection and, separately, COVID-19 vaccination just before or during pregnancy and the risk of adverse neonatal and maternal outcomes among women in Scotland with a singleton pregnancy ending at ≥20 weeks gestation. Neonatal outcomes are stillbirth, neonatal death, extended perinatal mortality, preterm birth (overall, spontaneous, and provider-initiated), small-for-gestational age, and low Apgar score. Maternal outcomes are admission to critical care or death, venous thromboembolism, hypertensive disorders of pregnancy, and pregnancy-related bleeding. We use conditional logistic regression to derive odds ratios adjusted for socio-demographic and clinical characteristics (aORs). We find that infection is associated with an increased risk of preterm (aOR=1.36, 95% Confidence Interval [CI] = 1.16-1.59) and very preterm birth (aOR = 1.90, 95% CI 1.20-3.02), maternal admission to critical care or death (aOR=1.72, 95% CI = 1.39-2.12), and venous thromboembolism (aOR = 2.53, 95% CI = 1.47-4.35). We find no evidence of increased risk for any of our outcomes following vaccination. These data suggest SARS-CoV-2 infection during pregnancy is associated with adverse neonatal and maternal outcomes, and COVID-19 vaccination remains a safe way for pregnant women to protect themselves and their babies against infection.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Complicações Infecciosas na Gravidez , Resultado da Gravidez , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Estudos de Coortes , COVID-19/patologia , Vacinas contra COVID-19/efeitos adversos , Complicações Infecciosas na Gravidez/patologiaRESUMO
Numerous genomic analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been conducted, highlighting its variations and lineage transitions. Despite the importance of forensic autopsy in investigating deaths due to coronavirus disease 2019 (COVID-19), including out-of-hospital deaths, viral genomic analysis has rarely been reported due in part to postmortem changes. In this study, various specimens were collected from 18 forensic autopsy cases with SARS-CoV-2 infection. Reverse-transcription quantitative polymerase chain reaction revealed the distribution of the virus in the body, primarily in the respiratory organs. Next-generation sequencing determined the complete genome sequences in 15 of the 18 cases, although some cases showed severe postmortem changes or degradation of tissue RNA. Intrahost genomic diversity of the virus was identified in one case of death due to COVID-19. The accumulation of single-nucleotide variations in the lung of the case suggested the intrahost evolution of SARS-CoV-2. Lung of the case showed diffuse alveolar damage histologically and positivity for SARS-CoV-2 by immunohistochemical analysis and in situ hybridization, indicating virus-associated pneumonia. This study provides insights into the feasibility of genomic analysis of SARS-CoV-2 in forensic autopsy cases and the potential for uncovering important information in COVID-19 deaths, including out-of-hospital deaths.
Assuntos
COVID-19 , Humanos , COVID-19/patologia , SARS-CoV-2/genética , Autopsia , Pulmão , Genômica , Mudanças Depois da MorteRESUMO
A 60-year-old male with hypertrophic cardiomyopathy, conduction disorders, post-COVID-19 myopericarditis and heart failure was admitted to the hospital's cardiology department. Blood tests revealed an increase in CPK activity, troponin T elevation and high titers of anticardiac antibodies. Whole exome sequencing showed the presence of the pathogenic variant NM_213599:c.2272C>T of the ANO5 gene. Results of the skeletal muscle biopsy excluded the diagnosis of systemic amyloidosis. Microscopy of the muscle fragment demonstrated sclerosis of the perimysium, moderate lymphoid infiltration, sclerosis of the microvessels, dystrophic changes and a lack of cross striations in the muscle fibers. Hypertrophy of the LV with a low contractile ability, atrial fibrillation, weakness of the distal skeletal muscles and increased plasma CPK activity and the results of the skeletal muscle biopsy suggested a diagnosis of a late form of distal myopathy (Miyoshi-like distal myopathy, MMD3). Post-COVID-19 myopericarditis, for which genetically modified myocardium could serve as a favorable background, caused heart failure decompensation.
Assuntos
COVID-19 , Cardiomiopatia Hipertrófica , Miopatias Distais , Insuficiência Cardíaca , Miocardite , Masculino , Humanos , Pessoa de Meia-Idade , Miopatias Distais/diagnóstico , Miopatias Distais/genética , Miopatias Distais/patologia , Esclerose/patologia , Anoctaminas/genética , Canais de Cloreto/genética , Mutação , COVID-19/complicações , COVID-19/genética , COVID-19/patologia , Músculo Esquelético/patologia , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologiaRESUMO
BACKGROUND: Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although respiratory manifestations have received greater visibility during the pandemic caused by this virus, numerous neurological complaints related to coronavirus 2 infection have been documented in several countries. These records suggest that this pathogen presents neurotropism, and it can cause different neurological conditions of varying intensity. OBJECTIVE: To investigate the ability of coronavirus 2 to invade the central nervous system (CNS) and its neurological clinical outcomes. METHODS: The present study consists in a comprehensive literature review of the records available in the PubMed, SciELO, and Google Scholar databases. The descriptors COVID-19, brain and physiopathology, associated with the Boolean operator AND, were used in the search. Regarding the inclusion and exclusion criteria, we selected the papers published since 2020 with the highest number of citations. RESULTS: We selected 41 articles, most of them in English. The main clinical manifestation associated with COVID-19 patients was headache, but cases of anosmia, hyposmia, Guillain-Barré syndrome, and encephalopathies were also described with considerable frequency. CONCLUSION: Coronavirus-2 presents neurotropism, and it can reach the CNS by hematogenous dissemination and by direct infection of the nerve endings. It causes brain injuries through several mechanisms, such as cytokine storm, microglial activation, and an increase in thrombotic factors.
ANTECEDENTES: A doença do coronavírus 2019 (coronavirus disease 2019, Covid-19, em inglês) é uma infecção viral provocada pelo coronavírus 2 da síndrome respiratória aguda grave (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, em inglês). Embora as manifestações respiratórias tenham recebido maior visibilidade ao longo da pandemia provocada por esse vírus, inúmeras queixas neurológicas relacionadas à infecção pelo coronavírus 2 foram documentadas em diversos países. Tais registros sugerem que esse patógeno apresenta neurotropismo, e é capaz de provocar quadros neurológicos diversos e de intensidade variáveis. OBJETIVO: Investigar a capacidade de invasão do sistema nervoso central (SNC) pelo coronavírus 2 e seus principais desfechos clínicos neurológicos. MéTODOS: O presente estudo consiste em uma ampla revisão de literatura a partir dos registros das bases de dados PubMed, SciELO e Google Acadêmico. Nesse contexto, os descritores COVID-19, cérebro e fisiopatologia, associados com o operador booleano AND, foram utilizados na busca. Quanto aos critérios de inclusão e exclusão, selecionou-se os trabalhos publicados a partir de 2020 com o maior número de citações. RESULTADOS: Foram selecionados 41 artigos, a maioria na língua inglesa. A principal manifestação clínica associada a pacientes acometidos pela COVID-19 foi a cefaleia, mas casos de anosmia, hiposmia, síndrome de Guillain-Barré e encefalopatias também foram descritos com frequência considerável. CONCLUSãO: O coronavírus 2 apresenta neurotropismo, e é capaz de alcançar o SNC por disseminação hematogênica e por infecção direta das terminações nervosas. Ele provoca injúria cerebral por meio de variados mecanismos, como tempestade de citocinas, ativação da micróglia e aumento dos fatores trombóticos.
Assuntos
COVID-19 , Doenças do Sistema Nervoso , Humanos , COVID-19/complicações , COVID-19/patologia , SARS-CoV-2 , Doenças do Sistema Nervoso/etiologia , Sistema Nervoso Central , Encéfalo/patologiaRESUMO
BACKGROUND: Cognitive deficits are among the main disabling symptoms in COVID-19 patients and post-COVID syndrome (PCS). Within brain regions, the hippocampus, a key region for cognition, has shown vulnerability to SARS-CoV-2 infection. Therefore, in vivo detailed evaluation of hippocampal changes in PCS patients, validated on post-mortem samples of COVID-19 patients at the acute phase, would shed light into the relationship between COVID-19 and cognition. METHODS: Hippocampal subfields volume, microstructure, and perfusion were evaluated in 84 PCS patients and compared to 33 controls. Associations with blood biomarkers, including glial fibrillary acidic protein (GFAP), myelin oligodendrocyte glycoprotein (MOG), eotaxin-1 (CCL11) and neurofilament light chain (NfL) were evaluated. Besides, biomarker immunodetection in seven hippocampal necropsies of patients at the acute phase were contrasted against eight controls. FINDINGS: In vivo analyses revealed that hippocampal grey matter atrophy is accompanied by altered microstructural integrity, hypoperfusion, and functional connectivity changes in PCS patients. Hippocampal structural and functional alterations were related to cognitive dysfunction, particularly attention and memory. GFAP, MOG, CCL11 and NfL biomarkers revealed alterations in PCS, and showed associations with hippocampal volume changes, in selective hippocampal subfields. Moreover, post mortem histology showed the presence of increased GFAP and CCL11 and reduced MOG concentrations in the hippocampus in post-mortem samples at the acute phase. INTERPRETATION: The current results evidenced that PCS patients with cognitive sequalae present brain alterations related to cognitive dysfunction, accompanied by a cascade of pathological alterations in blood biomarkers, indicating axonal damage, astrocyte alterations, neuronal injury, and myelin changes that are already present from the acute phase. FUNDING: Nominative Grant FIBHCSC 2020 COVID-19. Department of Health, Community of Madrid. Instituto de Salud Carlos III through the project INT20/00079, co-funded by European Regional Development Fund "A way to make Europe" (JAMG). Instituto de Salud Carlos III (ISCIII) through Sara Borrell postdoctoral fellowship Grant No. CD22/00043) and co-funded by the European Union (MDC). Instituto de Salud Carlos III through a predoctoral contract (FI20/000145) (co-funded by European Regional Development Fund "A way to make Europe") (MVS). Fundación para el Conocimiento Madri+d through the project G63-HEALTHSTARPLUS-HSP4 (JAMG, SOM).
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Hipocampo/patologia , Atrofia , Síndrome , BiomarcadoresRESUMO
Coronavirus disease 2019 (COVID-19) affects several organs including the kidney resulting in acute kidney injury (AKI) and variants of podocytopathies. From the beginning to the middle period of the COVID-19 pandemic, we have collected eight renal biopsies with various renal diseases including 4 podocytopathies. In addition, from the middle period to the near end of the COVID-19 pandemic, we have seen two of the patients who developed nephrotic syndrome following COVID-19 vaccination. Three of 4 podocytopathies were collapsing glomerulopathy (also called collapsing focal segmental glomerulosclerosis) and the fourth was a minimal change disease (MCD). Two of three collapsing glomerulopathy were found in African American patients, one of who was tested positive for having the high-risk allele APOL-1 G1. In addition, the two renal biopsies showed either MCD or replaced MCD following COVID-19 vaccination. MCD can be a rare complication following COVID-19 infection and COVID-19 vaccination, raising the question if there are similar antigens induced by the infection or by the vaccination that trigger the MCD. This article reports our experience of diagnosing podocytopathies related to either COVID-19 infection or its vaccination and provides a literature review regarding the incidence and potential pathophysiology in the field.
Assuntos
Injúria Renal Aguda , COVID-19 , Nefrose Lipoide , Humanos , COVID-19/complicações , COVID-19/patologia , Pandemias , Vacinas contra COVID-19/efeitos adversos , Rim/patologia , Nefrose Lipoide/patologia , Injúria Renal Aguda/patologiaRESUMO
Pulmonary fibrosis, a serious complication of systemic lupus erythematosus (SLE) and coronavirus disease 2019 (COVID-19), leads to irreversible lung damage. However, the underlying mechanism of this condition remains unclear. In this study, we revealed the landscape of transcriptional changes in lung biopsies from individuals with SLE, COVID-19-induced pulmonary fibrosis, and idiopathic pulmonary fibrosis (IPF) using histopathology and RNA sequencing, respectively. Despite the diverse etiologies of these diseases, lung expression of matrix metalloproteinase genes in these diseases showed similar patterns. Particularly, the differentially expressed genes were significantly enriched in the pathway of neutrophil extracellular trap formation, showing similar enrichment signature between SLE and COVID-19. The abundance of Neutrophil extracellular traps (NETs) was much higher in the lungs of individuals with SLE and COVID-19 compared to those with IPF. In-depth transcriptome analyses revealed that NETs formation pathway promotes epithelial-mesenchymal transition (EMT). Furthermore, stimulation with NETs significantly up-regulated α-SMA, Twist, Snail protein expression, while decreasing the expression of E-cadherin protein in vitro. This indicates that NETosis promotes EMT in lung epithelial cells. Given drugs that are efficacious in degrading damaged NETs or inhibiting NETs production, we identified a few drug targets that were aberrantly expressed in both SLE and COVID-19. Among these targets, the JAK2 inhibitor Tofacitinib could effectively disrupted the process of NETs and reversed NET-induced EMT in lung epithelial cells. These findings support that the NETs/EMT axis, activated by SLE and COVID-19, contributes to the progression of pulmonary fibrosis. Our study also highlights that JAK2 as a potential target for the treatment of fibrosis in these diseases.
Assuntos
COVID-19 , Lúpus Eritematoso Sistêmico , Fibrose Pulmonar , Humanos , Neutrófilos/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , COVID-19/patologia , Lúpus Eritematoso Sistêmico/metabolismo , Inflamação/metabolismo , FibroseRESUMO
OBJECTIVE: The aim of this study was to summarize the computed tomography (CT) chest scanning results of COVID-19 patients, and to assess the value of artificial intelligence (AI) dynamics and quantitative analysis of lesion volume change for the evaluation of the disease outcome. PATIENTS AND METHODS: First chest CT and reexamination imaging data of 84 patients diagnosed with COVID-19 who were treated at Jiangshan Hospital of Guiyang, Guizhou Province from February 4, 2020, to February 22, 2020, were retrospectively analyzed. Distribution, location, and nature of lesions were analyzed according to the characteristics of CT imaging and COVID-19 diagnosis and treatment guidelines. Based on the results of the analysis, patients were divided into the group without abnormal pulmonary imaging, the early group, the rapid progression group, and the dissipation group. AI software was used to dynamically measure the lesion volume in the first examination and in the cases with more than two reexaminations. RESULTS: There were statistically significant differences in the age of patients between the groups (p<0.01). The first chest CT examination of the lung without abnormal imaging findings mainly occurred in young adults. Early and rapid progression was more common in the elderly, with a median age of 56 years. The ratio of the lesion to the total lung volume was 3.7 (1.4, 5.3) ml 0.1%, 15.4 (4.5, 36.8) ml 0.3%, 115.0 (44.5, 183.3) ml 3.33%, 32.6 (8.7, 98.0) ml 1.22% in the non-imaging group, early group, rapid progression group, and dissipation group, respectively. Pairwise comparison between the four groups was statistically significant (p<0.001). AI measured the total volume of pneumonia lesions and the proportion of the total volume of pneumonia lesions to predict the receiver operating characteristic (ROC) curve from early development to rapid progression, with a sensitivity of 92.10%, 96.83%, specificity of 100%, 80.56%, and the area under the curve of 0.789. CONCLUSIONS: Accurate measurement of lesion volume and volume changes by AI technology is helpful in assessing the severity and development trend of the disease. The increase in the lesion volume proportion indicates that the disease has entered a rapid progression period and is aggravated.
Assuntos
COVID-19 , Pneumonia , Adulto Jovem , Humanos , Idoso , Pessoa de Meia-Idade , COVID-19/diagnóstico por imagem , COVID-19/patologia , Inteligência Artificial , Teste para COVID-19 , Estudos Retrospectivos , SARS-CoV-2 , China , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pneumonia/patologia , Tomografia Computadorizada por Raios X/métodosRESUMO
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although it has been a fatal disease for many patients, the development of treatment strategies and vaccines have progressed over the past 3 years, and our society has become able to accept COVID-19 as a manageable common disease. However, as COVID-19 sometimes causes pneumonia, post-COVID pulmonary fibrosis (PCPF), and worsening of preexisting interstitial lung diseases (ILDs), it is still a concern for pulmonary physicians. In this review, we have selected several topics regarding the relationships between ILDs and COVID-19. The pathogenesis of COVID-19-induced ILD is currently assumed based mainly on the evidence of other ILDs and has not been well elucidated specifically in the context of COVID-19. We have summarized what has been clarified to date and constructed a coherent story about the establishment and progress of the disease. We have also reviewed clinical information regarding ILDs newly induced or worsened by COVID-19 or anti-SARS-CoV-2 vaccines. Inflammatory and profibrotic responses induced by COVID-19 or vaccines have been thought to be a risk for de novo induction or worsening of ILDs, and this has been supported by the evidence obtained through clinical experience over the past 3 years. Although COVID-19 has become a mild disease in most cases, it is still worth looking back on the above-reviewed information to broaden our perspectives regarding the relationship between viral infection and ILD. As a representative etiology for severe viral pneumonia, further studies in this area are expected.
Assuntos
COVID-19 , Doenças Pulmonares Intersticiais , Pneumonia Viral , Humanos , COVID-19/complicações , COVID-19/patologia , SARS-CoV-2 , Doenças Pulmonares Intersticiais/epidemiologia , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/patologia , Pulmão/patologia , Pneumonia Viral/complicações , Pneumonia Viral/epidemiologiaRESUMO
INTRODUCTION: Placental morphology findings in SARS-CoV-2 infection are considered nonspecific, although the role of trimester and severity of infection are underreported. Therefore, we aimed to investigate abnormal placental morphology, according to these two criteria. METHODS: This is an ancillary analysis of a prospective cohort study of pregnant women with suspected SARS-CoV-2 infection, managed in one maternity, from March 2020 to October 2021. Charting of clinical/obstetric history, trimester and severity of COVID-19 infection, and maternal/perinatal outcomes were done. Placental morphological findings were classified into maternal and fetal circulatory injury and acute/chronic inflammation. We further compared findings with women with suspected disease which tested negative for COVID-19. Diseases' trimester of infection and clinical severity guided the analysis of confirmed COVID-19 cases. RESULTS: Ninety-one placental discs from 85 women were eligible as a COVID-19 group, and 42 discs from 41 women in negative COVID-19 group. SARS-CoV-2 infection occurred in 68.2% during third trimester, and 6.6% during first; 16.5% were asymptomatic, 61.5% non-severe and 22.0% severe symptomatic (two maternal deaths). Preterm birth occurred in 33.0% (one fetal death). Global maternal vascular malperfusion (MVM) were significant in COVID-19 group whether compared with negative COVID-19 tests group; however, fetal vascular malperfusion lesions and low-grade chronic villitis were not. Three placentas had COVID-19 placentitis. Decidual arteriopathy was associated with infection in first/mid trimester, and chorangiosis in asymptomatic infections. DISCUSSION: Placental abnormalities after an infection by COVID-19 were more frequent after first/mid-trimester infections. Extensive placental lesions are rare, although they may be more common upon underlying medical conditions.
Assuntos
COVID-19 , Doenças Fetais , Complicações Infecciosas na Gravidez , Nascimento Prematuro , Feminino , Gravidez , Humanos , Recém-Nascido , SARS-CoV-2 , COVID-19/patologia , Placenta/patologia , Estudos Prospectivos , Complicações Infecciosas na Gravidez/patologia , Nascimento Prematuro/patologia , Inflamação/patologia , Doenças Fetais/patologia , Índice de Gravidade de DoençaRESUMO
Hypertriglyceridemia, obesity, and aging are among the key risk factors for severe COVID-19 with acute respiratory distress syndrome (ARDS). One of the main prognostic biomarkers of ARDS is the level of cytokines IL-6 and TNF-α in the blood. In our study, we modeled hyperglyceridemia and hypercholesterolemia on 18-month-old Syrian hamsters (Mesocricetus auratus). By 18 months, the animals showed such markers of aging as weight stabilization with a tendency to reduce it, polycystic liver disease, decreased motor activity, and foci of alopecia. The high-fat diet caused an increase in triglycerides and cholesterol, as well as fatty changes in the liver. On the third day after infection with the SARS-CoV-2 virus, animals showed a decrease in weight in the groups with a high-fat diet. In the lungs of males on both diets, there was an increase in the concentration of IFN-α, as well as IL-6 in both males and females, regardless of the type of diet. At the same time, the levels of TNF-α and IFN-γ did not change in infected animals. Morphological studies of the lungs of hamsters with SARS-CoV-2 showed the presence of a pathological process characteristic of ARDS. These included bronchointerstitial pneumonia and diffuse alveolar damages. These observations suggest that in aging hamsters, the immune response to pro-inflammatory cytokines may be delayed to a later period. Hypertriglyceridemia, age, and gender affect the severity of COVID-19. These results will help to understand the pathogenesis of COVID-19 associated with age, gender, and disorders of fat metabolism in humans.
Assuntos
COVID-19 , Hipertrigliceridemia , Síndrome do Desconforto Respiratório , Cricetinae , Animais , Humanos , Masculino , Feminino , Lactente , Mesocricetus , SARS-CoV-2 , COVID-19/patologia , Dieta Hiperlipídica/efeitos adversos , Citocinas , Fator de Necrose Tumoral alfa , Interleucina-6 , Modelos Animais de Doenças , Pulmão/patologia , Envelhecimento , Síndrome do Desconforto Respiratório/patologiaRESUMO
COVID-19 has an extensive impact on Homo sapiens globally. Patients with COVID-19 are at an increased risk of developing pulmonary fibrosis. A previous study identified that myofibroblasts could be derived from pulmonary endothelial lineage cells as an important cell source that contributes to pulmonary fibrosis. Here, we analyzed publicly available data and showed that COVID-19 infection drove endothelial lineage cells towards myofibroblasts in pulmonary fibrosis of patients with COVID-19. We also discovered a similar differentiation trajectory in mouse lungs after viral infection. The results suggest that COVID-19 infection leads to the development of pulmonary fibrosis partly through the activation of endothelial cell (EC)-like myofibroblasts.
Assuntos
COVID-19 , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Miofibroblastos/patologia , COVID-19/patologia , Pulmão , Diferenciação Celular , Células Endoteliais/patologia , FibroseRESUMO
Infants and young children are more susceptible to common respiratory pathogens than adults but can fare better against novel pathogens like severe acute respiratory syndrome coronavirus 2. The mechanisms by which infants and young children mount effective immune responses to respiratory pathogens are unknown. Through investigation of lungs and lung-associated lymph nodes from infant and pediatric organ donors aged 0-13 years, we show that bronchus-associated lymphoid tissue (BALT), containing B cell follicles, CD4+ T cells and functionally active germinal centers, develop during infancy. BALT structures are prevalent around lung airways during the first 3 years of life, and their numbers decline through childhood coincident with the accumulation of memory T cells. Single-cell profiling and repertoire analysis reveals that early life lung B cells undergo differentiation, somatic hypermutation and immunoglobulin class switching and exhibit a more activated profile than lymph node B cells. Moreover, B cells in the lung and lung-associated lymph nodes generate biased antibody responses to multiple respiratory pathogens compared to circulating antibodies, which are mostly specific for vaccine antigens in the early years of life. Together, our findings provide evidence for BALT as an early life adaptation for mobilizing localized immune protection to the diverse respiratory challenges during this formative life stage.