Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.057
Filtrar
1.
Nat Commun ; 11(1): 4614, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929069

RESUMO

The suprachiasmatic nucleus (SCN) is a complex structure dependent upon multiple mechanisms to ensure rhythmic electrical activity that varies between day and night, to determine circadian adaptation and behaviours. SCN neurons are exposed to glutamate from multiple sources including from the retino-hypothalamic tract and from astrocytes. However, the mechanism preventing inappropriate post-synaptic glutamatergic effects is unexplored and unknown. Unexpectedly we discovered that TRESK, a calcium regulated two-pore potassium channel, plays a crucial role in this system. We propose that glutamate activates TRESK through NMDA and AMPA mediated calcium influx and calcineurin activation to then oppose further membrane depolarisation and rising intracellular calcium. Hence, in the absence of TRESK, glutamatergic activity is unregulated leading to membrane depolarisation, increased nocturnal SCN firing, inverted basal calcium levels and impaired sensitivity in light induced phase delays. Our data reveals TRESK plays an essential part in SCN regulatory mechanisms and light induced adaptive behaviours.


Assuntos
Adaptação Ocular , Escuridão , Canais de Potássio/metabolismo , Núcleo Supraquiasmático/fisiologia , Animais , Comportamento Animal , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Luz , Potenciais da Membrana/efeitos da radiação , Camundongos Endogâmicos C57BL , Canais de Potássio/deficiência , Transdução de Sinais/efeitos da radiação , Núcleo Supraquiasmático/efeitos da radiação
2.
PLoS One ; 15(8): e0236246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804956

RESUMO

K+ is an essential nutrient for plant growth and is responsible for many important physiological processes. K+ deficiency leads to crop yield losses, and overexpression of K+ transporter genes has been proven to be an effective way to resolve this problem. However, current research on the overexpression of K+ transporter genes is limited to plant sources. TrkH is a bacterial K+ transporter whose function generally depends on the regulation of TrkA. To date, whether TrkH can improve K+ uptake in eukaryotic organisms is still unknown. In this study, a novel MbtrkH gene was cloned from marine microbial metagenomic DNA. Functional complementation and K+-depletion analyses revealed that MbTrkH functions in K+ uptake in the K+-deficient yeast strain CY162. Moreover, K+-depletion assays revealed that MbtrkH overexpression improves plant K+ uptake. K+ hydroponic culture experiments showed that, compared with WT tobacco lines, MbtrkH transgenic tobacco lines had significantly greater fresh weights, dry weights and K+ contents. These results indicate that MbTrkH promotes K+ uptake independently of TrkA in eukaryotes and provide a new strategy for improving K+-use efficiency in plants.


Assuntos
Organismos Aquáticos/genética , Potássio/metabolismo , Saccharomyces cerevisiae/metabolismo , Água do Mar/microbiologia , Tabaco/metabolismo , Clonagem Molecular , Metagenoma , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Saccharomyces cerevisiae/genética , Tabaco/genética
3.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G142-G150, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32567323

RESUMO

Transepithelial K+ absorption requires apical K+ uptake and basolateral K+ exit. In the colon, apical H+-K+-ATPase mediates cellular K+ uptake, and it has been suggested that electroneutral basolateral K+ exit reflects K+-Cl- cotransporter-1 (KCC1) operating in parallel with K+ and Cl- channels. The present study was designed to identify basolateral transporter(s) responsible for K+ exit in rat distal colon. Active K+ absorption was determined by measuring 86Rb+ (K+ surrogate) fluxes across colonic epithelia under voltage-clamp conditions. With zero Cl- in the mucosal solution, net K+ absorption was reduced by 38%, indicating that K+ absorption was partially Cl--dependent. Serosal addition of DIOA (KCC1 inhibitor) or Ba2+ (nonspecific K+ channel blocker) inhibited net K+ absorption by 21% or 61%, respectively, suggesting that both KCC1 and K+ channels contribute to basolateral K+ exit. Clotrimazole and TRAM34 (IK channel blockers) added serosally inhibited net K+ absorption, pointing to the involvement of IK channels in basolateral K+ exit. GaTx2 (CLC2 blocker) added serosally also inhibited net K+ absorption, suggesting that CLC2-mediated Cl- exit accompanies IK channel-mediated K+ exit across the basolateral membrane. Net K+ absorption was not inhibited by serosal addition of either IbTX (BK channel blocker), apamin (SK channel blocker), chromanol 293B (KV7 channel blocker), or CFTRinh172 (CFTR blocker). Immunofluorescence studies confirmed basolateral membrane colocalization of CLC2-like proteins and Na+-K+-ATPase α-subunits. We conclude that active K+ absorption in rat distal colon involves electroneutral basolateral K+ exit, which may reflect IK and CLC2 channels operating in parallel.NEW & NOTEWORTHY This study demonstrates that during active electroneutral K+ absorption in rat distal colon, K+ exit across the basolateral membrane mainly reflects intermediate conductance K+ channels operating in conjunction with chloride channel 2, with a smaller, but significant, contribution from K+-Cl- cotransporter-1 (KCC1) activity.


Assuntos
Canais de Cloreto/metabolismo , Colo/fisiologia , Mucosa Intestinal/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Animais , Canais de Cloreto/genética , Cloretos/metabolismo , Feminino , Transporte de Íons , Masculino , Técnicas de Patch-Clamp , Canais de Potássio/genética , Transporte Proteico , Ratos , Ratos Sprague-Dawley
4.
Nat Commun ; 11(1): 2162, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358584

RESUMO

Cell membranes actively participate in the regulation of protein structure and function. In this work, we conduct molecular dynamics simulations to investigate how different membrane environments affect protein structure and function in the case of MthK, a potassium channel. We observe different ion permeation rates of MthK in membranes with different properties, and ascribe them to a shift of the conformational equilibrium between two states of the channel that differ according to whether a transmembrane helix has a kink. Further investigations indicate that two key residues in the kink region mediate a crosstalk between two gates at the selectivity filter and the central cavity, respectively. Opening of one gate eventually leads to closure of the other. Our simulations provide an atomistic model of how lipid-protein interactions affect the conformational equilibrium of a membrane protein. The gating mechanism revealed for MthK may also apply to other potassium channels.


Assuntos
Lipídeos/química , Canais de Potássio/química , Canais de Potássio/metabolismo , Animais , Humanos , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína
5.
Proc Natl Acad Sci U S A ; 117(24): 13757-13766, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32467161

RESUMO

Inhaled anesthetics are a chemically diverse collection of hydrophobic molecules that robustly activate TWIK-related K+ channels (TREK-1) and reversibly induce loss of consciousness. For 100 y, anesthetics were speculated to target cellular membranes, yet no plausible mechanism emerged to explain a membrane effect on ion channels. Here we show that inhaled anesthetics (chloroform and isoflurane) activate TREK-1 through disruption of phospholipase D2 (PLD2) localization to lipid rafts and subsequent production of signaling lipid phosphatidic acid (PA). Catalytically dead PLD2 robustly blocks anesthetic TREK-1 currents in whole-cell patch-clamp recordings. Localization of PLD2 renders the TRAAK channel sensitive, a channel that is otherwise anesthetic insensitive. General anesthetics, such as chloroform, isoflurane, diethyl ether, xenon, and propofol, disrupt lipid rafts and activate PLD2. In the whole brain of flies, anesthesia disrupts rafts and PLDnull flies resist anesthesia. Our results establish a membrane-mediated target of inhaled anesthesia and suggest PA helps set thresholds of anesthetic sensitivity in vivo.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Clorofórmio/administração & dosagem , Drosophila/efeitos dos fármacos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Isoflurano/administração & dosagem , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo
6.
Toxicol Lett ; 327: 19-31, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32234357

RESUMO

Traditional Chinese Medicines (TCMs)-containing aconitine are popular and indispensable home remedies in Asia for thousands of years due to its excellent pharmaceutical effects. Accumulating evidence has identified that repeated-dose of aconitine could cause polymorphic ventricular arrhythmias. However, underlying molecular mechanisms are still not fully understood. Hence, the present study firstly investigated the potential role of Notch1 signaling in aconitine-induced cardiotoxicity, aiming to elaborate possible molecular mechanisms involved in aconitine triggered ventricular arrhythmias. Our results showed that aconitine increased Notch1 signaling and downstream KDM5A expression in human and rat cardiomyocytes at non-detectable cytotoxic doses. Furthermore, aconitine promoted the formation of a new regulatory complex containing NICD and KDM5A in a CK2αHI regime, which then targeted to HCN4 promoter and induced re-expression of HCN4 in mature cardiomyocytes. Ultimately, HCN4-mediated If current contributed to aconitine-caused alterations in beating rate of rat cardiomyocytes. All changes aforementioned were significantly ameliorated by Notch1 inhibitor, suggesting that Notch1-mediated epigenetic regulation of HCN4 contributes to aconitine-induced ventricular myocardial dysrhythmia. Thus, our findings provide a novel toxic mechanism and position Notch1/NICD/KDM5A/HCN4 toxicity pathway as a potential target for the treatments of repeated-dose of medicine containing aconitine induced ventricular arrhythmias.


Assuntos
Aconitina/farmacologia , Arritmias Cardíacas/induzido quimicamente , Ventrículos do Coração/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Potássio/metabolismo , Receptor Notch1/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio/genética , Ratos , Receptor Notch1/genética , Superóxidos/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(19): 10593-10602, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332165

RESUMO

A physiological role for long-chain acyl-CoA esters to activate ATP-sensitive K+ (KATP) channels is well established. Circulating palmitate is transported into cells and converted to palmitoyl-CoA, which is a substrate for palmitoylation. We found that palmitoyl-CoA, but not palmitic acid, activated the channel when applied acutely. We have altered the palmitoylation state by preincubating cells with micromolar concentrations of palmitic acid or by inhibiting protein thioesterases. With acyl-biotin exchange assays we found that Kir6.2, but not sulfonylurea receptor (SUR)1 or SUR2, was palmitoylated. These interventions increased the KATP channel mean patch current, increased the open time, and decreased the apparent sensitivity to ATP without affecting surface expression. Similar data were obtained in transfected cells, rat insulin-secreting INS-1 cells, and isolated cardiac myocytes. Kir6.2ΔC36, expressed without SUR, was also positively regulated by palmitoylation. Mutagenesis of Kir6.2 Cys166 prevented these effects. Clinical variants in KCNJ11 that affect Cys166 had a similar gain-of-function phenotype, but was more pronounced. Molecular modeling studies suggested that palmitoyl-C166 and selected large hydrophobic mutations make direct hydrophobic contact with Kir6.2-bound PIP2 Patch-clamp studies confirmed that palmitoylation of Kir6.2 at Cys166 enhanced the PIP2 sensitivity of the channel. Physiological relevance is suggested since palmitoylation blunted the regulation of KATP channels by α1-adrenoreceptor stimulation. The Cys166 residue is conserved in some other Kir family members (Kir6.1 and Kir3, but not Kir2), which are also subject to regulated palmitoylation, suggesting a general mechanism to control the open state of certain Kir channels.


Assuntos
Canais KATP/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Acil Coenzima A/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cisteína/metabolismo , Células HEK293 , Humanos , Canais KATP/genética , Lipoilação/fisiologia , Mutagênese/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp/métodos , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Cultura Primária de Células , Ratos , Receptores Sulfonilureia/genética
8.
J Vis Exp ; (157)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32281977

RESUMO

Cholesterol enrichment of mammalian tissues and cells, including Xenopus oocytes used for studying cell function, can be accomplished using a variety of methods. Here, we describe two important approaches used for this purpose. First, we describe how to enrich tissues and cells with cholesterol using cyclodextrin saturated with cholesterol using cerebral arteries (tissues) and hippocampal neurons (cells) as examples. This approach can be used for any type of tissue, cells, or cell lines. An alternative approach for cholesterol enrichment involves the use of low-density lipoprotein (LDL). The advantage of this approach is that it uses part of the natural cholesterol homeostasis machinery of the cell. However, whereas the cyclodextrin approach can be applied to enrich any cell type of interest with cholesterol, the LDL approach is limited to cells that express LDL receptors (e.g., liver cells, bone marrow-derived cells such as blood leukocytes and tissue macrophages), and the level of enrichment depends on the concentration and the mobility of the LDL receptor. Furthermore, LDL particles include other lipids, so cholesterol delivery is nonspecific. Second, we describe how to enrich Xenopus oocytes with cholesterol using a phospholipid-based dispersion (i.e., liposomes) that includes cholesterol. Xenopus oocytes constitute a popular heterologous expression system used for studying cell and protein function. For both the cyclodextrin-based cholesterol enrichment approach of mammalian tissue (cerebral arteries) and for the phospholipid-based cholesterol enrichment approach of Xenopus oocytes, we demonstrate that cholesterol levels reach a maximum following 5 min of incubation. This level of cholesterol remains constant during extended periods of incubation (e.g., 60 min). Together, these data provide the basis for optimized temporal conditions for cholesterol enrichment of tissues, cells, and Xenopus oocytes for functional studies aimed at interrogating the impact of cholesterol enrichment.


Assuntos
Colesterol/metabolismo , Mamíferos/metabolismo , Oócitos/metabolismo , Xenopus laevis/metabolismo , Animais , Artérias Cerebrais/metabolismo , Humanos , Lipossomos , Fosfolipídeos/metabolismo , Canais de Potássio/metabolismo , Ratos Sprague-Dawley , beta-Ciclodextrinas/metabolismo
9.
J Neurosci ; 40(19): 3694-3706, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277041

RESUMO

Persistent alterations in neuronal activity elicit homeostatic plastic changes in synaptic transmission and/or intrinsic excitability. However, it is unknown whether these homeostatic processes operate in concert or at different temporal scales to maintain network activity around a set-point value. Here we show that chronic neuronal hyperactivity, induced by M-channel inhibition, triggered intrinsic and synaptic homeostatic plasticity at different timescales in cultured hippocampal pyramidal neurons from mice of either sex. Homeostatic changes of intrinsic excitability occurred at a fast timescale (1-4 h) and depended on ongoing spiking activity. This fast intrinsic adaptation included plastic changes in the threshold current and a distal relocation of FGF14, a protein physically bridging Nav1.6 and Kv7.2 channels along the axon initial segment. In contrast, synaptic adaptations occurred at a slower timescale (∼2 d) and involved decreases in miniature EPSC amplitude. To examine how these temporally distinct homeostatic responses influenced hippocampal network activity, we quantified the rate of spontaneous spiking measured by multielectrode arrays at extended timescales. M-Channel blockade triggered slow homeostatic renormalization of the mean firing rate (MFR), concomitantly accompanied by a slow synaptic adaptation. Thus, the fast intrinsic adaptation of excitatory neurons is not sufficient to account for the homeostatic normalization of the MFR. In striking contrast, homeostatic adaptations of intrinsic excitability and spontaneous MFR failed in hippocampal GABAergic inhibitory neurons, which remained hyperexcitable following chronic M-channel blockage. Our results indicate that a single perturbation such as M-channel inhibition triggers multiple homeostatic mechanisms that operate at different timescales to maintain network mean firing rate.SIGNIFICANCE STATEMENT Persistent alterations in synaptic input elicit homeostatic plastic changes in neuronal activity. Here we show that chronic neuronal hyperexcitability, induced by M-type potassium channel inhibition, triggered intrinsic and synaptic homeostatic plasticity at different timescales in hippocampal excitatory neurons. The data indicate that the fast adaptation of intrinsic excitability depends on ongoing spiking activity but is not sufficient to provide homeostasis of the mean firing rate. Our results show that a single perturbation such as M-channel inhibition can trigger multiple homeostatic processes that operate at different timescales to maintain network mean firing rate.


Assuntos
Hipocampo/fisiologia , Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Canais de Potássio/metabolismo
10.
Life Sci ; 250: 117546, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32184125

RESUMO

AIM: The enzyme 3-phosphoinositide-dependent protein kinase-1 (PDK1) is associated with cardiac and pathological remodeling and ion channel function regulation. However, whether it regulates hyperpolarization-activated cyclic nucleotide-modulated channels (HCNs) remains unclear. MAIN METHODS: In the atrial myocytes of heart-specific PDK1 "knockout" mouse model and neonatal mice, protein kinase B (AKT)-related inhibitors or agonists as well as knockdown or overexpression plasmids were used to study the relationship between PDK1 and HCNs. KEY FINDINGS: HCN1 expression and AKT phosphorylation at the Thr308 site were significantly decreased in atrial myocytes after PDK1 knockout or inhibition; in contrast, HCN2 and HCN4 levels were significantly increased. Also, a similar trend of HCNs expression has been observed in cultured atrial myocytes after PDK1 inhibition, as further demonstrated via immunofluorescence and patch-clamp experiments. Moreover, these results of PDK1 overexpression indicate an opposite trend compared with the previous experimental results. However, the results of PDK1 inhibition or overexpression could be reversed by activating or inhibiting AKT, respectively. SIGNIFICANCE: These results indicate that the PDK1-AKT signaling pathway is involved in the regulation of HCN mRNA transcription, protein expression, HCN current density, and cell membrane location.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Regulação Enzimológica da Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Potássio/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Células Cultivadas , Feminino , Deleção de Genes , Átrios do Coração/citologia , Masculino , Camundongos , Camundongos Knockout , Células Musculares/citologia , Técnicas de Patch-Clamp , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tirosina/metabolismo
11.
Nat Commun ; 11(1): 1419, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184399

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are essential for rhythmic activity in the heart and brain, and mutations in HCN channels are linked to heart arrhythmia and epilepsy. HCN channels belong to the family of voltage-gated K+ (Kv) channels. However, why HCN channels are activated by hyperpolarization whereas Kv channels are activated by depolarization is not clear. Here we reverse the voltage dependence of HCN channels by mutating only two residues located at the interface between the voltage sensor and the pore domain such that the channels now open upon depolarization instead of hyperpolarization. Our data indicate that what determines whether HCN channels open by hyperpolarizations or depolarizations are small differences in the energies of the closed and open states, due to different interactions between the voltage sensor and the pore in the different channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Potássio/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Mutação , Canais de Potássio/química , Canais de Potássio/genética , Ouriços-do-Mar , Alinhamento de Sequência
12.
Proc Natl Acad Sci U S A ; 117(13): 7171-7175, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32188782

RESUMO

Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassium at the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wild-type KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery.


Assuntos
Proteínas de Bactérias/metabolismo , Canais de Potássio/metabolismo , Proteínas de Bactérias/genética , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Mutação , Potássio/metabolismo , Canais de Potássio/genética , Conformação Proteica
13.
Am J Physiol Endocrinol Metab ; 318(4): E554-E563, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32069073

RESUMO

Insulin pulsatility is important to hepatic response in regulating blood glucose. Growing evidence suggests that insulin-secreting pancreatic ß-cells can adapt to chronic disruptions of pulsatility to rescue this physiologically important behavior. We determined the time scale for adaptation and examined potential ion channels underlying it. We induced the adaptation both by chronic application of the ATP-sensitive K+ [K(ATP)] channel blocker tolbutamide and by application of the depolarizing agent potassium chloride (KCl). Acute application of tolbutamide without pretreatment results in elevated Ca2+ as measured by fura-2AM and the loss of endogenous pulsatility. We show that after chronic exposure to tolbutamide (12-24 h), Ca2+ oscillations occur with subsequent acute tolbutamide application. The same experiment was conducted with potassium chloride (KCl) to directly depolarize the ß-cells. Once again, following chronic exposure to the cell stimulator, the islets produced Ca2+ oscillations when subsequently exposed to tolbutamide. These experiments suggest that it is the chronic stimulation, and not tolbutamide desensitization, that is responsible for the adaptation that rescues oscillatory ß-cell activity. This compensatory response also causes islet glucose sensitivity to shift rightward following chronic tolbutamide treatment. Mathematical modeling shows that a small increase in the number of K(ATP) channels in the membrane is one adaptation mechanism that is compatible with the data. To examine other compensatory mechanisms, pharmacological studies provide support that Kir2.1 and TEA-sensitive channels play some role. Overall, this investigation demonstrates ß-cell adaptability to overstimulation, which is likely an important mechanism for maintaining glucose homeostasis in the face of chronic stimulation.


Assuntos
Adaptação Fisiológica , Sinalização do Cálcio , Ilhotas Pancreáticas/metabolismo , Canais de Potássio/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Hiperinsulinismo Congênito/metabolismo , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Masculino , Camundongos , Modelos Teóricos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Cloreto de Potássio , Estimulação Química , Tolbutamida/farmacologia
14.
Am J Respir Cell Mol Biol ; 62(6): 732-746, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048876

RESUMO

Pulmonary vasoconstriction resulting from intermittent hypoxia (IH) contributes to pulmonary hypertension (pHTN) in patients with sleep apnea (SA), although the mechanisms involved remain poorly understood. Based on prior studies in patients with SA and animal models of SA, the objective of this study was to evaluate the role of PKCß and mitochondrial reactive oxygen species (mitoROS) in mediating enhanced pulmonary vasoconstrictor reactivity after IH. We hypothesized that PKCß mediates vasoconstriction through interaction with the scaffolding protein PICK1 (protein interacting with C kinase 1), activation of mitochondrial ATP-sensitive potassium channels (mitoKATP), and stimulated production of mitoROS. We further hypothesized that this signaling axis mediates enhanced vasoconstriction and pHTN after IH. Rats were exposed to IH or sham conditions (7 h/d, 4 wk). Chronic oral administration of the antioxidant Tempol or the PKCß inhibitor LY-333531 abolished IH-induced increases in right ventricular systolic pressure and right ventricular hypertrophy. Furthermore, scavengers of O2- or mitoROS prevented enhanced PKCß-dependent vasoconstrictor reactivity to endothelin-1 in pulmonary arteries from IH rats. In addition, this PKCß/mitoROS signaling pathway could be stimulated by the PKC activator PMA in pulmonary arteries from control rats, and in both rat and human pulmonary arterial smooth muscle cells. These responses to PMA were attenuated by inhibition of mitoKATP or PICK1. Subcellular fractionation and proximity ligation assays further demonstrated that PKCß acutely translocates to mitochondria upon stimulation and associates with PICK1. We conclude that a PKCß/mitoROS signaling axis contributes to enhanced vasoconstriction and pHTN after IH. Furthermore, PKCß mediates pulmonary vasoconstriction through interaction with PICK1, activation of mitoKATP, and subsequent mitoROS generation.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Mitocôndrias/fisiologia , Proteína Quinase C beta/fisiologia , Artéria Pulmonar/fisiopatologia , Vasoconstrição/fisiologia , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Células Cultivadas , Óxidos N-Cíclicos/farmacologia , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Depuradores de Radicais Livres/farmacologia , Humanos , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Hipóxia/enzimologia , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Canais de Potássio/metabolismo , Mapeamento de Interação de Proteínas , Artéria Pulmonar/enzimologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Síndromes da Apneia do Sono/fisiopatologia , Marcadores de Spin , Acetato de Tetradecanoilforbol/farmacologia
15.
Biochim Biophys Acta Biomembr ; 1862(5): 183211, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32032590

RESUMO

Septate-like junctions display characteristic ladder-like ultrastructure reminiscent of the invertebrate epithelial septate junctions and are present at the paranodes of myelinated axons. The paranodal junctions where the myelin loops attach to the axon at the borders of the node of Ranvier provide both a paracellular barrier to ion diffusion and a lateral fence along the axonal membrane. The septate-like junctions constrain the proper distribution of nodal Na+ channels and juxtaparanodal K+ channels, which are required for the safe propagation of the nerve influx and rapid saltatory conduction. The paranodal cell adhesion molecules have been identified as target antigens in peripheral demyelinating autoimmune diseases and the pathogenic mechanisms described. This review aims at presenting the recent knowledge on the molecular and structural organization of septate-like junctions, their formation and stabilization during development, and how they are involved in demyelinating diseases.


Assuntos
Axônios/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Nós Neurofibrosos/metabolismo , Animais , Adesão Celular/fisiologia , Moléculas de Adesão Celular/fisiologia , Humanos , Junções Intercelulares/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/metabolismo , Nós Neurofibrosos/fisiologia , Vertebrados/metabolismo , Vertebrados/fisiologia
16.
Nat Commun ; 11(1): 480, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980599

RESUMO

Mutations in the actively expressed, maternal allele of the imprinted KCNK9 gene cause Birk-Barel intellectual disability syndrome (BBIDS). Using a BBIDS mouse model, we identify here a partial rescue of the BBIDS-like behavioral and neuronal phenotypes mediated via residual expression from the paternal Kcnk9 (Kcnk9pat) allele. We further demonstrate that the second-generation HDAC inhibitor CI-994 induces enhanced expression from the paternally silenced Kcnk9 allele and leads to a full rescue of the behavioral phenotype suggesting CI-994 as a promising molecule for BBIDS therapy. Thus, these findings suggest a potential approach to improve cognitive dysfunction in a mouse model of an imprinting disorder.


Assuntos
Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Histonas/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Canais de Potássio/genética , Animais , Comportamento Animal , Encéfalo/metabolismo , Anormalidades Craniofaciais/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Impressão Genômica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Deficiência Intelectual/tratamento farmacológico , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipotonia Muscular/tratamento farmacológico , Mutação , Fenótipo , Fenilenodiaminas/farmacologia , Canais de Potássio/deficiência , Canais de Potássio/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
PLoS One ; 15(1): e0227230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31951626

RESUMO

Habituation, defined as the reversible decrement of a response during repetitive stimulation, is widely established as a form of non-associative learning. Though more commonly ascribed to neural cells and systems, habituation has also been observed in single aneural cells, although evidence is limited. Considering the generalizability of the habituation process, we tested the degree to which organism-level behavioral and single cell manifestations were similar. Human embryonic kidney (HEK) cells that overexpressed an optogenetic actuator were photostimulated to test the effect of different stimulation protocols on cell responses. Depolarization induced by the photocurrent decreased successively over the stimulation protocol and the effect was reversible upon withdrawal of the stimulus. In addition to frequency- and intensity-dependent effects, the history of stimulations on the cells impacted subsequent depolarization in response to further stimulation. We identified tetraethylammonium (TEA)-sensitive native K+ channels as one of the mediators of this habituation phenotype. Finally, we used a theoretical model of habituation to elucidate some mechanistic aspects of the habituation response. In conclusion, we affirm that habituation is a time- and state-dependent biological strategy that can be adopted also by individual non-neuronal cells in response to repetitive stimuli.


Assuntos
Células Epiteliais/metabolismo , Habituação Psicofisiológica , Optogenética , Células Epiteliais/citologia , Células Epiteliais/efeitos da radiação , Células HEK293 , Humanos , Potenciais da Membrana , Optogenética/métodos , Canais de Potássio/metabolismo
18.
Nat Commun ; 11(1): 547, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992706

RESUMO

TrkH is a bacterial ion channel implicated in K+ uptake and pH regulation. TrkH assembles with its regulatory protein, TrkA, which closes the channel when bound to ADP and opens it when bound to ATP. However, it is unknown how nucleotides control the gating of TrkH through TrkA. Here we report the structures of the TrkH-TrkA complex in the presence of ADP or ATP. TrkA forms a tetrameric ring when bound to ADP and constrains TrkH to a closed conformation. The TrkA ring splits into two TrkA dimers in the presence of ATP and releases the constraints on TrkH, resulting in an open channel conformation. Functional studies show that both the tetramer-to-dimer conversion of TrkA and the loss of constraints on TrkH are required for channel gating. In addition, deletion of TrkA in Escherichia coli depolarizes the cell, suggesting that the TrkH-TrkA complex couples changes in intracellular nucleotides to membrane potential.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Potenciais da Membrana/fisiologia , Canais de Potássio/química , Canais de Potássio/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Difosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutagênese , Potássio/metabolismo , Canais de Potássio/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Deleção de Sequência , Vibrio parahaemolyticus/genética , Difração de Raios X
19.
Biochim Biophys Acta Mol Cell Res ; 1867(4): 118644, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31931022

RESUMO

For twenty years, ion channels have been studied in cancer progression. Several information have been collected about their involvement in cancer cellular processes like cell proliferation, motility and their participation in tumour progression using in-vivo models. Tumour microenvironment is currently the focus of many researches and the highlighting of the relationship between cancer cells and surrounding elements, is expanding. One of the major physic-chemical parameter involved in tumour progression is the hypoxia conditions observed in solid cancer. Due to their position on the cell membrane, ion channels are good candidates to transduce or to be modulated by environmental modifications. Until now, few reports have been interested in the modification of ion channel activities or expression in this context, compared to other pathological situations such as ischemia reperfusion. The aim of our review is to summarize the current knowledge about the calcium and potassium channels properties in the context of hypoxia in tumours. This review could pave the way to orientate new studies around this exciting field to obtain new potential therapeutic approaches.


Assuntos
Canais de Cálcio/metabolismo , Neoplasias/metabolismo , Oxigênio/metabolismo , Canais de Potássio/metabolismo , Microambiente Tumoral , Animais , Hipóxia Celular , Humanos
20.
Elife ; 92020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913125

RESUMO

The basal ganglia are a group of subcortical nuclei that contribute to action selection and reinforcement learning. The principal neurons of the striatum, spiny projection neurons of the direct (dSPN) and indirect (iSPN) pathways, maintain low intrinsic excitability, requiring convergent excitatory inputs to fire. Here, we examined the role of autophagy in mouse SPN physiology and animal behavior by generating conditional knockouts of Atg7 in either dSPNs or iSPNs. Loss of autophagy in either SPN population led to changes in motor learning but distinct effects on cellular physiology. dSPNs, but not iSPNs, required autophagy for normal dendritic structure and synaptic input. In contrast, iSPNs, but not dSPNs, were intrinsically hyperexcitable due to reduced function of the inwardly rectifying potassium channel, Kir2. These findings define a novel mechanism by which autophagy regulates neuronal activity: control of intrinsic excitability via the regulation of potassium channel function.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Macroautofagia/genética , Macroautofagia/fisiologia , Neurônios/fisiologia , Animais , Autofagia/fisiologia , Gânglios da Base , Comportamento Animal , Feminino , Aprendizagem , Masculino , Camundongos , Camundongos Knockout , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Desempenho Psicomotor/fisiologia , Fatores Sexuais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA