Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.138
Filtrar
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 41(4): 506-511, 2019 Aug 30.
Artigo em Chinês | MEDLINE | ID: mdl-31484613

RESUMO

To investigate the expressions of mucosal barrier proteins in colon cell line DLD-1 under hypoxic environment in vitro and its mechanism. Methods After DLD-1 cells were treated separately with hypoxia(l% O2),vitamin D(100 nmol/L),or vitamin D plus hypoxia for 48 hours,the expressions of vitamin D receptor(VDR),tight junction proteins zonula occludens-1(ZO-1),occludin,Claudin-1,and adherent junction protein(E-cadherin)were determined by Western blot.Stable VDR knock-down(Sh-VDR)DLD-1 cell line and control DLD-1 cell line were established by lentivirus package technology and the protein expressions after hypoxia treatment were detected. Results Compared with control group,the expressions of occludin,Claudin-1,and VDR increased significantly after hypoxia treatment(all P<0.001).In addition to the protein expressions of occludin,Claudin-1 and VDR,the expressions of ZO-1 and E-cadherin were also obviously higher in vitamin D plus hypoxia group than in single vitamin D treatment group(all P<0.001).After hypoxia treatment,Sh-VDR cell line showed significantly decreased expressions of ZO-1(P<0.001),occludin(P<0.05),Claudin-1(P<0.01)and E-cadherin(P<0.001)when compared with untreated Sh-VDR cell line. Conclusion VDR acts as a regulator for the expressions of intestinal mucosal barrier proteins under hypoxia environment in DLD-1 colon cell line,indicating that VDR pathway may be another important protective mechanism for gut barrier in low-oxygen environment.


Assuntos
Colo/citologia , Receptores de Calcitriol/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Hipóxia Celular , Linhagem Celular , Claudina-1/metabolismo , Humanos , Ocludina/metabolismo , Junções Íntimas , Vitamina D/farmacologia , Proteína da Zônula de Oclusão-1/metabolismo
2.
J Agric Food Chem ; 67(35): 9789-9795, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31373816

RESUMO

Pulmonary fibrosis is a chronic lung disease characterized by abnormal accumulation of the extracellular matrix (ECM). Chronic damage of the alveolar epithelium leads to a process called "epithelial-mesenchymal transition" (EMT) and increases synthesis and deposition of ECM proteins. Therefore, inhibition of EMT might be a promising therapeutic approach for the treatment of pulmonary fibrosis. ß-Sitosterol is one of the most abundant phytosterols in the plant kingdom and the major constituent in corn silk, which is derived from the stigma and style of maize (Zea mays). In this study, we elucidated that ß-sitosterol inhibited transforming growth factor-ß1 (TGF-ß1)-induced EMT and consequently had an antifibrotic effect. ß-Sitosterol (1-10 µg/mL) significantly downregulated the TGF-ß1-induced fibrotic proteins, such as collagen, fibronectin, and α-smooth muscle actin in human alveolar epithelial cells (p < 0.01). After 24 h, relative wound density (RWD) was increased in TGF-ß1 treated group (82.16 ± 5.70) compare to the control group (64.63 ± 2.21), but RWD was decreased in ß-sitosterol cotreated group (10 µg/mL: 71.54 ± 7.39; 20 µg/mL: 65.69 ± 6.42). In addition, the changes of the TGF-ß1-induced morphological shape and protein expression of EMT markers, N-cadherin, vimentin, and E-cadherin, were significantly blocked by ß-sitosterol treatment (p < 0.01). The effects of ß-sitosterol on EMT were found to be associated with the TGF-ß1/Snail pathway, which is regulated by Smad and non-Smad signaling pathways. Taken together, these findings suggest that ß-sitosterol can be used to attenuate pulmonary fibrosis through suppression of EMT by inhibiting the TGF-ß1/Snail pathway.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alvéolos Pulmonares/efeitos dos fármacos , Fibrose Pulmonar/fisiopatologia , Sitosteroides/farmacologia , Zea mays/química , Actinas/genética , Actinas/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Extratos Vegetais/química , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/fisiopatologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
3.
Bioengineered ; 10(1): 282-291, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31311401

RESUMO

Transforming growth factor (TGF)-ß1 plays a crucial role in the epithelial-to-mesenchymal transition (EMT) in many cancer types and in thyroid cancers. Epigallocatechin-3-gallate (EGCG), the most important ingredient in the green tea, has been reported to possess antioxidant and anticancer activities. However, the cellular and molecular mechanisms explaining its action have not been completely understood. In this study, we found that EGCG significantly suppresses EMT, invasion and migration in anaplastic thyroid carcinoma (ATC) 8505C cells in vitro by regulating the TGF-ß/Smad signaling pathways. EGCG significantly inhibited TGF-ß1-induced expression of EMT markers (E-cadherin reduction and vimentin induction) in 8505C cells in vitro. Treatment with EGCG completely blocked the phosphorylation of Smad2/3, translocation of Smad4. Taken together, these results suggest that EGCG suppresses EMT and invasion and migration by blocking TGFß/Smad signaling pathways.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Catequina/análogos & derivados , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais da Tireoide/efeitos dos fármacos , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/genética , Caderinas/metabolismo , Catequina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Humanos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Células Epiteliais da Tireoide/metabolismo , Células Epiteliais da Tireoide/patologia , Fator de Crescimento Transformador beta1/farmacologia , Vimentina/agonistas , Vimentina/genética , Vimentina/metabolismo
4.
Life Sci ; 232: 116626, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276688

RESUMO

PURPOSE: The aim of this study was to investigate the role of the suppressor of activator protein-1 regulated by interferon (SARI), in the development and progression of prostate cancer. METHODS: Sixty-seven prostate cancer tissue specimens and 20 benign prostatic hyperplasia specimens were used to investigate the correlation between SARI expression and clinicopathologic parameters. Immunohistochemistry was used to detect the SARI and E-cadherin protein expression in the prostate cancer and benign prostatic hyperplasia specimens, and their correlation was established. Quantitative PCR (qPCR) was used to determine the SARI mRNA expression in a normal prostate cell line (RWPE-1) and prostate cancer cell lines (LNCaP and PC3). Western blotting was used to detect the SARI protein expression in the RWPE-1, LNCaP, and PC3 cell lines. RESULTS: SARI protein expression did not correlate with the prostate cancer patients' age or serum Prostate-Specific Antigen value but did show a correlation with the tumor stage of prostate cancer and Gleason score. SARI and E-cadherin expression in the prostate cancer tissue was significantly lower than in the benign prostatic hyperplasia specimens, suggesting a positive correlation between the SARI and E-cadherin expression. SARI mRNA and protein were highly expressed in RWPE-1, the normal prostate cell line, but SARI mRNA and protein expression were reduced in the prostate cancer cell lines, LNCaP and PC3. Significant differences in the expression were found between the prostate cancer cell lines and the normal prostate cell line. CONCLUSION: In this study, high SARI expression was found to be negatively correlated with the development and progression of prostate cancer.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neoplasias da Próstata/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Idoso , Western Blotting , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Imuno-Histoquímica , Interferons/metabolismo , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/citologia , Próstata/patologia , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Fator de Transcrição AP-1/metabolismo , beta Catenina/metabolismo
5.
BMC Genomics ; 20(Suppl 7): 535, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31291891

RESUMO

BACKGROUND: Purpose of study is revealing significant differences in serum proteomes in schizophrenia and bipolar disorder (BD). RESULTS: Quantitative mass-spectrometry based proteomic analysis was used to quantify proteins in the blood serum samples after the depletion of six major blood proteins. Comparison of proteome profiles of different groups revealed 27 proteins being specific for schizophrenia, and 18 - for BD. Protein set in schizophrenia was mostly associated with immune response, cell communication, cell growth and maintenance, protein metabolism and regulation of nucleic acid metabolism. Protein set in BD was mostly associated with immune response, regulating transport processes across cell membrane and cell communication, development of neurons and oligodendrocytes and cell growth. Concentrations of ankyrin repeat domain-containing protein 12 (ANKRD12) and cadherin 5 in serum samples were determined by ELISA. Significant difference between three groups was revealed in ANKRD12 concentration (p = 0.02), with maximum elevation of ANKRD12 concentration (median level) in schizophrenia followed by BD. Cadherin 5 concentration differed significantly (p = 0.035) between schizophrenic patients with prevailing positive symptoms (4.78 [2.71, 7.12] ng/ml) and those with prevailing negative symptoms (1.86 [0.001, 4.11] ng/ml). CONCLUSIONS: Our results are presumably useful for discovering the new pathways involved in endogenous psychotic disorders.


Assuntos
Transtorno Bipolar/metabolismo , Proteoma/metabolismo , Esquizofrenia/metabolismo , Adulto , Antígenos CD/metabolismo , Caderinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Adulto Jovem
6.
Life Sci ; 230: 197-207, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150688

RESUMO

AIMS: Increased amounts of protein, in particular albumin within renal tubular cells (TBCs), induce the expression of inflammatory and fibrogenic mediators, which are adverse prognostic factors in tubulointerstitial fibrosis and diabetic nephropathy (DN). We sought to assess the participation of the thiol-linked tertiary structure of albumin in the mechanism of protein toxicity in a model of TBCs. MATERIALS AND METHODS: Cultured human renal proximal tubular cells, HK-2, were exposed to isolated albumin from patients with and without DN (Stages 0, 1 and 4). The magnitude of change of the albumin tertiary structure, cell viability (LDH leakage), apoptosis (Annexin V), transdifferentiation and reticulum endoplasmic stress (Western blot and flow cytometry) and lysosomal enzyme activity were assessed. KEY FINDINGS: We found that albumin from Stage 4 patients presented >50% higher thiol-dependent changes of tertiary structure compared to Stages 0 and 1. Cells incubated with Stage 4 albumin displayed 5 times less viability, accompanied by an increased number of apoptotic cells; evidence of profibrogenic markers E-cadherin and vimentin and higher expression of epithelial-to-mesenchymal transition markers α-SMA and E-cadherin and of endoplasmic reticulum stress protein GRP78 were likewise observed. Moreover, we found that cathepsin B activity in isolated lysosomes showed a significant inhibitory effect on albumin from patients in advanced stages of DN and on albumin that was intentionally modified. SIGNIFICANCE: Overall, this study showed that thiol-dependent changes in albumin's tertiary structure interfere with the lysosomal proteolysis of renal TBCs, inducing molecular changes associated with interstitial fibrosis and DN progression.


Assuntos
Nefropatias Diabéticas/metabolismo , Lisossomos/fisiologia , Albumina Sérica Humana/fisiologia , Adulto , Idoso , Albuminas/metabolismo , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Linhagem Celular , Sobrevivência Celular , Transdiferenciação Celular , Nefropatias Diabéticas/fisiopatologia , Estresse do Retículo Endoplasmático , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Fibrose , Humanos , Túbulos Renais/patologia , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Estrutura Terciária de Proteína/fisiologia , Albumina Sérica Humana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vimentina/metabolismo
7.
Biochemistry (Mosc) ; 84(4): 358-369, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31228927

RESUMO

Cytoplasmic actin structures are essential components of the eukaryotic cytoskeleton. According to the classic concepts, actin structures perform contractile and motor functions, ensuring the possibility of cell shape changes during cell spreading, polarization, and movement both in vitro and in vivo, from the early embryogenesis stages and throughout the life of a multicellular organism. Intracellular organization of actin structures, their biochemical composition, and dynamic properties play a key role in the realization of specific cellular and tissue functions and vary in different cell types. This paper is a review of recent studies on the organization and properties of actin structures in endotheliocytes, interaction of these structures with other cytoskeletal components and elements involved in cell adhesion, as well as their role in the functional activity of endothelial cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/química , Actinas/química , Actinas/genética , Caderinas/química , Caderinas/metabolismo , Citosol/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo
8.
Nat Commun ; 10(1): 2487, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171776

RESUMO

Lack or excess expression of the surface ectoderm-expressed transcription factor Grainyhead-like2 (Grhl2), each prevent spinal neural tube closure. Here we investigate the causative mechanisms and find reciprocal dysregulation of epithelial genes, cell junction components and actomyosin properties in Grhl2 null and over-expressing embryos. Grhl2 null surface ectoderm shows a shift from epithelial to neuroepithelial identity (with ectopic expression of N-cadherin and Sox2), actomyosin disorganisation, cell shape changes and diminished resistance to neural fold recoil upon ablation of the closure point. In contrast, excessive abundance of Grhl2 generates a super-epithelial surface ectoderm, in which up-regulation of cell-cell junction proteins is associated with an actomyosin-dependent increase in local mechanical stress. This is compatible with apposition of the neural folds but not with progression of closure, unless myosin activity is inhibited. Overall, our findings suggest that Grhl2 plays a crucial role in regulating biomechanical properties of the surface ectoderm that are essential for spinal neurulation.


Assuntos
Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Tubo Neural/embriologia , Células Neuroepiteliais/metabolismo , Neurulação/genética , Fatores de Transcrição/genética , Actomiosina/genética , Actomiosina/metabolismo , Animais , Fenômenos Biomecânicos , Caderinas/metabolismo , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Camundongos , Tubo Neural/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Estresse Mecânico , Fatores de Transcrição/metabolismo
9.
Gene ; 710: 186-192, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31175924

RESUMO

EMT (Epithelial-Mesenchymal Transition) is one of the factors in the pathogenesis of adenomyosis. FMNL2 induced invasion of cancer cell through promoting EMT, but it is unclear the role of FMNL2 in the adenomyosis. By IHC staining, we found the expression level of FMNL2 was significantly higher in the ectopic endometrial stromal cells from women with adenomyosis when compared with normal endometrial stromal cells. Knockdown of FMNL2 inhibited the invasion and migration of ectopic endometrial stromal cells and promoted the protein levels of E-cadherin and Vimentin. Meanwhile, inhibition of FMNL2 could induce the cell membrane localization of E-cadherin. Our findings reveal that the aberrant activation of FMNL2 promotes the pathogenesis of adenomyosis through inducing the EMT process. On the contrary, inhibition of FMNL2 promotes the transition of ectopic endometrial stromal cells to epithelial cells in adenomyosis through a MET-like process.


Assuntos
Adenomiose/metabolismo , Células Epiteliais/metabolismo , Proteínas/metabolismo , Células Estromais/metabolismo , Regulação para Cima , Adenomiose/genética , Adulto , Antígenos CD/metabolismo , Caderinas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Feminino , Técnicas de Silenciamento de Genes , Humanos , Pessoa de Meia-Idade , Proteínas/genética , Transdução de Sinais , Células Estromais/citologia , Vimentina/metabolismo
10.
Chem Biol Interact ; 309: 108725, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238027

RESUMO

Tumor recurrence and metastasis decrease the survival rate of colorectal cancer (CRC) patients. Menadione reduces the numbers and incidences of 1,2-dimethylhydrazine induced colon tumors in mouse but the mechanism of anticancer activity of menadione in colorectal cancer is not very clear. Since Wnt signaling is constitutively active in CRC and it aggravates the epithelial mesenchymal transition (EMT), the regulation of EMT and Wnt signaling by menadione (vitamin K3) was investigated in CRC cells. Menadione showed cytotoxicity against human CRC cells (SW480 and SW620) and human primary colon cancer cells but was relatively ineffective against the cells from human normal colon (CRL-1790) and human primary colon epithelial cells. Menadione suppressed invasion, migration and epithelial-mesenchymal transition in human CRC cells by upregulating the expression of E-cadherin (CDH1), ZO-1 and downregulating that of N-cadherin (CDH2), Vimentin (VIM), ZEB1, MMP2 and MMP9. Menadione decreased TOPFlash/FOPFlash luciferase activity and expression of several downstream targets of Wnt signaling and coactivators such as ß-catenin (CTNNB1), TCF7L2, Bcl9l, p300 (EP300) and cyclin D1 (CCND1) was suppressed. Menadione induced differentiation and increased apoptotic cell population in SubG0 phase of cell cycle in SW480 and SW620 cells. The ability of menadione to suppress EMT, migration, invasion, Wnt signaling, cell proliferation and induce Sub G0 arrest, highlights its potential to be considered for intensive preclinical and clinical investigation in CRC.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Vitamina K 3/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Caderinas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/metabolismo
11.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 35(2): 101-106, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-31250599

RESUMO

OBJECTIVE: To investigate the effects of Yiqi Huayu Hutan decoction on pulmonary fibrosis of rats which induced by bleomycin. METHODS: The rat model of pulmonary fibrosis was induced by intratracheal injection of bleomycin hydrochloride (5 mg/kg). Sixty SD rats were randomly divided into the normal group (group N), the model group (group M), the positive control group (group Y), group of low concentration (group LC), group of medium concentration (group MC) and group of high concentration of Yiqi Huayu Hutan decoction (group HC). After 4 weeks, the experimental groups were treated with low concentration decoction, medium concentration decoction and high concentration decoction respectively, and the Y group was treated with hydrocortisone acetate, the Group N and group M were treated with saline by intragastric administration. Twelve weeks later, rats were killed and the pathomorphism of pulmonary tissues of each group was observed by HE staining and Masson staining. Further, the expressions of transforming growth factor-ß1(TGF-ß1), Snail1, E-cadherin and Fibronectin in pulmonary tissues of each group were detected by qTR-PCR and Western blot. RESULTS: Compared with the model group, the collagen sediment in the interstitial was reduced in the experimental groups, especially in the group of medium concentration, which was observed by HE staining and Masson staining .Compared with the model group, the expressions of TGF-ß1, Snail1 and Fibronectin protein in pulmonary tissues of the treatment groups were decreased in the experimental group, especially in the group of medium concentration, which were detected by qRT-PCR and Western blot. CONCLUSION: Yiqi Huayu Hutan decoction can significantly improve the pulmonary fibrosis which is induced by bleomycin, and the mechanism is related to the inhibition of the expression of TGF-ß/Snail pathway of transcription TGF-ß1.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Animais , Bleomicina , Caderinas/metabolismo , Fibronectinas/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Pulmão/metabolismo , Pulmão/patologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
J Agric Food Chem ; 67(26): 7274-7280, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31244200

RESUMO

Bioactivity-guided separation led to the isolation of six novel phenanthrenes, spiranthesphenanthrenes A-F (1-6), together with 19 known compounds, including seven phenanthrenes (7-13), one bibenzyl compound (14), five flavonoids (15-16 and 20-22), and six simple phenolic compounds (17-19 and 23-25), from the petroleum ether (PE) and ethyl acetate (EtOAc) extracts of Spiranthes sinensis (Pers.) Ames, an edible medicinal plant named "panlongshen" in Chinese that is popularly used in medicinal foods and herbal teas. The structures of the obtained compounds were identified on the basis of extensive NMR spectroscopy and HR-ESI-MS analyses. The cytotoxicities of the phenanthrenes (1-13), the bibenzyl compound (14) , and the flavonoids (15-16 and 20-22) toward SGC-7901, HepG2, and B16-F10 cell lines were examined in vitro. Compounds 1 and 7 exhibited moderate cytotoxic activities toward all of the selected cancer cell lines, and their IC50 values ranged from 19.0 ± 7.3 to 30.2 ± 5.6 µM. Spiranthesphenanthrene A (1) exhibited higher cytotoxic activity than the positive control cisplatin toward the B16-F10 cell line (IC50 = 19.0 ± 7.3 µM). A wound healing assay revealed the inhibition of the migration of B16-F10 cancer cells in a time- and dose-dependent pattern by treatment with 2.5, 5, and 10 µM solutions of compound 1 for 24 and 48 h, respectively. Western blots revealed that compound 1 obviously increased the level of the E-cadherin protein (an epithelial marker) and decreased the levels of the vimentin and N-cadherin proteins (mesenchymal markers). Furthermore, the level of the transcription factor Snail was also obviously decreased by compound 1 in a dose-dependent manner. Taken together, compound 1 inhibits the migration of B16-F10 cancer cells, which may be closely related to the inhibition of the epithelial-mesenchymal transition. Compound 1 represents a promising drug candidate for the prevention of tumor metastasis.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Orchidaceae/química , Fenantrenos/química , Fenantrenos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Fenantrenos/isolamento & purificação , Extratos Vegetais/isolamento & purificação
13.
Cell Physiol Biochem ; 53(1): 87-100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31204440

RESUMO

BACKGROUND/AIMS: Different components of the tumor microenvironment can be either tumor-promoting or tumor-suppressive agents depending on factors which are not fully understood. Fibulins are components of the extracellular matrix from different tissues and constitute a clear example of this dual function. In fact, fibulins may either support tumor growth or abolish progression of malignant cells depending on the crosstalk between tumor cells and their surrounding stroma through mechanisms that remain to be elucidated. Among all fibulins, fibulin-5 contains a particular structural hallmark which consists in the presence of a RGD motif within its architecture. Previous reports have highlighted the importance of the interaction of this motif with integrins, and not only in normal functions but also in a tumor context. METHODS: Site-Directed Mutagenesis technique was employed to introduce the change RGD to RGE (RGD-to-RGE) within Fbln5 cDNA sequence. Cell proliferation was measured using the MTT assay or by counting Ki-67 positive cell nuclei. Cell adhesion was analysed using culture plates coated with different extracellular matrix components. Cell invasion was evaluated using 24-well Matrigel-coated invasion chambers, and mammosphere formation was monitored using ultralow attachment culture plates. BALB/c mice were employed to induce subcutaneous tumors. RESULTS: The RGD-to-RGE change alters the capacity of breast cancer cells to adhere to different extracellular matrix proteins as well as to αvß3 and α5ß1 integrins, and promotes protumor effects using different cell-based assays. Moreover, 4T1 cells, a mouse breast cancer cell line model, shows an increased capacity to generate tumors when exogenously expresses fibulin-5 with a RGD-to-RGE change, and such capacity is similar to that shown for 4T1 cells with an interfered Fbln5 gene. CONCLUSION: These data highlight the importance of the RGD motif of fibulin-5 to induce antitumor effects and provide new insights into the involvement of fibulins in tumor processes.


Assuntos
Adesão Celular/efeitos dos fármacos , Proteínas da Matriz Extracelular/farmacologia , Oligopeptídeos/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oligopeptídeos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Transplante Homólogo , Vimentina/metabolismo
14.
Anticancer Res ; 39(6): 2749-2756, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31177110

RESUMO

BACKGROUND/AIM: The differentiation of the mouse breast epithelial cell line HC11 is known to require confluence as well as the addition of hydrocortisone, insulin and prolactin. MATERIALS AND METHODS: Since confluence, which triggers the engagement of the cell-to-cell adhesion molecule E-cadherin, induces a dramatic increase in the activity of signal transducer and activator of transcription-3 (Stat3), we examined the role of Stat3 in HC11 cell differentiation. RESULTS: Stat3 inhibition abolished differentiation, indicating that Stat3 activity is critically required. However, expression of the mutationally activated form of Stat3 (Stat3C), rather than promoting, it was found to block cell differentiation, even when expressed in low levels, and in the absence of full neoplastic conversion. CONCLUSION: The strength of the E-cadherin/Stat3 signal is key for the outcome of the differentiation process.


Assuntos
Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Animais , Caderinas/metabolismo , Diferenciação Celular , Feminino , Glândulas Mamárias Animais/metabolismo , Camundongos , Mutação , Fosforilação , Transdução de Sinais , Tirosina/metabolismo
15.
Cell Physiol Biochem ; 52(6): 1381-1397, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075189

RESUMO

BACKGROUND/AIMS: Ouabain, a well-known plant-derived toxin, is also a hormone found in mammals at nanomolar levels that binds to a site located in the a-subunit of Na⁺,K⁺-ATPase. Our main goal was to understand the physiological roles of ouabain. Previously, we found that ouabain increases the degree of tight junction sealing, GAP junction-mediated communication and ciliogenesis. Considering our previous results, we investigated the effect of ouabain on adherens junctions. METHODS: We used immunofluorescence and immunoblot methods to measure the effect of 10 nM ouabain on the cellular and nuclear content of E-cadherin, ß-catenin and γ-catenin in cultured monolayers of Marin Darby canine renal cells (MDCK). We also studied the effect of ouabain on adherens junction biogenesis through sequential Ca²âº removal and replenishment. Then, we investigated whether c-Src and ERK1/2 kinases are involved in these responses. RESULTS: Ouabain enhanced the cellular content of the adherens junction proteins E-cadherin, ß-catenin and γ-catenin and displaced ß-catenin and γ-catenin from the plasma membrane into the nucleus. Ouabain also increased the expression levels of E-cadherin and ß-catenin in the plasma membrane after Ca²âº replenishment. These effects on adherens junctions were sensitive to PP2 and PD98059, suggesting that they depend on c-Src and ERK1/2 signaling. The translocation of ß-catenin and γ-catenin into the nucleus was specific because ouabain did not change the localization of the tight junction proteins ZO-1 and ZO-2. Moreover, in ouabain-resistant MDCK cells, which express a Na⁺,K⁺-ATPase α1-subunit with low affinity for ouabain, this hormone was unable to regulate adherens junctions, indicating that the ouabain receptor that regulates adherens junctions is Na⁺,K⁺-ATPase. CONCLUSION: Ouabain (10 nM) upregulated adherens junctions. This novel result supports the proposition that one of the physiological roles of this hormone is the modulation of cell contacts.


Assuntos
Junções Aderentes/efeitos dos fármacos , Ouabaína/farmacologia , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Cálcio/metabolismo , Núcleo Celular/metabolismo , Cães , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , beta Catenina/metabolismo , gama Catenina/metabolismo , Quinases da Família src/metabolismo
16.
Chem Biol Interact ; 307: 158-166, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059706

RESUMO

Metastatic osteosarcoma usually has an unsatisfactory response to the current standard chemotherapy and causes poor prognosis. Currently, epithelial-mesenchymal transition (EMT) is reported as a critical event in osteosarcoma metastasis. Glaucocalyxin A, a bioactive ent-kauranoid diterpenoid, exerts anti-cancer effect on osteosarcoma by inducing apoptosis in previous study. However, the effect of Glaucocalyxin A on EMT and metastasis of osteosarcoma is unclear. In this study, we investigated the potential mechanisms of Glaucocalyxin A on EMT and metastasis of osteosarcoma. We found that Glaucocalyxin A inhibited migration and invasion of MG-63 and 143B cells. Moreover, Glaucocalyxin A increased the protein and mRNA levels of E-cadherin and decreased the protein and transcription expression of N-cadherin, Vimentin. Glaucocalyxin A also inhibited the protein and mRNA levels of EMT-associated transcription factor including Snail and Slug. Furthermore, Glaucocalyxin A inhibited transforming growth factor-ß1 (TGF-ß1)-induced migration, invasion and EMT of low-metastatic osteosarcoma U2OS cells. Glaucocalyxin A inhibited TGF-ß-induced phosphorylation of Smad 2/3 in osteosarcoma U2OS cells. Finally, we established transplanted metastatic models of highly metastatic osteosarcoma 143B cells. Glaucocalyxin A inhibited lung metastasis in vivo. Interestingly, Glaucocalyxin A increased the protein expression of E-cadherin and reduced the protein expression of N-cadherin and Vimentin. Glaucocalyxin A inhibited the protein expression of Snail and Slug in vivo. In summary, this study demonstrated that Glaucocalyxin A inhibited EMT and TGF-ß1-induced EMT by inhibiting TGF-ß1/Smad2/3 signaling pathway in osteosarcoma. Therefore, Glaucocalyxin A might be a promising candidate against the metastasis of human osteosarcoma.


Assuntos
Diterpenos de Caurano/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Diterpenos de Caurano/química , Diterpenos de Caurano/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosforilação/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Vimentina/metabolismo
17.
MBio ; 10(3)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088924

RESUMO

Trichomonas vaginalis, a prevalent sexually transmitted parasite, adheres to and induces cytolysis of human mucosal epithelial cells. We have characterized a hypothetical protein, TVAG_393390, with predicted tertiary structure similar to that of mammalian cadherin proteins involved in cell-cell adherence. TVAG_393390, renamed cadherin-like protein (CLP), contains a calcium-binding site at a position conserved in cadherins. CLP is surface localized, and its mRNA and protein levels are significantly upregulated upon parasite adherence to host cells. To test the roles of CLP and its calcium-binding dependency during host cell adherence, we first demonstrated that wild-type CLP (CLP) binds calcium with a high affinity, whereas the calcium-binding site mutant protein (CLP-mut) does not. CLP and CLP-mut constructs were then used to overexpress these proteins in T. vaginalis Parasites overexpressing CLP have ∼3.5-fold greater adherence to host cells than wild-type parasites, and this increased adherence is ablated by mutating the calcium-binding site. Additionally, competition with recombinant CLP decreased parasite binding to host cells. We also found that overexpression of CLP induced parasite aggregation which was further enhanced in the presence of calcium, whereas CLP-mut overexpression did not affect aggregation. Lastly, parasites overexpressing wild-type CLP induced killing of host cells ∼2.35-fold, whereas parasites overexpressing CLP-mut did not have this effect. These analyses describe the first parasitic CLP and demonstrate a role for this protein in mediating parasite-parasite and host-parasite interactions. T. vaginalis CLP may represent convergent evolution of a parasite protein that is functionally similar to the mammalian cell adhesion protein cadherin, which contributes to parasite pathogenesis.IMPORTANCE The adherence of pathogens to host cells is critical for colonization of the host and establishing infection. Here we identify a protein with no known function that is more abundant on the surface of parasites that are better at binding host cells. To interrogate a predicted function of this protein, we utilized bioinformatic protein prediction programs which allowed us to uncover the first cadherin-like protein (CLP) found in a parasite. Cadherin proteins are conserved metazoan proteins with central roles in cell-cell adhesion, development, and tissue structure maintenance. Functional characterization of this CLP from the unicellular parasite Trichomonas vaginalis demonstrated that the protein mediates both parasite-parasite and parasite-host adherence, which leads to an enhanced killing of host cells by T. vaginalis Our findings demonstrate the presence of CLPs in unicellular pathogens and identify a new host cell binding protein family in a human-infective parasite.


Assuntos
Caderinas/genética , Células Epiteliais/metabolismo , Proteínas de Protozoários/metabolismo , Trichomonas vaginalis/patogenicidade , Caderinas/metabolismo , Cálcio/metabolismo , Adesão Celular , Linhagem Celular , Células Epiteliais/parasitologia , Feminino , Humanos , Membrana Mucosa/citologia , Domínios Proteicos , Proteínas de Protozoários/genética , Ativação Transcricional , Regulação para Cima
18.
DNA Cell Biol ; 38(7): 700-707, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31090452

RESUMO

Substantial research has revealed that peroxisome proliferator-activated receptor-gamma (PPARG) plays a critical role in glucose homeostasis and lipid metabolism, and recent studies have shown different effects in the progression of different tumors. However, the role of PPARG and its target gene in clear cell renal cell carcinoma (ccRCC) are incompletely understood. Clinical data revealed abnormal glucolipid metabolism in primary ccRCC samples. In addition, transcriptional profiling indicated that PPARG expression was positively correlated, whereas Six2 expression was negatively correlated with the overall survival of ccRCC patients. Staining showed that PPARG was mainly expressed in tumor cell cytoplasm, and Six2 was localized to the nuclei. In a ccRCC cell line, PPARG activation promoted cell apoptosis, inhibited cell migration and proliferation, and reduced Six2 expression. Mechanistically, overexpressing Six2 downregulated E-cadherin expression and cell apoptosis, but PPARG activation reversed those effects. Taken together, PPARG promotes apoptosis and suppresses the migration and proliferation of ccRCC cells by inhibiting Six2. These findings reveal that the PPARG/Six2 axis acts as a central pathobiological mediator of ccRCC formation and as a potential therapeutic target for the treatment of patients with ccRCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Proteínas de Homeodomínio/genética , Neoplasias Renais/metabolismo , Proteínas do Tecido Nervoso/genética , PPAR gama/genética , Apoptose , Caderinas/genética , Caderinas/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , PPAR gama/metabolismo
19.
Cancer Sci ; 110(7): 2237-2246, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31127873

RESUMO

Glycoprotein NMB (GPNMB) is highly expressed in many types of malignant tumors and thought to be a poor prognostic factor in those cancers, including breast cancer. Glycoprotein NMB is a type IA transmembrane protein that has a long extracellular domain (ECD) and a short intracellular domain (ICD). In general, the ECD of a protein is involved in protein-protein or protein-carbohydrate interactions, whereas the ICD is important for intracellular signaling. We previously reported that GPNMB contributes to the initiation and malignant progression of breast cancer through the hemi-immunoreceptor tyrosine-based activation motif (hemITAM) in its ICD. Furthermore, we showed that the tyrosine residue in hemITAM is involved in induction of the stem-like properties of breast cancer cells. However, the contribution of the ECD to its tumorigenic function has yet to be fully elucidated. In this study, we focused on the region, the so-called kringle-like domain (KLD), that is conserved among species, and made a deletion mutant, GPNMB(ΔKLD). Enhanced expression of WT GPNMB induced sphere and tumor formation in breast epithelial cells; in contrast, GPNMB(ΔKLD) lacked these activities without affecting its molecular properties, such as subcellular localization, Src-induced tyrosine phosphorylation at least in overexpression experiments, and homo-oligomerization. Additionally, GPNMB(ΔKLD) lost its cell migration promoting activity, even though it reduced E-cadherin expression. Although the interaction partner binding to KLD has not yet been identified, we found that the KLD of GPNMB plays an important role in its tumorigenic potential.


Assuntos
Neoplasias da Mama/patologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Mutação , Sequência de Aminoácidos , Animais , Antígenos CD/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Sequência Conservada , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Kringles , Glicoproteínas de Membrana/genética , Camundongos , Transplante de Neoplasias
20.
Ecotoxicol Environ Saf ; 180: 192-201, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31085430

RESUMO

As a main marine phycotoxin, okadaic acid (OA) is mainly responsible for diarrheic shellfish poisoning (DSP), through specifically inhibiting phosphatase (PP1 and PP2A). It has been shown that isotope labelled-OA could cross the placental barrier in mice. However, it remains obscure how OA exposure could affect the formation of neural crest cells (NCCs), especially cranial NCCs in early embryo development. Here, we explored the effects of OA exposure on the generation of neural crest cells during embryonic development using the classic chick embryo model. We found that OA exposure at 100 nM (80.5 µg/L) could cause craniofacial bone defects in the developing chick embryo and delay the development of early chick embryos. Immunofluorescent staining of HNK-1, Pax7, and Ap-2α demonstrated that cranial NCC generation was inhibited by OA exposure. Double immunofluorescent staining with Ap-2α/PHIS3 or Pax7/c-Caspase3 manifested that both NCC proliferation and apoptosis were restrained by OA exposure. Furthermore, the expression of Msx1 and BMP4 were down-regulated in the developing chick embryonic neural tubes, which could contribute the inhibitive production of NCCs. We also discovered that expression of EMT-related adhesion molecules, such as Cadherin 6B (Cad6B) and E-cadherin, was altered following OA exposure. In sum, OA exposure negatively affected the development of embryonic neural crest cells, which in turn might result in cranial bone malformation.


Assuntos
Inibidores Enzimáticos/toxicidade , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Crista Neural/efeitos dos fármacos , Ácido Okadáico/toxicidade , Animais , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Embrião de Galinha , Regulação para Baixo , Desenvolvimento Embrionário/efeitos dos fármacos , Crista Neural/citologia , Crista Neural/embriologia , Tubo Neural/efeitos dos fármacos , Tubo Neural/metabolismo , Crânio/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA