Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64.233
Filtrar
1.
Anticancer Res ; 39(10): 5339-5344, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570427

RESUMO

BACKGROUND/AIM: Gemcitabine is standard first-line treatment for patients with advanced pancreatic cancer, however the efficacy is limited. Although acquired drug resistance and side-effects are known to limit efficacy, opposite effects of a drug, which enhance the malignancy of treated cancer, have been observed but are not well understood. The aim of the present study was to determine whether gemcitabine has such opposite effects on the BxPC-3 human pancreatic cancer cell line expressing green fluorescent protein (BxPC-3-GFP) in an orthotopic mouse model. MATERIALS AND METHODS: BxPC-3-GFP tumors grown subcutaneously in nude mice were harvested. Tumor fragments were orthotopically implanted in the tail of the pancreas of nude mice using the technique of surgical orthotopic implantation. The BxPC-3-GFP orthotopic models were divided randomly into three groups: Group 1: untreated control; Group 2: low-dose gemcitabine (weekly intraperitoneal injection at 25 mg/kg for 6 weeks); Group 3: high-dose gemcitabine (weekly intraperitoneal injection at 125 mg/kg for 6 weeks). Each group comprised eight mice. Tumor size, fluorescent area of metastases, and body weight were measured. RESULTS: Low- and high-dose gemcitabine inhibited primary tumor growth in a dose-dependent manner, and to the greatest extent by high-dose gemcitabine compared to the untreated control (p=0.0134). In contrast, the extent of metastasis on the peritoneum was significantly increased by low-dose gemcitabine compared to the untreated control (p=0.0112). The extent of metastasis showed no significant difference between the untreated control and mice treated with high-dose gemcitabine. Body weight of the treated mice was not significantly different from that of the untreated mice. CONCLUSION: The use of very bright GFP expressing of BxPC-3 cells and the orthotopic model demonstrated an unexpected increase in metastasis by low-dose gemcitabine. Future experiments will investigate the mechanism of this phenomenon.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Desoxicitidina/análogos & derivados , Metástase Neoplásica/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Nus , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo
2.
Anticancer Res ; 39(10): 5417-5425, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570436

RESUMO

BACKGROUND/AIM: Chemotherapy with docetaxel (DTX) is used for castration-resistant prostate cancer (CRPC), but it is inadequate. MATERIALS AND METHODS: We evaluated the effect of the combination treatment DTX and the mTOR inhibitor temsirolimus (TEM) in the PC3 prostate cancer cell line, by focusing on the induction of autophagy and apoptosis. RESULTS: TEM induced autophagy but not apoptosis even at a high dose, whereas DTX induced apoptosis. The combination of low-dose DTX and TEM caused a 34% suppression in cell proliferation compared to monotherapy with a higher dose of DTX. The induction of apoptosis was increased by their combination. The combination with DTX overcame the induction of autophagy by TEM. The combination treatment suppressed tumor growth 72% less than the control group after 14 days of treatment in vivo. CONCLUSION: The combination of TEM and DTX induced apoptosis by overcoming autophagy and enhanced the anticancer effect compared to monotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Autofagia/efeitos dos fármacos , Docetaxel/administração & dosagem , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Sirolimo/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Terapia Combinada/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Inibidores de Proteínas Quinases/administração & dosagem , Sirolimo/administração & dosagem
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(8): 891-897, 2019 Aug 30.
Artigo em Chinês | MEDLINE | ID: mdl-31511207

RESUMO

OBJECTIVE: To observe the inhibitory effects of PEG-APTES-MNP magnetic heating on liver cancer cells. METHODS: The magnetic nanoparticle complex PEG-APTES-MNP was synthesized and its physiochemical properties and biocompatibility were characterized. HepG2 cells were incubated with the PEG-APTES-MNP nanoparticles for magnetic heating or nanoparticle therapy. Prussian blue staining was used to detect the uptake efficiency of the magnetic nanoparticles by HepG2 cells. MTT assay and flow cytometry were used to evaluate the inhibitory effect of the nanoparticles on HepG2 cells, and laser scanning confocal microscopy was used to detect the production of reactive oxygen species (ROS) in the cells. Fifteen nude mice bearing HepG2 cell xenografts were randomized equally into PEG-APTES-MNP injection group (with nanocomposite injection only), PEG-APTES-MNP magnetic heating group and control group (with PBS injection), and the tumor growth were observed in the mice after the treatments. RESULTS: The synthesized PEG-APTES-MNP nanoparticles showed good physicochemical properties and biocompatibility. Incubation of HepG2 with the nanoparticles resulted in significantly increased ROS production, obvious inhibition of the cell growth through the synergetic effects of magnetic heating (P < 0.05), and significantly enhanced cell apoptosis. In the tumor-bearing nude mice, the nanoparticles strongly inhibited the tumor growth by magnetic heating (P < 0.05). CONCLUSIONS: The magnetic nanocomposite PEG-APTES-MNP has good physicochemical properties and bioavailability and can strongly inhibit the growth of liver cancer cells both in vitro and in nude mice through magnetic heating, demonstrating its potential as a candidate nanomedicine for liver cancer treatment.


Assuntos
Neoplasias Hepáticas , Nanocompostos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Hipertermia Induzida , Magnetismo , Camundongos , Camundongos Nus
4.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 48(3): 296-302, 2019 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-31496162

RESUMO

OBJECTIVE: To investigate the effects of high dose vitamin C (VC) on proliferation of breast cancer cells and to explore its mechanisms. METHODS: Human breast cancer cells Bcap37 and MDA-MB-453 were treated with VC at low dose (0.01 mmol/L), medium dose (0.10 mmol/L) and high dose (2.00 mmol/L). Cell proliferation was determined with CCK-8 assay, protein expression was evaluated by Western blot, and the secretion of lactic acid in tumor cells was detected by colorimetric method. Bcap37 cells were inoculated in nude mice, and tumor baring nude mice were intraperitoneally injected with high VC(4 g/kg, VC group, n=5)or normal saline (control group, n=5) for 24 d. Tumor weight and body weight were calculated. RESULTS: In vitro experiments demonstrated that high dose VC significantly inhibited cell proliferation in Bcap37 and MDA-MB-453 cells (all P<0.01); the expressions of Glut1 and mTOR signaling pathway-related proteins were decreased (all P<0.05); and the secretion of lactic acid was also markedly reduced (all P<0.05). In vivo experiment showed that the tumor weight was decreased in mice treated with high-dose VC as compared with control group (P<0.05), but no difference in body weights between two groups was observed. CONCLUSIONS: High dose VC may inhibit proliferation of breast cancer cells both in vitro and in vivo through reducing glycolysis and protein synthesis.


Assuntos
Ácido Ascórbico , Neoplasias da Mama , Glicólise , Biossíntese de Proteínas , Animais , Ácido Ascórbico/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Biossíntese de Proteínas/efeitos dos fármacos
5.
Gene ; 720: 144099, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31479715

RESUMO

Emerging evidence demonstrates that circular RNA (circRNA) is a novel class of non-coding RNA that plays a pivotal role in cancer. Recently, circ-PRMT5 was identified as an oncogene in bladder cancer. Nevertheless, its contribution to non-small cell lung cancer (NSCLC) is unknown. Herein, we aimed to clarify the biological role of circ-PRMT5 in NSCLC. High circ-PRMT5 expression was identified in NSCLC tissues and cell lines and positively correlated with larger tumor size, advanced clinic stage, lymph node metastasis as well as worse prognosis. Stable knockdown of circ-PRMT5 dramatically weakened the proliferative capacities of NSCLC cells both in vitro and in vivo. Mechanically, circ-PRMT5 could simultaneously effectively sponge three miRNAs (miR-377, miR-382 and miR-498) and alleviate their repression on the well-known oncogenic EZH2, resulting in increased EZH2 expression, thereby facilitating NSCLC progression. Importantly, a strong positive correlation between circ-PRMT5 and EZH2 expression was observed in NSCLC tissues. Overall, our data indicate that circ-PRMT5 is an oncogenic circRNA in NSCLC that can promote the growth of NSCLC via regulation of miR-377/382/498-EZH2 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/secundário , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , MicroRNAs/genética , Proteína-Arginina N-Metiltransferases/genética , RNA/genética , Animais , Apoptose , Biomarcadores Tumorais/análise , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Progressão da Doença , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Linfática , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Braz Oral Res ; 33: e0045, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31531560

RESUMO

The aim of this study was to investigate the effects of low-intensity pulsed ultrasound (LIPUS) on the osteogenic differentiation of dental follicle cells (DFCs) in vitro and on the regenerative effects of DFC-OsteoBoneTM complexes in vivo. DFCs were isolated and characterized. In the in vitro study, DFCs were cultured in an osteogenic medium in the presence or absence of LIPUS. The expression levels of ALP, Runx2, OSX, and COL-I mRNA were analyzed using real-time polymerase chain reaction (RT-PCR) on day 7. Alizarin red staining was performed on day 21. The state of the growth of the DFCs that were seeded on the scaffold at 3, 5, 7, and 9 days was detected by using a scanning electron microscope. In our in vivo study, 9 healthy nude mice randomly underwent subcutaneous transplantation surgery in one of three groups: group A, empty scaffold; group B, DFCs + scaffold; and group C, DFCs + scaffold + LIPUS. After 8 weeks of implantation, a histological analysis was performed by HE and Mason staining. Our results indicate that LIPUS promotes the osteogenic differentiation of DFCs by increasing the expression of the ALP, Runx2, OSX, and COL-I genes and the formation of mineralized nodules. The cells can adhere and grow on the scaffolds and grow best at 9 days. The HE and Mason staining results showed that more cells, fibrous tissue and blood vessels could be observed in the DFCs + scaffold + LIPUS group than in the other groups. LIPUS could promote the osteogenic differentiation of DFCs in vitro and promote tissue regeneration in a DFCs-scaffold complex in vivo. Further studies should be conducted to explore the underlying mechanisms of LIPUS.


Assuntos
Regeneração Óssea/efeitos da radiação , Saco Dentário/citologia , Osteogênese/efeitos da radiação , Terapia por Ultrassom/métodos , Ondas Ultrassônicas , Animais , Cerâmica , Saco Dentário/efeitos da radiação , Citometria de Fluxo , Camundongos Nus , Microscopia Eletrônica de Varredura , Distribuição Aleatória , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Fatores de Tempo
7.
J Cancer Res Clin Oncol ; 145(9): 2261-2271, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31367836

RESUMO

PURPOSE: To investigate the role of sonic hedgehog (Shh) signaling and epithelial-mesenchymal transition (EMT) in bladder cancer progression and invasion. METHODS: We cultured three bladder cancer cell lines, muscle-invasive T24 and 5637, and non-muscle-invasive KK47, in the presence of a recombinant-Shh (r-Shh) protein or cyclopamine, a Shh signaling inhibitor, to investigate proliferation and expression of EMT markers. Wound-healing assays and transwell assay were performed to evaluate cell invasion and migration. Mice were then inoculated with bladder cancer cells and treated with cyclopamine. Mouse tumor samples were stained for Shh signaling and EMT markers. RESULTS: R-Shh protein enhanced cell proliferation, whereas cyclopamine significantly suppressed cell proliferation, especially in invasive cancer (5637 and T24) (p < 0.05). R-Shh protein promoted EMT, suppressed E-cadherin and enhanced N-cadherin and vimentin and Gli1, an Shh downstream molecule, while cyclopamine blocked EMT, especially in 5637 and T24. Cyclopamine also inhibited cell invasion and migration in vitro. In the animal study, intraperitoneal injection of cyclopamine significantly suppressed tumor growth in 5637 and T24 in mice (p = 0.01 and p = 0.004, respectively) and slightly suppressing KK47 tumor growth (p = 0.298). Significant cyclopamine-induced suppression of Gli1 in 5637 and T24 mouse tumors (both p = 0.03) was seen, suggesting that muscle-invasive bladder cancer may be more dependent on Shh signaling than non-muscle-invasive bladder cancer. CONCLUSIONS: Shh signaling and EMT were especially enhanced in muscle-invasive bladder cancer progression and invasion, and suppressed by the inhibition of Shh signaling.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Proteínas Hedgehog/fisiologia , Neoplasias Musculares/secundário , Neoplasias da Bexiga Urinária/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Musculares/metabolismo , Invasividade Neoplásica , Transdução de Sinais/fisiologia , Neoplasias da Bexiga Urinária/metabolismo
8.
J Cancer Res Clin Oncol ; 145(9): 2273-2283, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31428934

RESUMO

OBJECTIVES: Recent research has classified lung adenocarcinoma patients with KRAS mutation into three subtypes by co-occurring genetic events in TP53 (KP subgroup), STK11/LKB1 (KL subgroup) and CDKN2A/B inactivation plus TTF-1 low expression (KC subgroup). The aim of this study was to identify valuable biomarkers by searching the candidate molecules that contribute to lung adenocarcinoma pathogenesis, especially KC subtype. MATERIALS AND METHODS: We analyzed the publicly available database and identified the candidate REG4 using the E-GEOD-31210 dataset, and then confirmed by TCGA dataset. In addition, an independent cohort of 55 clinical samples was analyzed by quantitative real-time PCR analysis. Functional studies and RNA sequencing were performed after silencing the REG4 expression. RESULTS: REG4, an important regulator of gastro-intestinal carcinogenesis, was highly expressed in KRAS mutant lung adenocarcinoma with low expression of TTF-1 (KC subtype). The results were validated both by gene expression analysis and immunohistochemistry study in an independent 55 clinical samples from Fudan University Shanghai Cancer Center. Further in vitro and in vivo functional assays revealed silencing REG4 expression significantly reduces cancer cell proliferation and tumorigenesis. Moreover, RNA sequencing and GSEA analysis displayed that REG4 knockdown might induce cell cycle arrest by regulating G2/M checkpoint and E2F targets. CONCLUSION: Our results indicate that REG4 plays an important role in KRAS-driven lung cancer pathogenesis and is a novel biomarker of lung adenocarcinoma subtype. Future studies are required to clarify the underlying mechanisms of REG4 in the division and proliferation of KC tumors and its potential therapeutic value.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Neoplasias Pulmonares/diagnóstico , Proteínas Associadas a Pancreatite/genética , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Fatores de Transcrição/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/metabolismo
9.
Chem Commun (Camb) ; 55(69): 10226-10229, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31380870

RESUMO

A formulation of self-assembled peptido-nanomicelles has been developed for a combinational treatment of SDT, PDT and chemotherapy to nasopharyngeal carcinoma. In vitro cellular tests and in vivo mice therapy proved effective for targeted tumor growth inhibition. These merits provided a novel approach to non-invasive cancer treatments.


Assuntos
Corantes Fluorescentes/uso terapêutico , Carcinoma Nasofaríngeo/terapia , Peptídeos/uso terapêutico , Rosa Bengala/uso terapêutico , Animais , Linhagem Celular Tumoral , Terapia Combinada/métodos , Corantes Fluorescentes/administração & dosagem , Humanos , Camundongos Nus , Micelas , Carcinoma Nasofaríngeo/patologia , Peptídeos/administração & dosagem , Fotoquimioterapia/métodos , Rosa Bengala/administração & dosagem , Terapia por Ultrassom/métodos
11.
Pharm Res ; 36(10): 143, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31385111

RESUMO

PURPOSE: Pancreatic Polypeptide-secreting tumor of the distal pancreas (PPoma) is a rare, difficult and indolent type of cancer with a survival rate of 5-year in only 10% of all cases. The PPoma is classified as a neuroendocrine tumor (NET) not functioning that overexpresses SSTR 2 (somatostatin receptor subtype 2). Thus, in order to improve the diagnosis of this type of tumor, we developed nanoparticulate drug carriers based on poly-lactic acid (PLA) polymer loaded with octreotide and radiolabeled with Technetium-99 m (99mTc). METHODS: PLA/PVA octreotide nanoparticles were developed by double-emulsion technique. These nanoparticles were characterized by Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) and radiolabeled with 99mTc by the direct via forming 99mTc-PLA/PVA octreotide nanoparticles. The safety of these nanosystems was evaluated by the MTT cell toxicity assay and their in vivo biodistribution was evaluated in xenografted inducted animals. RESULTS: The results showed that a 189 nm sized nanoparticle were formed with a PDI of 0,097, corroborating the monodispersive behavior. These nanoparticles were successfully radiolabeled with 99mTc showing uptake by the inducted tumor. The MTT assay corroborated the safety of the nanosystem for the cells. CONCLUSION: The results support the use of this nanosystem (99mTc-PLA/PVA octreotide nanoparticles) as imaging agent for PPoma. Graphical Abstract Polypeptide-Secreting Tumor of the Distal Pancreas (PPoma) Radiolabeled Nanoparticles for Imaging.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico por imagem , Nanopartículas/química , Octreotida/química , Neoplasias Pancreáticas/diagnóstico por imagem , Polipeptídeo Pancreático/metabolismo , Poliésteres/química , Compostos Radiofarmacêuticos/química , Tecnécio/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/metabolismo , Octreotida/metabolismo , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Tamanho da Partícula , Cintilografia/métodos , Compostos Radiofarmacêuticos/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Distribuição Tecidual
12.
Pharm Res ; 36(10): 144, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31392417

RESUMO

PURPOSE: Boron neutron capture therapy (BNCT) has the potential to become a viable cancer treatment modality, but its clinical translation requires sufficient tumor boron delivery while minimizing nonspecific accumulation. METHODS: Thermal sensitive liposomes (TSLs) were designed to have a stable drug payload at physiological temperatures but engineered to have high permeability under mild hyperthermia. RESULTS: We found that TSLs improved the tumor-specific delivery of boronophenylalanine (BPA) and boronated 2-nitroimidazole derivative B-381 in D54 glioma cells. Uniquely, the 2-nitroimidazole moiety extended the tumor retention of boron content compared to BPA. CONCLUSION: This is the first study to show the delivery of boronated compounds using TSLs for BNCT, and these results will provide the basis of future clinical trials using TSLs for BNCT.


Assuntos
Compostos de Boro/química , Terapia por Captura de Nêutron de Boro , Lipossomos/química , Animais , Antineoplásicos/química , Compostos de Boro/administração & dosagem , Compostos de Boro/farmacocinética , Linhagem Celular Tumoral , Neoplasias do Sistema Nervoso Central/metabolismo , Doxorrubicina/química , Liberação Controlada de Fármacos , Feminino , Glioma/metabolismo , Humanos , Hipertermia Induzida , Camundongos Nus , Nitroimidazóis/administração & dosagem , Nitroimidazóis/química , Tamanho da Partícula , Fenilalanina/administração & dosagem , Fenilalanina/análogos & derivados , Fenilalanina/química , Fosfolipídeos/química , Temperatura Ambiente , Distribuição Tecidual
13.
Life Sci ; 234: 116771, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421084

RESUMO

AIMS: We aimed to elucidate the effects and mechanisms of MAT1 in the progression of osteosarcoma, especially for its lung metastasis. MAIN METHODS: CCK-8 and flow cytometry assays were carried out to detect the proliferation and apoptosis of osteosarcoma cells. Wound healing and transwell assays were used to determine cell migration and invasion abilities. Real time quantitative PCR (RT-PCR) and western blot technologies were applied to detect the expression levels of RNA and protein, respectively. KEY FINDS: The results showed that both the mRNA and protein expression levels of MAT1 were elevated in osteosarcoma tissues with lung metastasis and metastatic lung tissues, particularly in the metastatic lung tissues, as compared to the osteosarcoma tissues without lung metastasis. High expression level of MAT1 in osteosarcoma patients showed a negative association with the overall survival. In addition, upregulation of MAT1 induced significant increases in cell growth, migration and invasion and an obvious inhibition in cell apoptosis in osteosarcoma MG63 and 143B cells, as well as elevated AKT1 expression level. Moreover, knockdown of AKT1 obviously impaired MAT1-mediated promotions in cell migration and invasion in vitro, as well as repressed tumor growth and reduced the number of metastatic lung tumors in xenografted nude mice. SIGNIFICANCE: This study reveals that high expression of MAT1 closely related to the poor prognosis and malignant clinical process of osteosarcoma patients. MAT1 serves as a promoter in the lung metastasis of osteosarcoma through increasing AKT1 expression. Our study may provide a potent therapeutic target for the lung metastasis of osteosarcoma.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Neoplasias Ósseas/patologia , Proteínas de Transporte/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Osteossarcoma/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Adulto , Animais , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Osteossarcoma/genética , Regulação para Cima , Adulto Jovem
14.
Life Sci ; 234: 116789, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454494

RESUMO

OBJECTIVES: The aim of this study was to uncover the underlying mechanisms of cervical cancer progression and provide potential therapeutic targets for its treatment in clinic. MATERIALS AND METHODS: Real-Time qPCR was used to determine the expression levels of Linc00483, miR-508-3p and RGS17 mRNA in cervical cancer tissues and cell lines. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay was conducted to determine cell apoptosis. Western Blot was performed to detect protein expression levels. Wound healing and Transwell assay were employed to determine cell migration and invasion respectively. Online software (TargetScan, miRDB and miR TarBase) were used to predict the regulating mechanisms of Linc00483, miR-508-3p and RGS17, which were validated by dual-luciferase reporter gene system. In vivo tumor-bearing mice models were established to validate the cellular results. RESULTS: Linc00483 aberrantly overexpressed in both cervical cancer tissues and cell lines comparing to the Control groups. Knock-down of Linc00483 inhibited cervical cancer cell proliferation, invasion as well as migration, and promoted cell apoptosis. In addition, miR-508-3p was identified as the downstream target of Linc00483, and miR-508-3p inhibitor abrogated the inhibiting effects of downregulated Linc00483 on cervical cancer cell viability. Furthermore, the expression levels of Linc00483 was positively correlated with RGS17 in the clinical samples and overexpressed Linc00483 increased RGS17 expression levels in cervical cancer cells by sponging miR-508-3p. The in vivo experiments showed that knock-down of Linc00483 inhibited cervical cancer cell tumorigenesis and lung metastasis in mice models. CONCLUSIONS: Knock-down of Linc00483 inhibited the development of cervical cancer by regulating miR-508-3p/RGS17 axis.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas RGS/genética , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/genética , Adulto , Animais , Carcinogênese/patologia , Feminino , Células HeLa , Humanos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/patologia
15.
J Enzyme Inhib Med Chem ; 34(1): 1380-1387, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31401884

RESUMO

Novel sulfonamide-dithiocarbamate hybrids were designed and synthesised via the molecular hybridisation strategy. Among them, compound 13d displayed a potent activity with IC50 values of 0.9, 0.7, 1.9 and 2.6 µM against UM-UC-3, RT-112, RT4 and T24. Compound 13d inhibited the migration and regulated the migration-related markers (E-cadherin, N-cadherin, Vimentin, Snail and Slung) against RT-112 cells in a concentration dependent manner. By the tubulin polymerisation assay in vitro and immunostaining assay, compound 13d was identified as a novel tubulin polymerisation inhibitor. Intragastric administration of compound 13d could inhibit the growth of RT-112 cells in vivo in a xenograft mouse model with the low toxicity, indicating that it may be a leading candidate with antitumor properties to treat bladder cancer.


Assuntos
Antineoplásicos/farmacologia , Sulfonamidas/farmacologia , Moduladores de Tubulina/farmacologia , Neoplasias da Bexiga Urinária/patologia , Animais , Antineoplásicos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectrometria de Massas , Camundongos , Camundongos Nus , Espectroscopia de Prótons por Ressonância Magnética , Sulfonamidas/química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Pharm Res ; 36(10): 145, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31396764

RESUMO

PURPOSE: The immediate plasma metabolism and development of chemo-resistance (single agent) severely hampers the clinical effectiveness of Sorafenib (SRF) in liver cancer therapy. MicroRNA27a inhibition is a promising biological strategy for breast cancer therapy. METHODS: In this study, we aimed to prepare SRF and anti-miRNA27a-loaded anti-GPC3 antibody targeted lipid nanoparticles to enhance the therapeutic efficacy against liver cancers. In this study, we have employed a unique cationic switchable lipid (CSL) as a mean to encapsulate miRNA as well as to confer pH-responsiveness to the nanocarrier system. RESULTS: The G-S27LN was nanosized and offered a pH-responsive release of SRF from the carrier system and we have demonstrated the specific affinity of G-S27LN towards the GPC3-overexpressed HepG2 cancer cells. Anti-microRNA27a significantly increased the protein expression of FOXO1 and PPAR-γ which are crucial components involved in proliferation and apoptosis of tumor cells. Combination of SRF and anti-miRNA27a (G-S27LN) resulted in significantly lower cell viability with a marked increase in the apoptosis cell proportion compared to that of free SRF indicating the synergistic anticancer effect. Animal studies in liver cancer xenograft model demonstrated significant suppression of tumor burden, reduced tumor cell and elevated TUNEL positive apoptosis with no toxicity concerns in animals treated with G-S27LN formulation. CONCLUSION: The CSL-based G-S27LN efficiently co-delivered anti-microRNA27a and SRF and therefore represents a promising therapy to treat liver cancer. This study also brings forth a platform strategy for the effective treatment of number of other advanced cancers.


Assuntos
Antagomirs/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Glipicanas/imunologia , Lipídeos/química , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/imunologia , Nanopartículas/química , Sorafenibe/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colesterol/química , Sinergismo Farmacológico , Proteína Forkhead Box O1/metabolismo , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Camundongos Nus , PPAR gama/metabolismo , Fosforilcolina/química , Polietilenoglicóis/química
17.
Int J Nanomedicine ; 14: 4931-4947, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371941

RESUMO

Background: Phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), is a promising noninvasive strategy in the treatment of cancers due to its highly localized specificity to tumors and minimal side effects to normal tissues. However, single phototherapy often causes tumor recurrence which hinders its clinical applications. Therefore, developing a NIR-guided dendritic nanoplatform for improving the phototherapy effect and reducing the recurrence of tumors by synergistic chemotherapy and phototherapy is essential. Methods: A fluorescent targeting ligand, insisting of ICG derivative cypate and a tumor penetration peptide iRGD (CRGDKGPDC), was covalently combined with PAMAM dendrimer to prepare a single agent-based dendritic theranostic nanoplatform iRGD-cypate-PAMAM-DTX (RCPD). Results: Compared with free cypate, the resulted RCPD could generate enhanced singlet oxygen species while maintaining its fluorescence intensity and heat generation ability when subjected to NIR irradiation. Furthermore, our in vitro and in vivo therapeutic studies demonstrated that compared with phototherapy or chemotherapy alone, the combinatorial chemo-photo treatment of RCPD with the local exposure of NIR light can significantly improve anti-tumor efficiency and reduce the risk of recurrence of tumors. Conclusion: The multifunctional theranostic platform (RCPD) could be used as a promising method for NIR fluorescence image-guided combinatorial treatment of tumor cancers.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/química , Raios Infravermelhos , Nanopartículas/química , Fototerapia , Animais , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Docetaxel/farmacologia , Endocitose/efeitos dos fármacos , Fluorescência , Células Hep G2 , Temperatura Alta , Humanos , Indóis/farmacologia , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oligopeptídeos/química , Fotoquimioterapia , Propionatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica
18.
DNA Cell Biol ; 38(9): 996-1004, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31393166

RESUMO

Osteosarcoma (OS), a highly aggressive bone tumor, mainly occurs in young patients and always presents abnormalities in molecular biology, such as microRNAs (miRNAs). However, the characteristic and underlying mechanism of miR-671-5p in OS are still unclear. In this study, we certify that miR-671-5p is remarkably downregulated in OS tissues and cells. Overexpressed miR-671-5p can suppress OS cell proliferation in vivo and in vitro, by the way of arresting cell-cycle progression. The overexpression of cyclin D1 (CCND1) and CDC34 promotes cell proliferation and cell-cycle promotion, whose functions are contrary to miR-671-5p. miR-671-5p directly binds to CCND1 and CDC34, which are thought as the key factors in regulating cell cycle. Taken together, our results suggest that by targeting CCND1 and CDC34, miR-671-5p plays a tumor suppressor in OS to inhibit the development of OS, implicating it as a novel target for therapeutic intervention in OS.


Assuntos
Ciclo Celular , Proliferação de Células , MicroRNAs/genética , Osteossarcoma/genética , Animais , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação para Baixo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Osteossarcoma/patologia , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
19.
Cancer Sci ; 110(9): 2722-2733, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31461572

RESUMO

Mesothelin (MSLN) shows increased expression in various cancer cells. For clinical application of antibodies as a positron emission tomography (PET) imaging reagent, a human shortened antibody is essential both for avoiding redundant immune responses and for providing rapid imaging. Therefore, we cloned a single-chain fragment of variable regions (scFv) from a human-derived gene sequence. This was achieved through the construction of a naïve phage library derived from human tonsil lymphocytes. Using a column with human recombinant MSLN, we carried out bio-panning of phage-variants by colony formation. We first obtained 120 clones that were subjected to selection in an ELISA using human recombinant MSLN as a solid phase antigen, and 15 phage clones of scFv with a different sequence were selected and investigated by flow cytometry (FCM). Then, six variants were selected and the individual scFv gene was synthesized in the VL and VH domains and expressed in Chinese hamster ovary cells. Mammalian cell-derived human-origin scFv clones were analyzed by FCM again, and one MSLN highly specific scFv clone was established. PET imaging by 89 Zr-labeled scFv was done in mice bearing xenografts with MSLN-expressing cancer cells, and tumor legions were successfully visualized. The scFv variant established in the present study may be potentially useful for cancer diagnosis by PET imaging.


Assuntos
Proteínas Ligadas por GPI/imunologia , Neoplasias/diagnóstico por imagem , Compostos Radiofarmacêuticos/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Células CHO , Linhagem Celular Tumoral , Clonagem Molecular , Cricetulus , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/isolamento & purificação , Proteínas Ligadas por GPI/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Molecular/métodos , Neoplasias/patologia , Biblioteca de Peptídeos , Tomografia Computadorizada com Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Compostos Radiofarmacêuticos/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Anticorpos de Cadeia Única/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio
20.
Bioengineered ; 10(1): 306-315, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299871

RESUMO

Long non-coding RNA H19 (H19) is highly expressed in cancers and is considered to highly correlate with the extent of malignant degree. The present study was performed to determine the expression levels of H19 in anaplastic thyroid carcinoma (ATC) tissues and the role of H19 in ATC 8505C cells in vitro and in vivo. Expression of H19 was detected in 19 ATC and 19 normal thyroid tissues by real-time quantitative polymerase chain reaction. Utilizing the siRNA or short hairpin RNA (shRNA) directed against human H19 (H19 siRNA or shRNA H19) depleted H19 in ATC 8505C cells and characterized the outcomes. The results showed that H19 was overexpressed in ATC tissues. Targeting H19 inhibited proliferation, migration, and invasion and induced apoptosis in 8505C cells in vitro and inhibited tumorigenesis and metastasis in vivo. Therefore, the H19 might be an effective target for ATC molecular therapy.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Terapia de Alvo Molecular/métodos , RNA Longo não Codificante/genética , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Animais , Apoptose/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Metástase Linfática , Camundongos , Camundongos Nus , Invasividade Neoplásica , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/cirurgia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/cirurgia , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/metabolismo , Nódulo da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/cirurgia , Tireoidectomia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA