Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.572
Filtrar
1.
BMC Urol ; 22(1): 156, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131343

RESUMO

BACKGROUND: Bladder cancer (BC) seriously endangers public health, but effective biomarkers for BC diagnosis, particularly in the early stage, are still lacking. Identification of reliable biomarkers associated with early-stage BC is of great importance to early treatment and an improved outcome. METHODS: Differentially expressed genes (DEGs) were identified using four publicly available early-stage BC gene-expression profiles. Protein-protein interaction (PPI) and survival analysis for hub genes was evaluated. The correlation between methylation of genes and prognosis was evaluated using the MethSurv database. Co-expressed genes were explored using Cancer Cell Line Encyclopedia database and the corresponding expression were assessed in vitro. The competing endogenous RNA network and the immune cell infiltration in BC were generated using data of The Cancer Genome Atlas. RESULTS: Ten hub genes of the 213 integrated DEGs were identified, including CDH1, IGFBP3, PPARG, SDC1, EPCAM, ACTA2, COL3A1, TPM1, ACTC1, and ACTN1. CDH1 appeared to increase from tumor initiation stage and negatively correlated with methylation. Six methylated sites in CDH1 indicated a good prognosis and one site indicated an aberrant prognosis. High CDH1 expression was negatively correlated with infiltrations by most immune cells, such as plasmacytoid dendritic cells (pDCs), regulatory T cells, macrophages, neutrophils, DCs, and natural killer cells. CDH1 was highly positively correlated with EPCAM and appeared to be directly regulated by miR-383. CONCLUSIONS: The identified oncogenic alterations provide theoretical support for the development of novel biomarkers to advance early-stage BC diagnosis and personalized therapy.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Antígenos CD , Caderinas/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , PPAR gama/genética , PPAR gama/metabolismo , Neoplasias da Bexiga Urinária/patologia
2.
Sci Rep ; 12(1): 14940, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056066

RESUMO

Adducin (Add) is an actin binding protein participating in the stabilization of actin/spectrin networks, epithelial junctional turnover and cardiovascular disorders such as hypertension. Recently, we demonstrated that Add is required for adherens junctions (AJ) integrity. Here we hypothesized that Add regulates tight junctions (TJ) as well and may play a role in cAMP-mediated barrier enhancement. We evaluated the role of Add in MyEnd cells isolated from WT and Add-Knock-Out (KO) mice. Our results indicate that the lack of Add drastically alters the junctional localization and protein levels of major AJ and TJ components, including VE-Cadherin and claudin-5. We also showed that cAMP signaling induced by treatment with forskolin and rolipram (F/R) enhances the barrier integrity of WT but not Add-KO cells. The latter showed no junctional reorganization upon cAMP increase. The absence of Add also led to higher protein levels of the small GTPases Rac1 and RhoA. In vehicle-treated cells the activation level of Rac1 did not differ significantly when WT and Add-KO cells were compared. However, the lack of Add led to increased activity of RhoA. Moreover, F/R treatment triggered Rac1 activation only in WT cells. The function of Rac1 and RhoA per se was unaffected by the total ablation of Add, since direct activation with CN04 was still possible in both cell lines and led to improved endothelial barrier function. In the current study, we demonstrate that Add is required for the maintenance of endothelial barrier by regulating both AJ and TJ. Our data show that Add may act upstream of Rac1 as it is necessary for its activation via cAMP.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Neuropeptídeos/metabolismo , Junções Íntimas , Proteínas rac1 de Ligação ao GTP/metabolismo , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Camundongos , Junções Íntimas/metabolismo
3.
Cell Commun Signal ; 20(1): 136, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064550

RESUMO

BACKGROUND: Gastric cancer is a common and lethal human malignancy worldwide and cancer cell metastasis is the leading cause of cancer-related mortality. MICAL2, a flavoprotein monooxygenase, is an important regulator of epithelial-to-mesenchymal transition. The aim of this study was to explore the effects of MICAL2 on gastric cancer cell migration and determine the underlying molecular mechanisms. METHODS: Cell migration was examined by wound healing and transwell assays. Changes in E-cadherin/ß-catenin signaling were determined by qPCR and analysis of cytoplasmic and nuclear protein fractions. E-cadherin/ß-catenin binding was determined by co-immunoprecipitation assays. Cdc42 activity was examined by pulldown assay. RESULTS: MICAL2 was highly expressed in gastric cancer tissues. The knockdown of MICAL2 significantly attenuated migratory ability and ß-catenin nuclear translocation in gastric cancer cells while LiCl treatment, an inhibitor of GSK3ß, reversed these MICAL2 knockdown-induced effects. Meanwhile, E-cadherin expression was markedly enhanced in MICAL2-depleted cells. MICAL2 knockdown led to a significant attenuation of E-cadherin ubiquitination and degradation in a Cdc42-dependent manner, then enhanced E-cadherin/ß-catenin binding, and reduced ß-catenin nuclear translocation. CONCLUSIONS: Together, our results indicated that MICAL2 promotes E-cadherin ubiquitination and degradation, leading to enhanced ß-catenin signaling via the disruption of the E-cadherin/ß-catenin complex and, consequently, the promotion of gastric cell migration. Video Abstract.


Assuntos
Antígenos CD , Caderinas , Proteínas dos Microfilamentos , Oxirredutases , Neoplasias Gástricas , beta Catenina , Proteína cdc42 de Ligação ao GTP , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
4.
Cytokine ; 159: 156013, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36067712

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common malignant tumours and has a high fatality rate worldwide. This study investigated the role of the Notch-1 signalling pathway in the pathogenesis and progression of GC. METHODS: A total of 64 patients with GC were included in this study. Immunohistochemistry staining was used to detect Notch-1 expression in tumour tissues and adjacent non-tumour tissues, and Notch-1 knockdown in GC cells was identified using short hairpin RNA. A cell scratch assay, transwell assay and flow cytometry analysis were used to analyse the effect of Notch-1 knockdown on cell proliferation, migration and cell cycle distribution. The expression of Notch-1, PTEN, Akt, ERK1/2, E-cadherin and other proteins was detected using Western blotting. RESULTS: The expression level of Notch-1 in GC tissues was higher than that in adjacent non-tumour tissues (P < 0.05). High levels of Notch-1 were also found to be associated with sex (male) and lymph node metastasis (P < 0.05). Notch-1 knockdown in the AGS and BGC-823 GC cell lines inhibited the migration and proliferation of GC cells, and Notch-1 knockdown arrested the cell cycle in the G0/G1 phase. PTEN protein expression was elevated in the presence of Notch-1 knockdown, resulting in the inhibition of phosphorylated Akt protein expression. In addition, phosphorylated ERK protein levels decreased in the presence of Notch-1 knockdown. Further inhibition of ERK1/2 signalling by the MEK1/2 inhibitor U0126 decreased the proliferation of AGS cells. The results of in vivo experiments with xenotransplantation in nude mice are consistent with these results. CONCLUSIONS: Notch-1 plays a key role in the development of GC and was found to promote the lymph node metastasis of GC. Notch-1 knockdown can effectively attenuate the progression of GC cells, which may function in part through the Notch-1-PTEN-ERK1/2 signalling axis.


Assuntos
Neoplasias Gástricas , Animais , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Metástase Linfática , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Nus , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Neoplasias Gástricas/patologia
5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(9): 819-824, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36082713

RESUMO

Objective To investigate the effects of microRNA-152 (miR-152) targeting at angiotensin II type 1 receptor (AGTR1) on the epithelial mesenchymal transition (EMT) and renin-angiotensin system (RAS) of HCCLM3 human hepatocellular carcinoma cells. Methods The cultured HCCLM3 cells were divided into untransfected group (untreated), negative control group (transfection negative control sequence) and miR-152 group (transfected miR-152 mimic). The expressions of miR-152, angiotensin converting enzyme (ACE), angiotensin II (AngII) and angiotensin II type 1 receptor (AGTR1) mRNAs were detected by real-time fluorescence quantitative PCR. Cell invasion and migration were detected by TranswellTM assay. The expression of vimentin, N-cadherin, E-cadherin and AGTR1 were tested by western blot. The targeting relationship between miR-152 and AGTR1 were examined by double luciferase reporter assay. Results Compared with the untransfected group or the negative control group, the expression levels of miR-152 and E-cadherin protein in the miR-152 group significantly increased, while the expression levels of ACE, AngII, AGTR1 mRNA, the number of invaded cells, the number of migrating cells, and the protein expression levels of vimentin, N-cadherin, and AGTR1 decreased significantly. The results of double luciferase reporter gene assay confirmed that miR-152 can target binding with AGTR1. Conclusion miR-152 may inhibit EMT and RAS of HCCLM3 cells by targeting down-regulation of AGTR1 expression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Caderinas/genética , Caderinas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , RNA Mensageiro/genética , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/genética , Vimentina/genética , Vimentina/metabolismo
6.
Nat Cell Biol ; 24(9): 1341-1349, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36100738

RESUMO

Mammalian embryos sequentially differentiate into trophectoderm and an inner cell mass, the latter of which differentiates into primitive endoderm and epiblast. Trophoblast stem (TS), extraembryonic endoderm (XEN) and embryonic stem (ES) cells derived from these three lineages can self-assemble into synthetic embryos, but the mechanisms remain unknown. Here, we show that a stem cell-specific cadherin code drives synthetic embryogenesis. The XEN cell cadherin code enables XEN cell sorting into a layer below ES cells, recapitulating the sorting of epiblast and primitive endoderm before implantation. The TS cell cadherin code enables TS cell sorting above ES cells, resembling extraembryonic ectoderm clustering above epiblast following implantation. Whereas differential cadherin expression drives initial cell sorting, cortical tension consolidates tissue organization. By optimizing cadherin code expression in different stem cell lines, we tripled the frequency of correctly formed synthetic embryos. Thus, by exploiting cadherin codes from different stages of development, lineage-specific stem cells bypass the preimplantation structure to directly assemble a postimplantation embryo.


Assuntos
Caderinas , Endoderma , Animais , Blastocisto , Caderinas/genética , Caderinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Camadas Germinativas , Mamíferos
7.
Biomed Res Int ; 2022: 5481552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119923

RESUMO

Chronic kidney disease (CKD) is identified as a widespread chronic progressive disease jeopardizing public health which characterized by gradually loss of renal function. However, there is no efficient therapy to prevail over this disease. Our study was attempting to reveal hirudin's regulation to renal fibrosis as well as the molecular mechanism. We built renal fibrosis models on both cell and animal levels, which were subsequently given with hirudin disposal; then, we performed the transwell assay to estimate the cells' migration and had our detection to relevant proteins with western blot and immunofluorescence. Finally, we commenced both the identification and the determination to the hirudin targeted proteins and its downstream signaling pathways with the methods of network pharmacology. And the results turned out that when it was compared with the model group, the group with hirudin addition came with the suppression in the migration of renal tubular epithelial cells NRK-52E and with a conspicuous decline in the expressions of fibronectin, N-cadherin, vimentin, TGF-ß, and snail. After that, we predicted that there were 17 hirudin target points mainly involving in the PI3K-AKT signaling pathway. Our outcomes of the animal level demonstrated that the conditions of interstitial fibrosis, severe tubular dilatation or atrophy, inflammatory cell infiltration, and massive accumulation of interstitial collagen in the model group were withdrawn after the addition of hirudin. In addition, p-PDGFRß, p-PI3K, and p-AKT protein expressions were significantly reduced, and the PI3K/AKT pathway was downregulated after hirudin treatment in the model group of NRK-52E cells and animals. Therefore, we had our conclusion that hirudin is capable of suppressing the PI3K-AKT signaling pathway as well as the EMT by decreasing PDGFRß phosphorylation.


Assuntos
Nefropatias , Proteínas Proto-Oncogênicas c-akt , Animais , Caderinas/metabolismo , Regulação para Baixo , Transição Epitelial-Mesenquimal , Fibronectinas/metabolismo , Fibrose , Hirudinas/farmacologia , Nefropatias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Vimentina/metabolismo
8.
Rom J Morphol Embryol ; 63(1): 145-151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36074678

RESUMO

Alteration of the intercellular adhesion system plays an essential role in the initiation and progression of bladder carcinomas. We followed the immunoexpression of adhesion molecules, E-cadherin, ß-catenin and Claudin-1, in relation to the histopathological grade and the pT category in a number of 50 urothelial carcinomas of the bladder, based on a final staining score (FSS), calculated on the basis of reaction intensity and labeled cells number. E-cadherin immunoexpression was identified in the membrane of tumor cells, low FSS being associated with invasive high-grade carcinomas. ß-catenin reactions were membranous in the case of low-grade noninvasive carcinomas and predominantly cytoplasmic and nuclear in the case of high-grade invasive ones, for which high FSS were associated. Claudin-1 was identified at the membrane level, the high FSS values being more frequent in the case of high-grade invasive carcinomas, although there were no significant statistical associations. Loss of E-cadherin expression and the associated positive linear relation of ß-catenin and Claudin-1 indicate the usefulness of the analyzed markers in identifying the invasive aggressive phenotype of urothelial bladder carcinomas.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Claudina-1 , Progressão da Doença , Humanos , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia , beta Catenina/metabolismo
9.
PLoS One ; 17(9): e0272928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048820

RESUMO

BACKGROUND: Postoperative abdominal adhesion is one of most common complications after abdominal operations. 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) is an adenosine 5'-monophosphate activated protein kinase (AMPK) pathway agonist that inhibits inflammation, reduces cell fibrosis and cellular reactive oxygen species (ROS) injury, promotes autophagy and mitochondrial function. This study aimed to explore the mechanism of AICAR in inhibiting adhesion formation. MATERIALS AND METHODS: Forty rats were randomly divided into five groups. All of the rats except the sham group received cecal abrasion to establish an adhesion model. The rats in the sodium hyaluronate group were treated with 2 mL sodium hyaluronate before closing the peritoneal cavity. The AICAR 1 and 2 groups were treated with 100 mg/kg and 200 mg/kg AICAR, respectively. Seven days after the operation, all of the rats were euthanized, and the adhesion condition was evaluated by Nair's system. Inflammation was assessed by Eosin-hematoxylin (HE) staining and transforming growth factor-ß (TGF-ß1) detection. Oxidative stress effect was determined by ROS, nitric oxide (NO) level, superoxide dismutase (SOD), catalase, glutathione peroxidase (Gpx) and malondialdehyde (MDA) levels in adhesion tissue. Then, Sirius red picric acid staining was used to detect the fiber thickness. Immunohistochemical staining of cytokeratin-19 (CK-19), alpha-smooth muscle actin (α-SMA) and nuclear factor erythroid 2-related factor 2 (Nrf2) was also performed. Finally, HMrSV5 cells were treated with TGF-ß1 and AICAR, the mRNA expression of E-cadherin, α-SMA and vimentin was assessed by q-PCR and cellular immunofluorescent staining. RESULTS: The rats in the AICAR-treated group had fewer adhesion formation incidences and a reduced Nair's score. The inflammation was determined by HE staining and TGF-ß1 concentration. The ROS, SOD, Catalase, Gpx, MDA levels and fiber thickness were decreased by AICAR treatments compared to the control. However, the NO production, Nrf2 levels and peritoneal mesothelial cell integrity were promoted after AICAR treatments. In vitro work, AICAR treatments reduced E-cadherin, α-SMA and vimentin mRNA level compared to that in the TGF-ß1 group. CONCLUSION: AICAR can inhibit postoperative adhesion formation by reducing inflammation, decreasing oxidative stress response and promoting peritoneal mesothelial cell repair.


Assuntos
Ribonucleosídeos , Fator de Crescimento Transformador beta1 , Aminoimidazol Carboxamida/análogos & derivados , Animais , Caderinas/metabolismo , Catalase/metabolismo , Ácido Hialurônico , Inflamação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ribonucleosídeos/metabolismo , Ribonucleotídeos , Superóxido Dismutase/metabolismo , Aderências Teciduais/tratamento farmacológico , Aderências Teciduais/prevenção & controle , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/metabolismo
10.
Cell Commun Signal ; 20(1): 146, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123693

RESUMO

BACKGROUND: Keratinocytes constitute a major part of the melanoma microenvironment, considering their protective role towards melanocytes in physiological conditions. However, their interactions with tumor cells following melanomagenesis are still unclear. METHODS: We used two in vitro models (melanoma-conditioned media and indirect co-culture of keratinocytes with melanoma cells on Transwell inserts) to activate immortalized keratinocytes towards cancer-associated ones. Western Blotting and qPCR were used to evaluate keratinocyte markers and mediators of cell invasiveness on protein and mRNA expression level respectively. The levels and activity of proteases and cytokines were analysed using gelatin-FITC staining, gelatin zymography, chemiluminescent enzymatic test, as well as protein arrays. Finally, to further study the functional changes influenced by melanoma we assessed the rate of proliferation of keratinocytes and their invasive abilities by employing wound healing assay and the Transwell filter invasion method. RESULTS: HaCaT keratinocytes activated through incubation with melanoma-conditioned medium or indirect co-culture exhibit properties of less differentiated cells (downregulation of cytokeratin 10), which also prefer to form connections with cancer cells rather than adjacent keratinocytes (decreased level of E-cadherin). While they express only a small number of cytokines, the variety of secreted proteases is quite prominent especially considering that several of them were never reported as a part of secretome of activated keratinocytes' (e.g., matrix metalloproteinase 3 (MMP3), ADAM metallopeptidase with thrombospondin type 1 motif 1). Activated keratinocytes also seem to exhibit a high level of proteolytic activity mediated by MMP9 and MMP14, reduced expression of TIMPs (tissue inhibitor of metalloproteinases), upregulation of ERK activity and increased levels of MMP expression regulators-RUNX2 and galectin 3. Moreover, cancer-associated keratinocytes show slightly elevated migratory and invasive abilities, however only following co-culture with melanoma cells on Transwell inserts. CONCLUSIONS: Our study offers a more in-depth view of keratinocytes residing in the melanoma niche, drawing attention to their unique secretome and mediators of invasive abilities, factors which could be used by cancer cells to support their invasion of surrounding tissues. Video abstract.


Assuntos
Metaloproteinase 3 da Matriz , Melanoma , Caderinas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core , Meios de Cultivo Condicionados/farmacologia , Citocinas , Fluoresceína-5-Isotiocianato , Galectina 3 , Gelatina , Humanos , Queratinócitos/patologia , Queratinas , Metaloproteinase 14 da Matriz , Metaloproteinase 9 da Matriz/metabolismo , Melanoma/patologia , RNA Mensageiro/metabolismo , Trombospondinas , Inibidores Teciduais de Metaloproteinases
11.
Biomed Res Int ; 2022: 1926605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093406

RESUMO

Objective: The E3 ubiquitin ligase LRSAM1 (LRSAM1) was involved in many cancers, but whether it exerts anti- or protumor efficacies on choriocarcinoma cellular structures remains unknown. We wanted to explore the efficacies of aberrant LRSAM1 expression on human choriocarcinoma cellular structures and the underlying mechanisms. Methods: LRSAM1 mRNA expressions in choriocarcinoma lines of cells JEG-3 and JAR cellular structures, as well as HTR8/sev8 human trophoblastic cell line cellular structures, were assessed using assay analysis of quantitative real-time polymerase chain reactions. We compared cell proliferation, migratory flow, invasive force, adhesion, and apoptotic process between cellular structures infected with si-LRSAM1 plasmids versus negative controls using CCK-8, clone formation, Transwell, adhesion, and flow cytometry assays. Protein expressions of LRSAM1, E-cadherin, and N-cadherin (indicators of epithelial-mesenchymal transformation) and p53/p21 pathway components were quantitated using a Western blot assay. The morphology of tumor lesions was observed in xenografted nude mice using immunohistochemistry (IHC) analyses. Results: LRSAM1 was markedly overexpressed within JEG-3 and JAR choriocarcinoma cellular structures compared to HTR8/sev8 trophoblast cellular structures. Compared to si-NC, LRSAM1 knockdown robustly restricted cell proliferating, migratory flow, invasive force, and adhesion and fueled apoptotic cell process in JEG-3 as well as JAR cellular structures and suppressed tumor growth, as evidenced by the reduction in tumor volume and weight in naked mice inoculated with transfected cellular structures. Compared to si-negative control (si-NC), si-LRSAM1 significantly decreased Ki67 (a proliferating indicator) and N-cadherin expressions but reduced E-cadherin expression in JEG-3 and JAR cellular structures. Blocking the p53/p21 pathway by pifithrin-a (a p53 restrictor) successfully reversed the anti-inhibitory effect of LRSAM1 depletion, resulting in enhanced proliferating and metastasis in JEG-3 and JAR cellular structures. Conclusion: LRSAM1 exerts tumorigenic roles in choriocarcinoma. Via the activating of the p53/p21 pathway of signaling and impediment of choriocarcinoma cell proliferating, migratory flow, and invasive force, LRSAM1 knockdown slows the course of the disease. For choriocarcinoma diagnosis and treatment, it serves as a new therapeutic target.


Assuntos
Coriocarcinoma , Ubiquitina-Proteína Ligases , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Coriocarcinoma/genética , Coriocarcinoma/metabolismo , Coriocarcinoma/patologia , Feminino , Humanos , Camundongos , Camundongos Nus , Gravidez , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Med Oncol ; 39(12): 189, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071249

RESUMO

The molecular mechanism of anti-metastatic effect of celastrol is not fully understood in breast cancer cells. Herein, we investigated the activity and molecular mechanism of celastrol in triple-negative breast cancer (TNBC) cells, which is a more aggressive subtype of breast cancer. The results of wound healing assay and trans-well assay revealed that celastrol inhibited cell migration and invasion under sub-cytotoxic concentrations in MDA-MB-231 and MDA-MB-468 TNBC cells. Molecular data showed that the effect of celastrol on TNBC cells might be mediated via up-regulation of E-cadherin, a key protein involved in epithelial-mesenchymal transition (EMT). In addition, Hakai, an E3 ligase responsible for E-cadherin complex ubiquitination and degradation, was down-regulated under celastrol treatment. Hakai partially contributed to celastrol-induced anti-invasive effect. In addition, celastrol and docetaxel could synergistically inhibit growth and metastasis of MDA-MB-231 cells. Our results showing anti-migratory/anti-invasive effects of celastrol and associated mechanisms provide new evidence for the development of celastrol as a potential anti-metastatic compound against highly aggressive breast cancer, and celastrol in combination with docetaxel might potentially be used as a novel regimen for the treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Caderinas/metabolismo , Linhagem Celular Tumoral , Docetaxel/farmacologia , Humanos , Triterpenos Pentacíclicos , Neoplasias de Mama Triplo Negativas/metabolismo
13.
J Ethnopharmacol ; 299: 115654, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36058477

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lung cancer is one of the most common malignant tumours and has become the leading cause of cancer-related deaths worldwide. Abnormal microcirculation during tumour growth leads to intermittent hypoxia (IH), which is responsible for promoting cancer cell proliferation and migration. Patients with advanced lung cancers show deficiency of both Qi and Yin Syndrome (DQYS) in TCM, and studies have confirmed that IH exposure is related to DQYS. Shashen-Maidong Decoction (SMD), has been widely applied clinically targeting DQYS and has a long history for treating lung cancer by nourishing the body's "zheng qi" and resisting "xie qi". However, whether SMD could be beneficial to lung cancer under IH conditions remains unclear. AIM OF THE STUDY: This study aimed to clarify the effects and mechanism of SMD on non-small cell lung cancer (NSCLC) growth under IH conditions. MATERIALS AND METHODS: C57 mice were injected subcutaneously into the right axilla with Lewis lung cancer (LLC) cells and exposed to IH conditions (21%-5% O2, 5 min/cycle, 8 h/day) for 21 days. SMDs were orally treated with different concentrations (2.6, 5.2 or 10.4 g/kg/day) 30 min before IH exposure. Tumour proliferation and migration were assessed by HE and IHC staining, and oxidative stress was assessed by DHE staining and MDA or SOD detection. IL-6, IL-1ß and TNF-α levels were assessed by IHC staining, and the IL-6/JAK2/STAT3 signalling pathway was detected by western blotting. RESULTS: Our results showed that SMD treatment inhibited tumour growth and liver metastasis in LLC-bearing mice exposed to IH, decreased Ki67, CD31, VEGF, and MMP-2, and increased E-cadherin expression in tumourt tissue. SMD reduced ROS production, increased SOD levels and SOD-2 expression, and decreased MDA levels and NOX-2 expression. SMD decreased IL-6, IL-1ß and TNF-α levels, reduced IL-6 expression and inhibited JAK2 and STAT3 phosphorylation. Additionally, SMD treatment improved DQYS and liver and kidney function in LLC-bearing mice under IH conditions. CONCLUSION: Our research suggests that SMD treatment can inhibit tumour growth in mice exposed to IH. The antitumour effect of SMD may be related to attenuated oxidative stress and inflammation through inactivation of the IL-6/JAK2/STAT3 signalling pathway under IH conditions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Caderinas/metabolismo , Medicamentos de Ervas Chinesas , Hipóxia/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Front Public Health ; 10: 969070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051999

RESUMO

Objective: We performed a pan-cancer analysis to explore the potential mechanisms of FAT4 in 33 different tumors. Methods: In this study, we selected 33 types of cancers based on the datasets of TCGA (the cancer genome atlas). We analyzed the expression of FAT4 in tumor and normal tissues. Meanwhile, we analyzed the expression levels of FAT4 in tissues from tumors of different stages. Kaplan-Meier survival analysis, Tumor Mutational Burden (TMB), Microsatellite Instability (MSI), immune infiltration analysis, Gene set enrichment analysis (GSEA), and FAT4-related gene enrichment analysis were performed. Results: FAT4 expression in most tumor tissues was lower than in corresponding control tissues. FAT4 expression was different in different stages of bladder cancer (BLCA), kidney clear cell carcinoma (KIRC), and breast cancer (BRCA). In addition, the expression level of FAT4 in different types of tumors has an important impact on the prognosis of patients. FAT4 might influence the efficacy of immunotherapy via tumor burden and microsatellite instability. We observed a statistically positive correlation between cancer-associated fibroblasts and FAT4 expression in most tumors. GSEA of BLCA indicated that low FAT4 expression groups were mainly enriched in calcium signaling pathway and chemokine signaling pathway. GSEA analysis of KIRC suggested low FAT4 expression groups were mainly involved in olfactory transduction and oxidative phosphorylation. Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the role of FAT4 in the pathogenesis of cancer may be related to human papillomavirus infection, Hippo signaling pathway, PI3K-Akt signaling pathway, etc. Gene Ontology (GO) enrichment analysis further showed that most of these genes were related to the pathways or cell biology, such as peptidyl-tyrosine phosphorylation, cell junction assembly, protein tyrosine kinase activity, etc. Conclusion: Our study summarized and analyzed the antitumor effect of FAT4 in different tumors comprehensively, which aided in understanding the role of FAT4 in tumorigenesis from the perspective of clinical tumor samples. Pan-cancer analysis showed that FAT4 to be novel biomarkers for various cancers prognosis.


Assuntos
Caderinas/metabolismo , Neoplasias , Fosfatidilinositol 3-Quinases , Proteínas Supressoras de Tumor/metabolismo , Caderinas/genética , Linhagem Celular Tumoral , Humanos , Instabilidade de Microssatélites , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Supressoras de Tumor/genética
15.
Development ; 149(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36125129

RESUMO

The cadherin-catenin complex (CCC) is central to embryonic development and tissue repair, yet how CCC binding partners function alongside core CCC components remains poorly understood. Here, we establish a previously unappreciated role for an evolutionarily conserved protein, the slit-robo GTPase-activating protein SRGP-1/srGAP, in cadherin-dependent morphogenetic processes in the Caenorhabditis elegans embryo. SRGP-1 binds to the M domain of the core CCC component, HMP-1/α-catenin, via its C terminus. The SRGP-1 C terminus is sufficient to target it to adherens junctions, but only during later embryonic morphogenesis, when junctional tension is known to increase. Surprisingly, mutations that disrupt stabilizing salt bridges in the M domain block this recruitment. Loss of SRGP-1 leads to an increase in mobility and decrease of junctional HMP-1. In sensitized genetic backgrounds with weakened adherens junctions, loss of SRGP-1 leads to late embryonic failure. Rescue of these phenotypes requires the C terminus of SRGP-1 but also other domains of the protein. Taken together, these data establish a role for an srGAP in stabilizing and organizing the CCC during epithelial morphogenesis by binding to a partially closed conformation of α-catenin at junctions.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caderinas/genética , Caderinas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Morfogênese/genética , alfa Catenina/genética , alfa Catenina/metabolismo
16.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077309

RESUMO

BACKGROUND: Mechanically gated PIEZO channels lead to an influx of cations, activation of additional Ca2+ channels, and cell depolarization. This study aimed to investigate PIEZO2's role in breast cancer. METHODS: The clinical relevance of PIEZO2 expression in breast cancer patient was analyzed in a publicly available dataset. Utilizing PIEZO2 overexpressed breast cancer cells, and in vitro and in vivo experiments were conducted. RESULTS: High expression of PIEZO2 was correlated with a worse survival in triple-negative breast cancer (TNBC) but not in other subtypes. Increased PEIZO2 channel function was confirmed in PIEZO2 overexpressed cells after mechanical stimulation. PIEZO2 overexpressed cells showed increased motility and invasive phenotypes as well as higher expression of SNAIL and Vimentin and lower expression of E-cadherin in TNBC cells. Correspondingly, high expression of PIEZO2 was correlated with the increased expression of epithelial-mesenchymal transition (EMT)-related genes in a TNBC patient. Activated Akt signaling was observed in PIEZO2 overexpressed TNBC cells. PIEZO2 overexpressed MDA-MB-231 cells formed a significantly higher number of lung metastases after orthotopic implantation. CONCLUSION: PIEZO2 activation led to enhanced SNAIL stabilization through Akt activation. It enhanced Vimentin and repressed E-cadherin transcription, resulting in increased metastatic potential and poor clinical outcomes in TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Canais Iônicos/genética , Fenótipo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Vimentina/genética , Vimentina/metabolismo
17.
J Immunother Cancer ; 10(9)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36096526

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) can survive in the circulation and return to primary tumors through a self-seeding process. However, the mechanisms underlying CTCs escape from natural killer (NK) cell-mediated immune surveillance remain unclear. METHOD: Self-seeded tumor cells were isolated and characterized using a modified contralateral seeding model. A comparison of transcriptional profiles was performed between the parental cells and self-seeded cells. The molecular mechanism of self-seeded tumor cells escaping from NK cell was demonstrated through in vitro experiments and verified in a CTC-mimicking in vivo model. Then, the expression level of key protein mediating CTCs immune escape was detected in 24 paired primary and recurrent tumor samples of patients with oral cancer by the immunohistochemical method. RESULT: Self-seeded cells displayed resistance to NK cell-mediated lysis and a higher tumor seeding ability than their parental cells. Elevated expression levels of the CDH2 gene and its protein product, N-cadherin were found in self-seeded cells. NK cells secreted cytokines, and fluid shear stress facilitated N-cadherin release by promoting A disintegrin and metalloprotease 10 (ADAM10) translation or converting the precursor ADAM10 to the mature form. Soluble N-cadherin triggered NK cell functional exhaustion by interacting with the killer cell lectin-like receptor subfamily G member 1 (KLRG1) receptor and therefore protected tumor cells from NK cell killing in the circulation. In vivo experimental results showed that overexpression of N-cadherin promoted tumor self-seeding and facilitated the survival of CTCs. Compared with primary tumors, N-cadherin expression was significantly increased in matched recurrent tumor tissues. CONCLUSION: Together, our findings illustrate an unknown mechanism by which CTCs evaded NK cell-mediated immune surveillance, and indicate that targeting N-cadherin is an effective strategy to prevent CTCs from homing to primary tumor.


Assuntos
Caderinas , Neoplasias Bucais , Caderinas/genética , Caderinas/metabolismo , Morte Celular , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptores Imunológicos/metabolismo
18.
Eur Cytokine Netw ; 33(1): 13-24, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36102857

RESUMO

Background: Asthma is an airway disease characterized by airflow limitation and various additional clinical manifestations. Repeated inflammatory stimulation of the airways leads to epithelial-mesenchymal transition (EMT) which aggravates subepithelial fibrosis during the process of airway remodelling and enhances resistance to corticosteroids and bronchodilators in refractory asthma. There is growing evidence that IL-27 modulates airway remodelling, however, the molecular mechanisms involving IL-27 and EMT are poorly understood. The objective of this study was to investigate the effects of IL-27 on ovalbumin (OVA)-challenged asthmatic mice in vivo and TGF-ß1-induced EMT in 16HBE cells in vitro. Methods: Airway inflammation, mucus secretion, and collagen deposition were analysed by conventional pathological techniques. The ratio of Th17 and Th9 cells in the spleen of mice was measured using flow cytometry, ELISA was performed for cytokine analysis to identify EMT-related molecules and signalling pathways, and other molecular and cellular techniques were used to explore the functional mechanism involving IL-27 and EMT. Results: Airway inflammation in asthmatic mice was significantly alleviated by IL-27, with downregulation of RhoA and ROCK, upregulation of E-cadherin, and a decrease of vimentin and α-SMA expression, compared to asthmatic mice. Moreover, the frequency of Th17 and Th9 cells in the spleen of asthmatic mice decreased following treatment with IL-27. In TGF-ß1-induced 16HBE cells, the addition of IL-27 was shown to inhibit EMT, based on the expression of E-cadherin, vimentin, and α-SMA. Conclusion: Intranasal administration of IL-27 attenuates airway inflammation and EMT in a murine model of allergic asthma possibly by downregulating the RhoA/ROCK signalling pathway.


Assuntos
Asma , Interleucina-27 , Remodelação das Vias Aéreas , Animais , Asma/tratamento farmacológico , Caderinas/metabolismo , Caderinas/farmacologia , Caderinas/uso terapêutico , Transição Epitelial-Mesenquimal/fisiologia , Inflamação/tratamento farmacológico , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/farmacologia , Vimentina/uso terapêutico
19.
J Tradit Chin Med ; 42(5): 681-686, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36083473

RESUMO

OBJECTIVE: To evaluate anticancer efficacy of green tea extract (GTE) on PC3 prostate cancer cells. METHODS: By using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot methods, the expression of miR-195 and the epithelial to mesenchymal transition (EMT) markers such as E-cadherin and vimentin was analyzed. RESULTS: Based on the results of 2D and 3D cell culture models, the inhibition of EMT and up regulation of miR-195 expression were detected. CONCLUSIONS: Our findings will be helpful to design anti-tumor regimens with natural product original, and more studies will be required to identify the related mechanisms involving anticancer activities of green tea miRNAs.


Assuntos
Produtos Biológicos , MicroRNAs , Neoplasias da Próstata , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Chá , Regulação para Cima
20.
Cell Death Dis ; 13(9): 770, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068197

RESUMO

Mixed lineage leukemia 1 (MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase that interacts with WD repeat domain 5 (WDR5) to regulate cell survival, proliferation, and senescence. The role of MLL1 in the pathogenesis of acute kidney injury (AKI) is unknown. In this study, we demonstrate that MLL1, WDR5, and trimethylated H3K4 (H3K4me3) were upregulated in renal tubular cells of cisplatin-induced AKI in mice, along with increased phosphorylation of p53 and decreased expression of E-cadherin. Administration of MM102, a selective MLL1/WDR5 complex inhibitor, improved renal function and attenuated tubular injury and apoptosis, while repressing MLL1, WDR5, and H3K4me3, dephosphorylating p53 and preserving E-cadherin. In cultured mouse renal proximal tubular cells (RPTCs) exposed to cisplatin, treatment with MM102 or transfection with siRNAs for either MLL1 or WDR5 also inhibited apoptosis and p53 phosphorylation while preserving E-cadherin expression; p53 inhibition with Pifithrin-α lowered cisplatin-induced apoptosis without affecting expression of MLL1, WDR5, and H3K4me3. Interestingly, silencing of E-cadherin offset MM102's cytoprotective effects, but had no effect on p53 phosphorylation. These findings suggest that MLL1/WDR5 activates p53, which, in turn, represses E-cadherin, leading to apoptosis during cisplatin-induced AKI. Further studies showed that MM102 effectively inhibited cisplatin-triggered DNA damage response (DDR), as indicated by dephosphorylation of ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) proteins, dephosphorylation of checkpoint kinase 1 and 2 (Chk1 and Chk2); depression of γ-H2AX; and restrained cell cycle arrest, as evidenced by decreased expression of p21 and phospho-histone H3 at serine 10 in vitro and in vivo. Overall, we identify MLL1 as a novel DDR regulator that drives cisplatin-induced RPTC apoptosis and AKI by modulating the MLL1/WDR5-/ATR/ATM-Chk-p53-E-cadherin axis. Targeting the MLL1/WDR5 complex may have a therapeutic potential for the treatment of AKI.


Assuntos
Injúria Renal Aguda , Leucemia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Apoptose , Caderinas/genética , Caderinas/metabolismo , Cisplatino/farmacologia , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Rim/metabolismo , Leucemia/tratamento farmacológico , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...