Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.013
Filtrar
1.
Medicine (Baltimore) ; 99(40): e22550, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33019466

RESUMO

This study aimed to investigate the associations between the sonographic findings and duration of symptoms in children with pilomatricoma.This study included 86 children with 95 lesions confirmed to be pilomatricoma after pathological examination. The associations between symptom duration and sonographic observations, including the presence or absence of peritumoral hyperechogenicity, calcification, and vascularity were investigated. The internal echogenicity of each pilomatricoma was scored using a 5-point scale based on echogenic spots and calcification with posterior acoustic shadowing. The Mann-Whitney U and Kruskal-Wallis tests were used for statistical analysis.We found that the absence of peritumoral hyperechogenicity and severity of calcification were associated with increased symptom duration. Calcification, (present, 19.19 ±â€Š18.99 months vs absent, 4.31 ±â€Š3.24 months; P < .01) and peritumoral hyperechogenicity (present, 5.02 ±â€Š5.80 months vs absent, 16.17 ±â€Š18.24 months; P < .01), and grade of internal echogenicity (grade 0/1/2/3/4 = 3 months [1 patient]/4.33 ±â€Š3.26 months [range, 1-12]/4.57 ±â€Š3.46 months [range, 2-12]/10.89 ±â€Š9.17 months [range, 3-28]/35.27 ±â€Š19.16 months [range, 9-60], respectively; P = .01 and <.01) were associated with significant differences in symptom duration. There were no significant between-group differences in vascularity (6.01 ±â€Š7.24 months; range, 1-48 vs 15.50 ±â€Š19.12 months; range, 1-60; P = .08).Pilomatricomas with a relatively short symptom duration were more likely to exhibit peritumoral hyperechogenicity and calcification with less severe posterior acoustic shadowing compared to lesions with a longer symptom duration. These sonographic findings provided useful information that facilitated the correct and rapid diagnosis of pilomatricoma.


Assuntos
Pilomatrixoma/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Avaliação de Sintomas/estatística & dados numéricos , Ultrassonografia/métodos , Calcificação Fisiológica , Calcinose/diagnóstico por imagem , Calcinose/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Índice de Gravidade de Doença , Avaliação de Sintomas/tendências
2.
An Acad Bras Cienc ; 92(3): e20180826, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33053100

RESUMO

The trial was conducted to evaluate the supplementation of E. coli phytase on performance, weight and ash of bones, as well as to determine the bioavailability of P and cost/benefit of its use in diets. A total 1,890 Cobb male day old chicks were assigned to six treatments and seven replicates with 45 birds each, distributed in a completely randomized design. The treatments were: Positive Control; Negative Control (NC1) - reduction of 0.06% avP; Negative Control 2 (NC2) - reduction of 0.12% avP; NC2 + Phytase (120 OTU); NC2 + Phytase (180 OTU); NC2 + Phytase (240 OTU), being 1 OTU equivalent to approximately 2 FTU. With different phytase inclusions, it was possible to verify a gradual increase on body weight gain, feed intake, feed conversion ratio, viability and even the bone characteristics of broilers fed diets containing reduction of P. The closest levels to the highest studied (240 OTU) showed the best results. The replacement of dicalcium phosphate by phytase supplementation is economically viable when the cost per OTU does not exceed US$ 1.4 × 10-5, US$1.2 × 10-5 and US$ 1.0 × 10-5 for the concentrations of 120, 180 and 240 OTU, respectively.


Assuntos
6-Fitase , Ração Animal , Galinhas , Ração Animal/análise , Animais , Calcificação Fisiológica , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Escherichia coli , Masculino
3.
Int J Nanomedicine ; 15: 6761-6777, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982232

RESUMO

Purpose: Guided bone regeneration (GBR) therapy, which is a widely used technique in clinical practice and is effective in improving the repair of alveolar bone defects or bone mass deficiency regeneration, requires the use of membrane materials with good biocompatibility, barrier function, rigidity matching the space maintenance ability, economic benefits and excellent clinical applicability. The aim of this study was to develop an electrospun attapulgite (ATT)-doped poly (lactic-co-glycolic acid) (PLGA) scaffold (PLGA/ATT scaffold) as a novel material for GBR applications. Methods and Results: Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to determine the morphology and the crystalline structure of the PLGA/ATT scaffolds, respectively. Porosity and contact-angle measurements were also carried out to further characterize the physical properties of the PLGA/ATT scaffolds. The results of in vitro studies showed that bone marrow mesenchymal stem cells (BMSCs) attached more readily to and spread better over the PLGA/ATT scaffolds than the Bio-Gide membrane. Furthermore, in the in vitro osteoinductive experiments with BMSCs, the PLGA/ATT scaffolds were found to enhance the activity of alkaline phosphatase (ALP), promote the formation of mineralized bone nodules, and up-regulate the expression of several osteogenic markers-namely, runt-related transcription factor 2, alkaline phosphatase, osteopontin, and osteocalcin-which are similar to the effects of the Bio-Gide membrane. Further, in in vivo studies, the results of sequential fluorescent labeling, micro-computed tomography, and histological analysis suggest that using the PLGA/ATT scaffolds for repairing V-shaped buccal dehiscence on a dog's tooth root improved bone regeneration, which is not only similar to the result obtained using the Bio-Gide membrane but also much better than that obtained using PLGA scaffolds and the negative control. Conclusion: To achieve satisfactory therapeutic results and to lower the cost of GBR treatment, this study provided a promising alternative material of bio-degradable membrane in clinical treatment.


Assuntos
Perda do Osso Alveolar/terapia , Regeneração Óssea/fisiologia , Compostos de Magnésio/farmacologia , Compostos de Silício/farmacologia , Tecidos Suporte/química , Animais , Regeneração Óssea/efeitos dos fármacos , Calcificação Fisiológica , Colágeno , Cães , Expressão Gênica , Gengiva/citologia , Humanos , Compostos de Magnésio/química , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteogênese/fisiologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Porosidade , Ratos Sprague-Dawley , Compostos de Silício/química , Raiz Dentária/diagnóstico por imagem , Microtomografia por Raio-X
4.
Proc Natl Acad Sci U S A ; 117(41): 25609-25617, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32973093

RESUMO

Pteropods are a group of planktonic gastropods that are widely regarded as biological indicators for assessing the impacts of ocean acidification. Their aragonitic shells are highly sensitive to acute changes in ocean chemistry. However, to gain insight into their potential to adapt to current climate change, we need to accurately reconstruct their evolutionary history and assess their responses to past changes in the Earth's carbon cycle. Here, we resolve the phylogeny and timing of pteropod evolution with a phylogenomic dataset (2,654 genes) incorporating new data for 21 pteropod species and revised fossil evidence. In agreement with traditional taxonomy, we recovered molecular support for a division between "sea butterflies" (Thecosomata; mucus-web feeders) and "sea angels" (Gymnosomata; active predators). Molecular dating demonstrated that these two lineages diverged in the early Cretaceous, and that all main pteropod clades, including shelled, partially-shelled, and unshelled groups, diverged in the mid- to late Cretaceous. Hence, these clades originated prior to and subsequently survived major global change events, including the Paleocene-Eocene Thermal Maximum (PETM), the closest analog to modern-day ocean acidification and warming. Our findings indicate that planktonic aragonitic calcifiers have shown resilience to perturbations in the Earth's carbon cycle over evolutionary timescales.


Assuntos
Evolução Biológica , Ciclo do Carbono/fisiologia , Mudança Climática , Gastrópodes , Plâncton , Animais , Calcificação Fisiológica/fisiologia , Fósseis , Gastrópodes/classificação , Gastrópodes/genética , Gastrópodes/fisiologia , Concentração de Íons de Hidrogênio , Filogenia , Plâncton/classificação , Plâncton/genética , Plâncton/fisiologia
5.
Proc Biol Sci ; 287(1934): 20201506, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900308

RESUMO

The sea urchin embryo develops a calcitic endoskeleton through intracellular formation of amorphous calcium carbonate (ACC). Intracellular precipitation of ACC, requires [Formula: see text] concentrating as well as proton export mechanisms to promote calcification. These processes are of fundamental importance in biological mineralization, but remain largely unexplored. Here, we demonstrate that the calcifying primary mesenchyme cells (PMCs) use Na+/H+-exchange (NHE) mechanisms to control cellular pH homeostasis during maintenance of the skeleton. During skeleton re-calcification, pHi of PMCs is increased accompanied by substantial elevation in intracellular [Formula: see text] mediated by the [Formula: see text] cotransporter Sp_Slc4a10. However, PMCs lower their pHi regulatory capacities associated with a reduction in NHE activity. Live-cell imaging using green fluorescent protein reporter constructs in combination with intravesicular pH measurements demonstrated alkaline and acidic populations of vesicles in PMCs and extensive trafficking of large V-type H+-ATPase (VHA)-rich acidic vesicles in blastocoelar filopodial cells. Pharmacological and gene expression analyses underline a central role of the VHA isoforms Sp_ATP6V0a1, Sp_ATP6V01_1 and Sp_ATPa1-4 for the process of skeleton re-calcification. These results highlight novel pH regulatory strategies in calcifying cells of a marine species with important implications for our understanding of the mineralization process in times of rapid changes in oceanic pH.


Assuntos
Bicarbonatos/metabolismo , Ouriços-do-Mar/fisiologia , Animais , Transporte Biológico , Calcificação Fisiológica , Carbonato de Cálcio , Concentração de Íons de Hidrogênio , Oceanos e Mares , Prótons , Água do Mar
6.
J Bone Miner Metab ; 38(6): 759-764, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32737603

RESUMO

Matrix vesicles (MVs) are extracellular membrane-bound vesicles of about ~ 50-200 nm in diameter that play a role in the bio-mineralization process of hard tissue formation. The present review is based on the empirical phenomenon of primary mineralization process via matrix vesicle-mediated mechanism with special reference to crystal ghosts as well as the mechanism on the organic-inorganic relationship between matrix vesicles and crystal ghosts, and the transformation that these structures undergo during bio-mineralization.


Assuntos
Calcificação Fisiológica , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Cristalização
7.
Sci Total Environ ; 743: 140808, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758848

RESUMO

In paddy soil, the root exudates strongly influence the microbial activity and soil organic matter (SOM) mineralisation. However, the stoichiometric regulation of the mineralisation of root exudates and their priming effect on paddy soil remains unclear. Thus, we used manipulative laboratory incubations to measure the mineralisation of root exudates and the subsequent priming effect in paddy soil under different stoichiometric conditions. In this study, root exudates (simulated by 13C-labelled glucose, alanine, and oxalic acid) were added to the paddy soil along with four different amounts of N and P. The addition of simulated root exudates (SREs) enhanced the total CO2 and CH4 emissions. The mineralisation of SREs decreased by 20-45% after the addition of N and P when compared with exclusive SREs application. The addition of N and P inhibited the SREs-derived CH4 emissions when compared with SREs application alone. The mineralisation of soil organic matter (SOM) increased with SREs application, thereby generating a positive priming effect for CO2 and CH4 emissions. However, the priming effect for CO2 and CH4 emissions was reduced with increased amounts of N and P. Furthermore, the addition of SREs with increasing N and P significantly enhanced the microbial SREs-derived C-use efficiency. Structural equation models indicated that NH4+-N and Olsen P negatively influenced the priming effect, whereas the microbial biomass and enzyme stoichiometry positively influenced the priming effect. In conclusion, our data suggest that SREs combined with increasing amounts of N and P could meet microbial stoichiometric demands and regulate microbial activity, which finally inhibited the mineralisation of SREs-C and the priming effect on paddy soil and positively affected C sequestration.


Assuntos
Oryza , Solo , Biomassa , Calcificação Fisiológica , Carbono , Microbiologia do Solo
8.
Proc Biol Sci ; 287(1933): 20201467, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32811320

RESUMO

Hyoliths (hyolithids and orthothecids) were one of the most successful early biomineralizing lophotrochozoans and were a key component of the Cambrian evolutionary fauna. However, the morphology, skeletogenesis and anatomy of earliest members of this enigmatic clade, as well as its relationship with other lophotrochozoan phyla remain contentious. Here, we present a new orthothecid, Longxiantheca mira gen. et sp. nov. preserved as part of secondarily phosphatized small shelly fossil assemblage from the lower Cambrian Xinji Formation of North China. Longxiantheca mira retains some ancestral traits of the clade with an undifferentiated disc-shaped operculum, a simple conical conch with apical septa and a two-layered microstructure of aragonitic fibrous bundles. The operculum interior exhibits impressions of soft tissues, including muscle attachment scars, mantle epithelial cells and a central kidney-shaped platform interpreted as a support structure in association with its presumptive feeding apparatus. The muscular system in orthothecids appears to be similar to that in hyolithids, suggesting a consistent anatomical configuration among the total group of hyoliths. The new finding of shell secreting cells demonstrates a mantle regulating the mode of growth for the operculum. Investigations of shell microstructures support the placement of hyoliths as total group molluscs with an unsettled position within the phylum Mollusca.


Assuntos
Exoesqueleto , Evolução Biológica , Moluscos , Animais , Biomineralização , Calcificação Fisiológica , Carbonato de Cálcio , China , Fósseis , Gastrópodes , Fenótipo , Pele
9.
PLoS One ; 15(8): e0237116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32857787

RESUMO

Bone metastases are a frequent complication in prostate cancer, and several studies have shown that vitamin D deficiency promotes bone metastases. However, while many studies focus on vitamin D's role in cell metabolism, the effect of chronically low vitamin D levels on bone tissue, i.e. insufficient mineralization of the tissue, has largely been ignored. To investigate, whether poor tissue mineralization promotes cancer cell attachment, we used a fluorescence based adhesion assay and single cell force spectroscopy to quantify the adhesion of two prostate cancer cell lines to well-mineralized and demineralized dentin, serving as biomimetic bone model system. Adhesion rates of bone metastases-derived PC3 cells increased significantly on demineralized dentin. Additionally, on mineralized dentin, PC3 cells adhered mainly via membrane anchored surface receptors, while on demineralized dentin, they adhered via cytoskeleton-anchored transmembrane receptors, pointing to an interaction via exposed collagen fibrils. The adhesion rate of lymph node derived LNCaP cells on the other hand is significantly lower than that of PC3 and not predominately mediated by cytoskeleton-linked receptors. This indicates that poor tissue mineralization facilitates the adhesion of invasive cancer cells by the exposure of collagen and emphasizes the disease modifying effect of sufficient vitamin D for cancer patients.


Assuntos
Calcificação Fisiológica , Adesão Celular , Neoplasias da Próstata/metabolismo , Animais , Materiais Biomiméticos/química , Linhagem Celular Tumoral , Colágeno/metabolismo , Citoesqueleto/metabolismo , Dentina/química , Elefantes , Humanos , Masculino , Receptores de Superfície Celular/metabolismo , Tecidos Suporte/química , Vitamina D/metabolismo
11.
Nat Commun ; 11(1): 4278, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855388

RESUMO

Activation and migration of endogenous mesenchymal stromal cells (MSCs) are critical for bone regeneration. Here, we report a combinational peptide screening strategy for rapid discovery of ligands that not only bind strongly to osteogenic progenitor cells (OPCs) but also stimulate osteogenic cell Akt signaling in those OPCs. Two lead compounds are discovered, YLL3 and YLL8, both of which increase osteoprogenitor osteogenic differentiation in vitro. When given to normal or osteopenic mice, the compounds increase mineral apposition rate, bone formation, bone mass, and bone strength, as well as expedite fracture repair through stimulated endogenous osteogenesis. When covalently conjugated to alendronate, YLLs acquire an additional function resulting in a "tri-functional" compound that: (i) binds to OPCs, (ii) targets bone, and (iii) induces "pro-survival" signal. These bone-targeted, osteogenic peptides are well suited for current tissue-specific therapeutic paradigms to augment the endogenous osteogenic cells for bone regeneration and the treatment of bone loss.


Assuntos
Anabolizantes/farmacologia , Fraturas Ósseas/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Peptídeos/farmacologia , Células-Tronco/efeitos dos fármacos , Anabolizantes/química , Animais , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Fraturas Ósseas/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Orquiectomia , Osteogênese/fisiologia , Ovariectomia , Peptídeos/química , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Técnicas de Síntese em Fase Sólida , Células-Tronco/citologia
12.
Life Sci ; 257: 118044, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622944

RESUMO

AIMS: High-dose glucocorticoid (GC) administration causes osteoporosis. Many previous studies from our group and other groups have shown that melatonin participates in the regulation of osteoblast proliferation and differentiation, especially low concentrations of melatonin, which enhance osteoblast osteogenesis. However, the role of melatonin in glucocorticoid-induced osteoblast differentiation remains unknown. MATERIALS AND METHODS: An examination of the expression of osteoblast differentiation markers (ALP, OCN, COLL-1), as well as alkaline phosphatase staining and alkaline phosphatase enzymatic activity assay to measure osteoblast differentiation and quantifying Alizarin red S staining to measure mineralization, were performed to determine the effects of dexamethasone (Dex) and melatonin on the differentiation of MC3T3-E1 cells. We used immunofluorescence staining to detect the expression of Runx2 in melatonin-treated MC3T3-E1 cells. The expression of mRNA was determined by qRT-PCR, and protein levels were measured by western blotting. KEY FINDINGS: In the present study, we found that 100 µM Dex significantly reduced osteoblast differentiation and mineralization in MC3T3-E1 cells and that 1 µM melatonin attenuated these inhibitory effects. We found that only inhibition of PI3K/AKT (MK2206) and BMP/Smad (LDN193189) signalling abolished melatonin-induced differentiation and mineralization. Meanwhile, MK2206 decreased the expression of P-AKT and P-Smad1/5/9 and LDN193189 decreased the expression of P-Smad1/5/9 but had no obvious effect on P-AKT expression in melatonin-treated and Dex-induced MC3T3-E1 cells. SIGNIFICANCE: These findings suggest that melatonin rescues Dex-induced inhibition of osteoblast differentiation in MC3T3-E1 cells via the PI3K/AKT and BMP/Smad signalling pathways and that PI3K/AKT signalling may be the upstream signal of BMP/Smad signalling.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Melatonina/metabolismo , Osteoblastos/metabolismo , Animais , Biomineralização/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Glucocorticoides/farmacologia , Melatonina/farmacologia , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo
14.
Gene ; 754: 144855, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32522695

RESUMO

Alkaline phosphatase (ALP) is highly expressed in the cells of mineralized tissue and plays a critical function in the formation of hard tissue. The existing status of this critical enzyme should be reviewed periodically. ALP increases inorganic phosphate local rates and facilitates mineralization as well as reduces the extracellular pyrophosphate concentration, an inhibitor of mineral formation. Mineralization is the production, inside matrix vesicles, of hydroxyapatite crystals that bud from the outermembrane of hypertrophic osteoblasts and chondrocytes. The expansion of hydroxyapatite formsinto the extracellular matrix and its accumulation between collagen fibrils is observed. Among various isoforms, the tissue-nonspecific isozyme of ALP (TNAP) is strongly expressed in bone, liver and kidney and plays a key function in the calcification of bones. TNAP hydrolyzes pyrophosphate and supplies inorganic phosphate to enhance mineralization. The biochemical substrates of TNAP are believed to be inorganic pyrophosphate and pyridoxal phosphate. These substrates concentrate in TNAP deficient condition which results in hypophosphatasia. The increased level of ALP expression and development in this environment would undoubtedly provide new and essential information about the fundamental molecular mechanisms of bone formation, offer therapeutic possibilities for the management of bone-related diseases.


Assuntos
Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Calcificação Fisiológica , Hipofosfatasia/patologia , Fosfatase Alcalina/deficiência , Animais , Humanos , Hipofosfatasia/enzimologia , Isoenzimas
15.
Sci Rep ; 10(1): 7581, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371888

RESUMO

Biomineralization is the process by which living organisms acquired the capacity to accumulate minerals in tissues. Shells are the biomineralized exoskeleton of marine molluscs produced by the mantle but factors that regulate mantle shell building are still enigmatic. This study sought to identify candidate regulatory factors of molluscan shell mineralization and targeted family B G-protein coupled receptors (GPCRs) and ligands that include calcium regulatory factors in vertebrates, such as calcitonin (CALC). In molluscs, CALC receptor (CALCR) number was variable and arose through lineage and species-specific duplications. The Mediterranean mussel (Mytilus galloprovincialis) mantle transcriptome expresses six CALCR-like and two CALC-precursors encoding four putative mature peptides. Mussel CALCR-like are activated in vitro by vertebrate CALC but only receptor CALCRIIc is activated by the mussel CALCIIa peptide (EC50 = 2.6 ×10-5 M). Ex-vivo incubations of mantle edge tissue and mantle cells with CALCIIa revealed they accumulated significantly more calcium than untreated tissue and cells. Mussel CALCIIa also significantly decreased mantle acid phosphatase activity, which is associated with shell remodelling. Our data indicate the CALC-like system as candidate regulatory factors of shell mineralization. The identification of the CALC system from molluscs to vertebrates suggests it is an ancient and conserved calcium regulatory system of mineralization.


Assuntos
Biomineralização , Calcitonina/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , Transporte Biológico , Biomineralização/genética , Bivalves , Calcificação Fisiológica , Calcitonina/genética , Cálcio/metabolismo , Biologia Computacional/métodos , Sequência Conservada , Ativação Enzimática , Receptores da Calcitonina/genética , Receptores da Calcitonina/metabolismo , Receptores Acoplados a Proteínas-G/classificação , Receptores Acoplados a Proteínas-G/genética , Receptores Acoplados a Proteínas-G/metabolismo
16.
Sci Rep ; 10(1): 7892, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398869

RESUMO

Coral reefs are currently facing multiple disturbances caused by natural/anthropogenic factors. Recent industrial development might influence reef environments and ecosystems; however, few direct comparisons of coral calcification with the histories of local industries exist. We show the coral Ba/Ca record and growth histories for 46 years collected from Sumiyo Bay, Amami-Oshima Island, Japan. Coral Ba/Ca was mainly controlled by the sediment loads in seawater, which are introduced through the two local rivers. Coral Ba/Ca records have been characterized by two distinct historical periods: the decadal fluctuation corresponding to the traditional silk fabric industry (1960s ~ 1995) and the increasing trend corresponding to the development of quarries and the construction industry (1996 ~). Coral Ba/Ca records and local industrial histories were also linked to coral calcification. A long-term quantitative assessment of reef environments and local industrial changes could provide an evaluation of the survival strategies of reef-building corals in the future.


Assuntos
Antozoários/fisiologia , Calcificação Fisiológica/fisiologia , Recifes de Corais , Ecossistema , Indústrias , Animais , Antozoários/metabolismo , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Geografia , Ilhas , Japão , Rios , Estações do Ano , Água do Mar
17.
J Bone Miner Metab ; 38(5): 670-677, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32415375

RESUMO

INTRODUCTION: The periosteum has a bilayered structure that surrounds cortical bone. The outer layer is rich in connective tissue and fibroblasts, while the inner layer in contact with the cortical surface of the bone predominantly consists of osteoblasts and osteoblast progenitors. The identification of cell-specific surface markers of the bilayered structure of the periosteum is important for the purpose of tissue regeneration. MATERIALS AND METHODS: We investigated the expression of the discoidin domain tyrosine kinase receptor DDR2, fibroblast specific protein-1 (FSP-1) and alkaline phosphatase (ALP) in the periosteum of cortical bone by immunohistochemistry. Osteogenic differentiation was compared between DDR2- and FSP-1-expressing cells flow-sorted from the periosteum. RESULTS: We showed that DDR2 predominantly labeled osteogenic cells residing in the inner layer of the periosteum and that Pearson's coefficient of colocalization indicated a significant correlation with the expression of ALP. The mineralization of DDR2-expressing osteogenic cells isolated from the periosteum was significantly induced. In contrast, FSP-1 predominantly labeled the outer layer of periosteal fibroblasts, and Pearson's coefficient of colocalization indicated that FSP-1 was poorly correlated with the expression of DDR2 and ALP. FSP-1-expressing periosteal fibroblasts did not exhibit osteogenic differentiation for the induction of bone mineralization. CONCLUSION: DDR2 is a novel potential cell surface marker for identifying and isolating osteoblasts and osteoblast progenitors within the periosteum that can be used for musculoskeletal regenerative therapies.


Assuntos
Receptores com Domínio Discoidina/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Periósteo/citologia , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Calcificação Fisiológica , Diferenciação Celular , Camundongos Endogâmicos C57BL , Osteogênese , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
18.
PLoS Genet ; 16(5): e1008586, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463816

RESUMO

The strength of bone depends on bone quantity and quality. Osteocalcin (Ocn) is the most abundant noncollagenous protein in bone and is produced by osteoblasts. It has been previously claimed that Ocn inhibits bone formation and also functions as a hormone to regulate insulin secretion in the pancreas, testosterone synthesis in the testes, and muscle mass. We generated Ocn-deficient (Ocn-/-) mice by deleting Bglap and Bglap2. Analysis of Ocn-/-mice revealed that Ocn is not involved in the regulation of bone quantity, glucose metabolism, testosterone synthesis, or muscle mass. The orientation degree of collagen fibrils and size of biological apatite (BAp) crystallites in the c-axis were normal in the Ocn-/-bone. However, the crystallographic orientation of the BAp c-axis, which is normally parallel to collagen fibrils, was severely disrupted, resulting in reduced bone strength. These results demonstrate that Ocn is required for bone quality and strength by adjusting the alignment of BAp crystallites parallel to collagen fibrils; but it does not function as a hormone.


Assuntos
Apatitas/metabolismo , Calcificação Fisiológica/genética , Metabolismo dos Carboidratos/genética , Glucose/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Osteocalcina/fisiologia , Testosterona/biossíntese , Animais , Apatitas/química , Osso e Ossos/metabolismo , Colágeno/metabolismo , Cristalização , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Tamanho do Órgão/genética , Osteoblastos/metabolismo , Osteocalcina/genética , Osteogênese/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
19.
Poult Sci ; 99(5): 2595-2607, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32359595

RESUMO

Effects of dietary available phosphorus (aP) and Ca levels and an Escherichia coli 6-phytase supplementation were studied in Lohmann LSL-Lite hens from 25 to 37 wk of age. Eighty-four hens were used in a completely randomized design with 7 treatments. The treatments were a positive control (PC) diet with 0.45% aP, 3.70% Ca, and 0.16% Na from 25 to 28 wk and 0.38% aP, 3.73% Ca, and 0.15% Na from 29 to 37 wk; a negative control (NC) diet, similar to the PC diet, with 0.22% aP, 3.00% Ca, and 0.13% Na from 25 to 28 wk and 0.19% aP, 3.02% Ca, and 0.13% Na from 29 to 37 wk; the NC diets supplemented with phytase at 150 (NC + 150), 300 (NC + 300), 600 (NC + 600), or 1,200 (NC + 1,200) phytase unit (FTU)/kg; and the PC diet supplemented with phytase at 1,200 (PC + 1,200) FTU/kg. Hen performance, eggshell, and bone quality were measured on a 4-wk basis. Bone breaking strength and ash and apparent ileal digestibility (AID) of P and Ca were determined at 37 wk. One- and 2-way ANOVA were conducted, and Tukey's range test was used to compare multiple means where P ≤ 0.05. No differences in hen performance, eggshell quality, bone breaking strength, bone ash, and P digestibility were observed between the PC and the NC treatments. The NC hens had lower cortical (P < 0.001) and trabecular + medullary bone mineral density (P = 0.004) and total bone mineral content (P < 0.001) than the PC hens. The PC + 1,200 increased cortical bone mineral density (P < 0.001). The reductions of aP and Ca in the NC diet were not deficient for performance but had a minor impact on bone mineralization. The NC + 600 and NC + 1,200 increased AID of P (P = 0.024), and all phytase treatments except the NC + 150 increased AID of Ca (P = 0.010) compared with the NC diet.


Assuntos
6-Fitase/metabolismo , Calcificação Fisiológica/fisiologia , Cálcio na Dieta/metabolismo , Digestão , Casca de Ovo/fisiologia , Fósforo na Dieta/metabolismo , 6-Fitase/administração & dosagem , Ração Animal/análise , Animais , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/deficiência , Galinhas , Dieta/veterinária , Suplementos Nutricionais/análise , Digestão/efeitos dos fármacos , Relação Dose-Resposta a Droga , Casca de Ovo/efeitos dos fármacos , Feminino , Íleo/fisiologia , Fósforo/deficiência , Distribuição Aleatória
20.
PLoS One ; 15(5): e0234009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470038

RESUMO

One of the potential contributing factors for iron overload-induced osteoporosis is the iron toxicity on bone forming cells, osteoblasts. In this study, the comparative effects of Fe3+ and Fe2+ on osteoblast differentiation and mineralization were studied in UMR-106 osteoblast cells by using ferric ammonium citrate and ferrous ammonium sulfate as Fe3+ and Fe2+ donors, respectively. Effects of 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] and iron chelator deferiprone on iron uptake ability of osteoblasts were examined, and the potential protective ability of 1,25(OH)2D3, deferiprone and extracellular calcium treatment in osteoblast cell survival under iron overload was also elucidated. The differential effects of Fe3+ and Fe2+ on reactive oxygen species (ROS) production in osteoblasts were also compared. Our results showed that both iron species suppressed alkaline phosphatase gene expression and mineralization with the stronger effects from Fe3+ than Fe2+. 1,25(OH)2D3 significantly increased the intracellular iron but minimally affected osteoblast cell survival under iron overload. Deferiprone markedly decreased intracellular iron in osteoblasts, but it could not recover iron-induced osteoblast cell death. Interestingly, extracellular calcium was able to rescue osteoblasts from iron-induced osteoblast cell death. Additionally, both iron species could induce ROS production and G0/G1 cell cycle arrest in osteoblasts with the stronger effects from Fe3+. In conclusions, Fe3+ and Fe2+ differentially compromised the osteoblast functions and viability, which can be alleviated by an increase in extracellular ionized calcium, but not 1,25(OH)2D3 or iron chelator deferiprone. This study has provided the invaluable information for therapeutic design targeting specific iron specie(s) in iron overload-induced osteoporosis. Moreover, an increase in extracellular calcium could be beneficial for this group of patients.


Assuntos
Calcitriol/farmacologia , Deferiprona/farmacologia , Espaço Extracelular/química , Sobrecarga de Ferro/metabolismo , Ferro/farmacologia , Osteoblastos/citologia , Animais , Biomarcadores/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA