Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.671
Filtrar
1.
Zool Res ; 42(5): 650-659, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34472226

RESUMO

Phosphatidylserine (PS) is distributed asymmetrically in the plasma membrane of eukaryotic cells. Phosphatidylserine flippase (P4-ATPase) transports PS from the outer leaflet of the lipid bilayer to the inner leaflet of the membrane to maintain PS asymmetry. The ß subunit TMEM30A is indispensable for transport and proper function of P4-ATPase. Previous studies have shown that the ATP11A and TMEM30A complex is the molecular switch for myotube formation. However, the role of Tmem30a in skeletal muscle regeneration remains elusive. In the current study, Tmem30a was highly expressed in the tibialis anterior (TA) muscles of dystrophin-null ( mdx) mice and BaCl 2-induced muscle injury model mice. We generated a satellite cell (SC)-specific Tmem30a conditional knockout (cKO) mouse model to investigate the role of Tmem30a in skeletal muscle regeneration. The regenerative ability of cKO mice was evaluated by analyzing the number and diameter of regenerated SCs after the TA muscles were injured by BaCl 2-injection. Compared to the control mice, the cKO mice showed decreased Pax7 + and MYH3 + SCs, indicating diminished SC proliferation, and decreased expression of muscular regulatory factors (MYOD and MYOG), suggesting impaired myoblast proliferation in skeletal muscle regeneration. Taken together, these results demonstrate the essential role of Tmem30a in skeletal muscle regeneration.


Assuntos
Proteínas de Membrana/metabolismo , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Proliferação de Células , Distrofina/genética , Distrofina/metabolismo , Antagonistas de Estrogênios/toxicidade , Regulação da Expressão Gênica/fisiologia , Genótipo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Regeneração/genética , Tamoxifeno/toxicidade
2.
Nat Biomed Eng ; 5(8): 880-896, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34426676

RESUMO

Fibroblasts can be directly reprogrammed into cardiomyocytes, endothelial cells or smooth muscle cells. Here we report the reprogramming of mouse tail-tip fibroblasts simultaneously into cells resembling these three cell types using the microRNA mimic miR-208b-3p, ascorbic acid and bone morphogenetic protein 4, as well as the formation of tissue-like structures formed by the directly reprogrammed cells. Implantation of the formed cardiovascular tissue into the infarcted hearts of mice led to the migration of reprogrammed cells to the injured tissue, reducing regional cardiac strain and improving cardiac function. The migrated endothelial cells and smooth muscle cells contributed to vessel formation, and the migrated cardiomyocytes, which initially displayed immature characteristics, became mature over time and formed gap junctions with host cardiomyocytes. Direct reprogramming of somatic cells to make cardiac tissue may aid the development of applications in cell therapy, disease modelling and drug discovery for cardiovascular diseases.


Assuntos
Células Endoteliais/transplante , Coração/fisiologia , Infarto do Miocárdio/terapia , Miócitos de Músculo Liso/transplante , Regeneração , Animais , Ácido Ascórbico/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Reprogramação Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Junções Comunicantes/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neovascularização Fisiológica , Transcriptoma
3.
BMC Cancer ; 21(1): 914, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34380460

RESUMO

BACKGROUND: Gastric cancer (GC) has an unwelcoming prognosis when diagnosed at an advanced stage. The purpose of this study was to examine the expression of myosin heavy chain 11 (MYH11) in GC and mechanisms related. METHODS: The MYH11 expression in GC was investigated via the SangerBox platform. MYH11 expression in GC tissues and cell lines was examined by immunohistochemistry, RT-qPCR, and western blot. The relationship between MYH11 expression and patients' prognosis was analyzed. The effects of MYH11 on the biological behaviors of GC cells were investigated by gain-of-function experiments. Bioinformatics analysis was used to find genes with relevance to MYH11 expression in GC. The relationship was verified by luciferase and ChIP-qPCR assays, followed by rescue assay validation. The causes of MYH11 downregulation in GC were verified by quantitative methylation-specific PCR. Finally, the effect of MYH11 on tumor growth was examined. RESULTS: MYH11 was downregulated in GC and predicted poor prognoses. MYH11 reverted the malignant phenotype of GC cells. MYH11 repressed the TNFRSF14 expression by binding to the TNFRSF14 promoter. TNFRSF14 reversed the inhibitory effect of MYH11 on the malignant phenotype of GC cells. The methylation of the MYH11 promoter was elevated in GC, which was correlated with the elevated DNMT3B in GC. Overexpression of DNMT3B repressed transcription of MYH11 by promoting its methylation. Also, MYH11 upregulation inhibited tumor growth. CONCLUSION: DNMT3B inhibits MYH11 expression by promoting its DNA methylation, thereby attenuating the repressive effect of MYH11 on the transcriptional of TNFRSF14 and promoting the progression of GC.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Epistasia Genética , Regulação Neoplásica da Expressão Gênica , Cadeias Pesadas de Miosina/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/metabolismo , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Ligação Proteica , Neoplasias Gástricas/metabolismo , Carga Tumoral
4.
Carbohydr Polym ; 268: 118211, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34127215

RESUMO

This work explored the feasibility of using biological polysaccharide to fabricate dissolvable microneedles (MNs) for the purpose of transdermal drug delivery and skin dendritic cell (DC) activation. Panax notoginseng polysaccharide (PNPS), a naturally derived immunoactive macromolecule, was used to fabricate dissolvable MNs. The prepared PNPS MNs showed a satisfactory mechanical strength and a skin penetration depth. By Franz diffusion cell assay, the PNPS MNs demonstrated a high transdermal delivery amount of model drugs. Furthermore, with the assistance of MNs, PNPS easily penetrated across the stratum corneum and target ear skin DCs, activating the maturation and migration of immunocytes by increasing the expressions of CD40, CD80, CD86, and MHC II of skin DCs. Consequently, the matured DCs migrated to the auricular draining lymph nodes and increased the proportions of CD4+ T and CD8+ T cells. Thus, PNPS might be a promising biomaterial for transdermal drug delivery, with adjuvant potential.


Assuntos
Células de Langerhans/efeitos dos fármacos , Agulhas , Panax notoginseng/química , Polissacarídeos/química , Administração Cutânea , Animais , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Antígenos CD40/metabolismo , Força Compressiva , Doxorrubicina/administração & dosagem , Fluoresceína/administração & dosagem , Fluoruracila/administração & dosagem , Células de Langerhans/metabolismo , Masculino , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Ratos Sprague-Dawley , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Solubilidade
5.
Nat Commun ; 12(1): 3292, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078910

RESUMO

Autophagy regulates primary cilia formation, but the underlying mechanism is not fully understood. In this study, we identify NIMA-related kinase 9 (NEK9) as a GABARAPs-interacting protein and find that NEK9 and its LC3-interacting region (LIR) are required for primary cilia formation. Mutation in the LIR of NEK9 in mice also impairs in vivo cilia formation in the kidneys. Mechanistically, NEK9 interacts with MYH9 (also known as myosin IIA), which has been implicated in inhibiting ciliogenesis through stabilization of the actin network. MYH9 accumulates in NEK9 LIR mutant cells and mice, and depletion of MYH9 restores ciliogenesis in NEK9 LIR mutant cells. These results suggest that NEK9 regulates ciliogenesis by acting as an autophagy adaptor for MYH9. Given that the LIR in NEK9 is conserved only in land vertebrates, the acquisition of the autophagic regulation of the NEK9-MYH9 axis in ciliogenesis may have possible adaptive implications for terrestrial life.


Assuntos
Autofagia/genética , Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Cadeias Pesadas de Miosina/genética , Quinases Relacionadas a NIMA/genética , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Cílios/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Rim/citologia , Rim/metabolismo , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Quinases Relacionadas a NIMA/deficiência , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
6.
Anim Genet ; 52(4): 542-544, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33970514

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common cause of heart disease in the domestic cat with a genetic predisposition in a few breeds. In the Maine Coon and Ragdoll breeds, two variants associated with the HCM phenotype have been identified in the cardiac myosin binding protein C gene (MYBPC3; p.Ala31Pro and p.Arg820Trp respectively), and a single variant has been identified in the myosin heavy chain gene (MYH7; p.Glu1883Lys) in one domestic cat with HCM. It is not known if these variants influence the development of HCM in other cohorts of the feline population. The objective of this study was to evaluate the presence of the known MYBPC3 and MYH7 variants in a population of cats with HCM. DNA was isolated from samples collected from non-Ragdoll and non-Maine Coon domestic cats diagnosed with HCM through the North Carolina State University College of Veterinary Medicine and genotyped for the three variants. One-hundred and three DNA samples from cats with HCM were evaluated from domestic shorthair, domestic longhair and purebred cats. All samples were wt for the MYBPC3 and MYH7 variants. Although this study was limited by its inclusion of cats from one tertiary hospital, the lack of these MYBPC3 and MYH7 variants in this feline HCM population indicates that the clinical utility of genetic testing for these variants may be isolated to the two cat breeds in which these variants have been identified. Further studies to identify the causative variants for the feline HCM population are warranted.


Assuntos
Cardiomiopatia Hipertrófica/veterinária , Proteínas de Transporte/genética , Doenças do Gato/genética , Variação Genética , Cadeias Pesadas de Miosina/genética , Animais , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/metabolismo , Doenças do Gato/metabolismo , Gatos , Feminino , Masculino , Cadeias Pesadas de Miosina/metabolismo
7.
J Biol Chem ; 296: 100694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33895132

RESUMO

Myosin heavy chain 7b (MYH7b) is an ancient member of the myosin heavy chain motor protein family that is expressed in striated muscles. In mammalian cardiac muscle, MYH7b RNA is expressed along with two other myosin heavy chains, ß-myosin heavy chain (ß-MyHC) and α-myosin heavy chain (α-MyHC). However, unlike ß-MyHC and α-MyHC, which are maintained in a careful balance at the protein level, the MYH7b locus does not produce a full-length protein in the heart due to a posttranscriptional exon-skipping mechanism that occurs in a tissue-specific manner. Whether this locus has a role in the heart beyond producing its intronic microRNA, miR-499, was unclear. Using cardiomyocytes derived from human induced pluripotent stem cells as a model system, we found that the noncoding exon-skipped RNA (lncMYH7b) affects the transcriptional landscape of human cardiomyocytes, independent of miR-499. Specifically, lncMYH7b regulates the ratio of ß-MyHC to α-MyHC, which is crucial for cardiac contractility. We also found that lncMYH7b regulates beat rate and sarcomere formation in cardiomyocytes. This regulation is likely achieved through control of a member of the TEA domain transcription factor family (TEAD3, which is known to regulate ß-MyHC). Therefore, we conclude that this ancient gene has been repurposed by alternative splicing to produce a regulatory long-noncoding RNA in the human heart that affects cardiac myosin composition.


Assuntos
Miosinas Cardíacas/metabolismo , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/metabolismo , RNA Longo não Codificante/genética , Miosinas Cardíacas/química , Humanos , Células-Tronco Pluripotentes Induzidas , MicroRNAs/genética , Simulação de Dinâmica Molecular , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/química , Conformação Proteica
9.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925862

RESUMO

Resident myogenic stem cells (satellite cells) are attracting attention for their novel roles in myofiber type regulation. In the myogenic differentiation phase, satellite cells from soleus muscle (slow fiber-abundant) synthesize and secrete higher levels of semaphorin 3A (Sema3A, a multifunctional modulator) than those derived from extensor digitorum longus (EDL; fast fiber-abundant), suggesting the role of Sema3A in forming slow-twitch myofibers. However, the regulatory mechanisms underlying fast-twitch myotube commitment remain unclear. Herein, we focused on netrin family members (netrin-1, -3, and -4) that compete with Sema3A in neurogenesis and osteogenesis. We examined whether netrins affect fast-twitch myotube generation by evaluating their expression in primary satellite cell cultures. Initially, netrins are upregulated during myogenic differentiation. Next, we compared the expression levels of netrins and their cell membrane receptors between soleus- and EDL-derived satellite cells; only netrin-1 showed higher expression in EDL-derived satellite cells than in soleus-derived satellite cells. We also performed netrin-1 knockdown experiments and additional experiments with recombinant netrin-1 in differentiated satellite cell-derived myoblasts. Netrin-1 knockdown in myoblasts substantially reduced fast-type myosin heavy chain (MyHC) expression; exogenous netrin-1 upregulated fast-type MyHC in satellite cells. Thus, netrin-1 synthesized in EDL-derived satellite cells may promote myofiber type commitment of fast muscles.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Netrina-1/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/citologia , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/citologia , Cadeias Pesadas de Miosina/metabolismo , Cultura Primária de Células/métodos , Células Satélites de Músculo Esquelético/metabolismo , Semaforina-3A/metabolismo
10.
Food Chem ; 356: 129696, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838605

RESUMO

This study aimed to assess the effects of acetylation levels on actomyosin disassociation and phosphorylation of lamb during incubation at 4 °C. Samples of whole proteins from lamb longissimus thoracis muscles were prepared and assigned into three treatments (high, middle and low acetylation groups). The results showed that deacetylation of myosin heavy chain and actin was inhibited by lysine deacetylase inhibitor trichostatin A and nicotinamide in this study. Phosphorylation levels of myosin heavy chain and actin were inhibited by their acetylation during incubation in vitro. Actomyosin disassociation degree in high acetylation group was significantly lower than that in middle and low acetylation groups (P < 0.05). The ATPase activity in high acetylation group was significantly higher than that in middle and low acetylation groups (P < 0.05). In conclusion, acetylation of myosin heavy chain and actin inhibited actomyosin dissociation by inhibiting their phosphorylation at 4 °C in vitro.


Assuntos
Actomiosina/metabolismo , Músculos/metabolismo , Acetilação/efeitos dos fármacos , Actinas/antagonistas & inibidores , Actinas/metabolismo , Actomiosina/antagonistas & inibidores , Animais , Sítios de Ligação , Temperatura Baixa , Ácidos Hidroxâmicos/farmacologia , Simulação de Dinâmica Molecular , Cadeias Pesadas de Miosina/antagonistas & inibidores , Cadeias Pesadas de Miosina/metabolismo , Niacinamida/farmacologia , Fosforilação , Ovinos
11.
Molecules ; 26(7)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800606

RESUMO

We investigated the effect of endogenous cathepsin L on surimi gel produced from olive flounder (Paralichthys olivaceus). The amino acid sequences of six proteins predicted or identified as cathepsin L were obtained from the olive flounder genome database, and a phylogenetic analysis was conducted. Next, cathepsin L activity toward N-α-benzyloxycarbonyl-l-phenylalanyl-l-arginine-(7-amino-4-methylcoumarin) (Z-F-R-AMC) was detected in crude olive flounder extract and a crude enzyme preparation. A considerable decrease in the level of myosin heavy chain (MHC) in surimi occurred during autolysis at 60 °C. In contrast, the levels of actin, troponin-T, and tropomyosin decreased only slightly. To prevent protein degradation by cathepsin L, a protease inhibitor was added to surimi. In the presence of 1.0% protease inhibitor, the autolysis of olive flounder surimi at 60 °C was inhibited by 12.2%; the degree of inhibition increased to 44.2% as the inhibitor concentration increased to 3.0%. In addition, the deformation and hardness of modori gel increased as the inhibitor concentration increased to 2.0%. Therefore, cathepsin L plays an important role in protein degradation in surimi, and the quality of surimi gel could be enhanced by inhibiting its activity.


Assuntos
Catepsina L/metabolismo , Proteínas de Peixes/metabolismo , Linguado/metabolismo , Tecnologia de Alimentos/métodos , Proteínas Musculares/metabolismo , Actinas/química , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Catepsina L/antagonistas & inibidores , Catepsina L/genética , Catepsina L/isolamento & purificação , Produtos Pesqueiros/análise , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/genética , Proteínas de Peixes/isolamento & purificação , Linguado/classificação , Linguado/genética , Expressão Gênica , Humanos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Proteínas Musculares/isolamento & purificação , Músculos/química , Músculos/enzimologia , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Filogenia , Inibidores de Proteases/farmacologia , Proteólise , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tropomiosina/química , Tropomiosina/metabolismo , Troponina T/química , Troponina T/metabolismo
12.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33656555

RESUMO

The polarisome is a cortical proteinaceous microcompartment that organizes the growth of actin filaments and the fusion of secretory vesicles in yeasts and filamentous fungi. Polarisomes are compact, spotlike structures at the growing tips of their respective cells. The molecular forces that control the form and size of this microcompartment are not known. Here we identify a complex between the polarisome subunit Pea2 and the type V Myosin Myo2 that anchors Myo2 at the cortex of yeast cells. We discovered a point mutation in the cargo-binding domain of Myo2 that impairs the interaction with Pea2 and consequently the formation and focused localization of the polarisome. Cells carrying this mutation grow round instead of elongated buds. Further experiments and biophysical modeling suggest that the interactions between polarisome-bound Myo2 motors and dynamic actin filaments spatially focus the polarisome and sustain its compact shape.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Fungos/metabolismo , Fungos/fisiologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Ligação Proteica/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretórias/metabolismo , Vesículas Secretórias/fisiologia
13.
Mar Biotechnol (NY) ; 23(2): 215-224, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33715060

RESUMO

Pacific oyster (Crassostrea gigas) is one of the most widely cultivated shellfish species in the world. Because of its economic value and complex life cycle involving drastic changes from a free-swimming larva to a sessile juvenile, C. gigas has been used as a model for developmental, environmental, and aquaculture research. However, due to the lack of genetic tools for functional analysis, gene functions associated with biological or economic traits cannot be easily determined. Here, we reported a successful application of CRISPR/Cas9 technology for knockout of myosin essential light chain gene (CgMELC) in C. gigas. C. gigas embryos injected with sgRNAs/Cas9 contained extensive indel mutations at the target sites. The mutant larvae showed defective musculature and reduced motility. In addition, knockout of CgMELC disrupted the expression and patterning of myosin heavy chain positive myofibers in larvae. Together, these data indicate that CgMELC is involved in larval muscle contraction and myogenesis in oyster larvae.


Assuntos
Crassostrea/genética , Desenvolvimento Muscular/genética , Cadeias Leves de Miosina/genética , Animais , Sistemas CRISPR-Cas , Crassostrea/crescimento & desenvolvimento , Mutação INDEL , Larva/genética , Larva/crescimento & desenvolvimento , Cadeias Pesadas de Miosina/metabolismo
14.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727250

RESUMO

Activating mutations in LRRK2 kinase causes Parkinson's disease. Pathogenic LRRK2 phosphorylates a subset of Rab GTPases and blocks ciliogenesis. Thus, defining novel phospho-Rab interacting partners is critical to our understanding of the molecular basis of LRRK2 pathogenesis. RILPL2 binds with strong preference to LRRK2-phosphorylated Rab8A and Rab10. RILPL2 is a binding partner of the motor protein and Rab effector, Myosin Va. We show here that the globular tail domain of Myosin Va also contains a high affinity binding site for LRRK2-phosphorylated Rab10. In the presence of pathogenic LRRK2, RILPL2 and MyoVa relocalize to the peri-centriolar region in a phosphoRab10-dependent manner. PhosphoRab10 retains Myosin Va over pericentriolar membranes as determined by fluorescence loss in photobleaching microscopy. Without pathogenic LRRK2, RILPL2 is not essential for ciliogenesis but RILPL2 over-expression blocks ciliogenesis in RPE cells independent of tau tubulin kinase recruitment to the mother centriole. These experiments show that LRRK2 generated-phosphoRab10 dramatically redistributes a significant fraction of Myosin Va and RILPL2 to the mother centriole in a manner that likely interferes with Myosin Va's role in ciliogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cílios/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Sítios de Ligação/genética , Linhagem Celular , Cílios/fisiologia , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Fosforilação , Ligação Proteica/genética , Proteínas rab de Ligação ao GTP/metabolismo
15.
Life Sci ; 275: 119352, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33771521

RESUMO

AIMS: The autophagy-lysosomal system plays a crucial role in maintaining muscle proteostasis. Excessive stimulation of the autophagic machinery is a major contributor to muscle atrophy induced by tendon transection. Hyperthermia is known to attenuate muscle protein loss during disuse conditions; however, little is known regarding the response of the autophagy pathway to heat stress following tenotomy-induced muscle atrophy. The purpose of this study was to evaluate whether heat stress would have a beneficial impact on the activation of autophagy in tenotomized soleus and plantaris muscles. MAIN METHODS: Male Wistar rats were divided into control, control plus heat stress, tenotomy, and tenotomy plus heat stress groups. The effects of tenotomy were evaluated at 8 and 14 days with heat treatment applied using thermal blankets (30 min. day-1, at 40.5-41.5 °C, for 7 days). KEY FINDINGS: Heat stress could normalize tenotomy-induced muscle loss and over-activation of autophagy-lysosomal signaling; this effect was evidently observed in soleus muscle tenotomized for 14 days. The autophagy-related proteins LC3B-II and LC3B-II/I tended to decrease, and lysosomal cathepsin L protein expression was significantly suppressed. While p62/SQSTM1 was not altered in response to intermittent heat exposure in tenotomized soleus muscle at day 14. Phosphorylation of the 4E-BP1 protein was significantly increased in tenotomized plantaris muscle; whereas heat stress had no impact on phosphorylation of Akt and FoxO3a proteins in both tenotomized muscles examined. SIGNIFICANCE: Our results provide evidence that heat stress associated attenuation of tenotomy-induced muscle atrophy is mediated through limiting over-activation of the autophagy-lysosomal pathway in oxidative and glycolytic muscles.


Assuntos
Autofagia/fisiologia , Resposta ao Choque Térmico/fisiologia , Lisossomos/fisiologia , Atrofia Muscular/fisiopatologia , Tendão do Calcâneo/cirurgia , Animais , Eletroforese em Gel de Poliacrilamida , Humanos , Lisossomos/metabolismo , Masculino , Atrofia Muscular/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Tenotomia/efeitos adversos
16.
Food Chem ; 354: 129498, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33773482

RESUMO

Creatine improves flesh quality on mammalian but studies on crustaceans are scarce. In the present study, diets with six levels of creatine (1.23, 2.58, 5.12, 8.28, 14.12, 24.49 g kg-1 diet) were hand-fed to juvenile Litopenaeus vannamei (IBW: 1.50 ± 0.02 g) reared in freshwater for 46 days. Results showed creatine supplementation did not affect the growth performance (FBW: 17.04 ± 1.28 g) or the content of guanidinoacetic acid in muscle and hepatopancreas whereas significantly increased muscular creatine content. Diet with 8.28 g kg-1 creatine significantly increased muscular hardness and chewiness by decreasing myofiber diameter and increasing myofiber density. Additionally, creatine downregulated the mRNA expression of fast sMyHC1, sMyHC2, sMyHC6a and upregulated slow sMyHC5 and sMyHC15 mRNA expression. Muscular protein, collagen, total amino acid and flavor amino acid contents increased with creatine supplementation. In conclusion, the diet with 8.28 g kg-1 creatine improved the flesh quality of L. vannamei.


Assuntos
Creatina/metabolismo , Penaeidae/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Colágeno/metabolismo , Creatina/administração & dosagem , Creatina/farmacologia , Suplementos Nutricionais , Regulação para Baixo , Água Doce/química , Glicina/análogos & derivados , Glicina/metabolismo , Hepatopâncreas/metabolismo , Proteínas Musculares/metabolismo , Músculos/metabolismo , Músculos/fisiologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Penaeidae/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Regulação para Cima
17.
Oxid Med Cell Longev ; 2021: 5545261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763166

RESUMO

Mitochondrial dysfunction has been suggested to be the key factor in the development and progression of cardiac hypertrophy. The onset of mitochondrial dysfunction and the mechanisms underlying the development of cardiac hypertrophy (CH) are incompletely understood. The present study is based on the use of multiple bioinformatics analyses for the organization and analysis of scRNA-seq and microarray datasets from a transverse aortic constriction (TAC) model to examine the potential role of mitochondrial dysfunction in the pathophysiology of CH. The results showed that NADH:ubiquinone oxidoreductase core subunit S1- (Ndufs1-) dependent mitochondrial dysfunction plays a key role in pressure overload-induced CH. Furthermore, in vivo animal studies using a TAC mouse model of CH showed that Ndufs1 expression was significantly downregulated in hypertrophic heart tissue compared to that in normal controls. In an in vitro model of angiotensin II- (Ang II-) induced cardiomyocyte hypertrophy, Ang II treatment significantly downregulated the expression of Ndufs1 in cardiomyocytes. In vitro mechanistic studies showed that Ndufs1 knockdown induced CH; decreased the mitochondrial DNA content, mitochondrial membrane potential (MMP), and mitochondrial mass; and increased the production of mitochondrial reactive oxygen species (ROS) in cardiomyocytes. On the other hand, Ang II treatment upregulated the expression levels of atrial natriuretic peptide, brain natriuretic peptide, and myosin heavy chain beta; decreased the mitochondrial DNA content, MMP, and mitochondrial mass; and increased mitochondrial ROS production in cardiomyocytes. The Ang II-mediated effects were significantly attenuated by overexpression of Ndufs1 in rat cardiomyocytes. In conclusion, our results demonstrate downregulation of Ndufs1 in hypertrophic heart tissue, and the results of mechanistic studies suggest that Ndufs1 deficiency may cause mitochondrial dysfunction in cardiomyocytes, which may be associated with the development and progression of CH.


Assuntos
Cardiomegalia/metabolismo , Potencial da Membrana Mitocondrial , Miocárdio/metabolismo , Miocárdio/patologia , NADH Desidrogenase/deficiência , Pressão , Angiotensina II , Animais , Fator Natriurético Atrial/metabolismo , Biomarcadores/metabolismo , Cardiomegalia/patologia , Constrição Patológica , Regulação para Baixo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , NADH Desidrogenase/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , RNA-Seq , Ratos , Análise de Célula Única
18.
J Sci Food Agric ; 101(12): 5116-5123, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33583040

RESUMO

BACKGROUND: Ferulic acid (FA) is a common polyphenolic compound. The purpose of this study was to explore the effect of dietary FA supplementation on growth performance and muscle fiber type conversion in weaned piglets. In this study, eighteen 21-day-old DLY (Duroc × Landrace × Yorkshire) weaned piglets were randomly divided into control, 0.05% FA, and 0.45% FA groups. RESULTS: Our study showed that dietary FA supplementation had no effect on growth performance, but it could upregulate the expression of slow myosin heavy chain (MyHC) protein, increase the activities of succinic dehydrogenase and malate dehydrogenase, and downregulate the expression of fast MyHC protein. Dietary FA supplementation also increased the expression levels of phosphorylated AMP-activated protein kinase, sirtuin 1 (Sirt1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), myocyte enhancer factor 2C, and troponin I-SS, increased the proportion of slow-twitch fiber, and decreased the proportion of fast-twitch fiber. In addition, our results showed that dietary FA supplementation increased the messenger RNA abundance of mitochondrial nuclear transcription genes, including ATP synthase membrane subunit c locus 1, cytochrome oxidase subunit 1, nuclear respiratory factor 1, mitochondrial transcription factor A, mitochondrial transcription factor B1, and cytochrome c. CONCLUSION: We provided the first evidence that FA could promote muscle fiber type conversion from fast-twitch to slow-twitch via the Sirt1/AMP-activated protein kinase/PGC-1α signaling pathway and could improve the mitochondrial function in weaned piglets. This means that FA can be used as a dietary supplement to improve the quality of pork. © 2021 Society of Chemical Industry.


Assuntos
Ácidos Cumáricos/administração & dosagem , Suplementos Nutricionais/análise , Fibras Musculares Esqueléticas/efeitos dos fármacos , Suínos/crescimento & desenvolvimento , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Suínos/genética , Suínos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Desmame
19.
Histochem Cell Biol ; 155(3): 323-340, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33386429

RESUMO

Spermiogenesis is the final stage of spermatogenesis, a differentiation process during which unpolarized spermatids undergo excessive remodeling that results in the formation of sperm. The actin cytoskeleton and associated actin-binding proteins play crucial roles during this process regulating organelle or vesicle delivery/segregation and forming unique testicular structures involved in spermatid remodeling. In addition, several myosin motor proteins including MYO6 generate force and movement during sperm differentiation. MYO6 is highly unusual as it moves towards the minus end of actin filaments in the opposite direction to other myosin motors. This specialized feature of MYO6 may explain the many proposed functions of this myosin in a wide array of cellular processes in animal cells, including endocytosis, secretion, stabilization of the Golgi complex, and regulation of actin dynamics. These diverse roles of MYO6 are mediated by a range of specialized cargo-adaptor proteins that link this myosin to distinct cellular compartments and processes. During sperm development in a number of different organisms, MYO6 carries out pivotal functions. In Drosophila, the MYO6 ortholog regulates actin reorganization during spermatid individualization and male KO flies are sterile. In C. elegans, the MYO6 ortholog mediates asymmetric segregation of cytosolic material and spermatid budding through cytokinesis, whereas in mice, this myosin regulates assembly of highly specialized actin-rich structures and formation of membrane compartments to allow the formation of fully differentiated sperm. In this review, we will present an overview and compare the diverse function of MYO6 in the specialized adaptations of spermiogenesis in flies, worms, and mammals.


Assuntos
Cadeias Pesadas de Miosina/metabolismo , Espermatogênese , Animais , Camundongos
20.
Gastroenterology ; 160(6): 2133-2148.e6, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33465373

RESUMO

BACKGROUND & AIMS: Peribiliary glands (PBGs), clusters of epithelial cells residing in the submucosal compartment of extrahepatic bile ducts, have been suggested as biliary epithelial stem/progenitor cell niche; however, evidence to support this claim is limited because of a lack of PBG-specific markers. We therefore sought to identify PBG-specific markers to investigate the potential role of PBGs as stem/progenitor cell niches, as well as an origin of cancer. METHODS: We examined the expression pattern of the Wnt target gene Axin2 in extrahepatic bile ducts. We then applied lineage tracing to investigate whether Axin2-expressing cells from PBGs contribute to biliary regeneration and carcinogenesis using Axin2-CreERT mice. RESULTS: Wnt signaling activation, marked by Axin2, was limited to PBGs located in the periampullary region. Lineage tracing showed that Axin2-expressing periampullary PBG cells are capable of self-renewal and supplying new biliary epithelial cells (BECs) to the luminal surface. Additionally, the expression pattern of Axin2 and the mature ductal cell marker CK19 were mutually exclusive in periampullary region, and fate tracing of CK19+ luminal surface BECs showed gradual replacement by CK19- cells, further supporting the continuous replenishment of new BECs from PBGs to the luminal surface. We also found that Wnt signal enhancer R-spondin3 secreted from Myh11-expressing stromal cells, corresponding to human sphincter of Oddi, maintained the periampullary Wnt signal-activating niche. Notably, introduction of PTEN deletion into Axin2+ PBG cells, but not CK19+ luminal surface BECs, induced ampullary carcinoma whose development was suppressed by Wnt inhibitor. CONCLUSION: A specific cell population receiving Wnt-activating signal in periampullary PBGs functions as biliary epithelial stem/progenitor cells and also the cellular origin of ampullary carcinoma.


Assuntos
Ampola Hepatopancreática , Proteína Axina/metabolismo , Carcinoma/patologia , Neoplasias do Ducto Colédoco/patologia , Células Epiteliais/patologia , Células-Tronco/patologia , Via de Sinalização Wnt , Ampola Hepatopancreática/patologia , Animais , Proteína Axina/genética , Ductos Biliares Extra-Hepáticos/metabolismo , Ductos Biliares Extra-Hepáticos/patologia , Carcinogênese/genética , Linhagem da Célula , Proliferação de Células , Células Epiteliais/metabolismo , Queratina-19/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , PTEN Fosfo-Hidrolase/genética , Esfíncter da Ampola Hepatopancreática/metabolismo , Células-Tronco/metabolismo , Trombospondinas/genética , Trombospondinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...