RESUMO
In the current context of emerging drug-resistant fungal pathogens such as Candida albicans and Candida parapsilosis, discovery of new antifungal agents is an urgent matter. This research aimed to evaluate the antifungal potential of 2-chloro-N-phenylacetamide against fluconazole-resistant clinical strains of C. albicans and C. parapsilosis. The antifungal activity of 2-chloro-N-phenylacetamide was evaluated in vitro by the determination of the minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), inhibition of biofilm formation and its rupture, sorbitol and ergosterol assays, and association between this molecule and common antifungal drugs, amphotericin B and fluconazole. The test product inhibited all strains of C. albicans and C. parapsilosis, with a MIC ranging from 128 to 256 µg.mL-1, and a MFC of 512-1,024 µg.mL-1. It also inhibited up to 92% of biofilm formation and rupture of up to 87% of preformed biofilm. 2-chloro-N-phenylacetamide did not promote antifungal activity through binding to cellular membrane ergosterol nor it damages the fungal cell wall. Antagonism was observed when combining this substance with amphotericin B and fluconazole. The substance exhibited significant antifungal activity by inhibiting both planktonic cells and biofilm of fluconazole-resistant strains. Its combination with other antifungals should be avoided and its mechanism of action remains to be established.
No atual contexto de patógenos fúngicos resistentes emergentes tais como Candida albicans e Candida parapsilosis, a descoberta de novos agentes antifúngicos é uma questão urgente. Esta pesquisa teve como objetivo avaliar o potencial antifúngico da 2-cloro-N-fenilacetamida contra cepas clínicas de C. albicans e C. parapsilosis resistentes a fluconazol. A atividade antifúngica da substância foi avaliada in vitro através da determinação da concentração inibitória mínima (CIM), concentração fungicida mínima (CFM), ruptura e inibição da formação de biofilme, ensaios de sorbitol e ergosterol, e associação entre esta molécula e antifúngicos comuns, anfotericina B e fluconazol. O produto teste inibiu todas as cepas de C. albicans e C. parapsilosis, com uma CIM variando de 128 a 256 µg.mL-1, e uma CFM de 512-1,024 µg.mL-1. Também inibiu até 92% da formação de biofilme e causou a ruptura de até 87% de biofilme pré-formado. A 2-cloro-N-fenilacetamida não promoveu atividade antifúngica pela ligação ao ergosterol da membrana celular fúngica, tampouco danificou a parede celular. Antagonismo foi observado ao combinar esta substância com anfotericina B e fluconazol. A substância exibiu atividade antifúngica significativa ao inibir tanto as células planctônicas quanto o biofilme das cepas resistentes ao fluconazol. Sua combinação com outros antifúngicos deve ser evitada e seu mecanismo de ação deve ser estabelecido.
Assuntos
Técnicas In Vitro , Candida albicans , Fluconazol , Candida parapsilosis , AntifúngicosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Longdan Xiegan decoction (LXD) is a standardized herbal prescription originally documented in the "Medical Formula Collection" by the eminent physician Wang Ang during the Qing dynasty. It has been used extensively to treat vulvovaginal candidiasis (VVC). However, despite its effectiveness, the mechanism of action remains unknown. AIM OF THE STUDY: To elucidate the mechanism by which LXD relieves VVC via the Toll-like receptor/MyD88 pathway and activation of the NLRP3 inflammasome. MATERIALS AND METHODS: Female Kunming mice (n = 96) were randomly divided into six groups: control, VVC model, LXD (10/20/40 mL/kg), and positive drug fluconazole. Mice were vaginally administered Candida albicans (C. albicans) solution (20 µL; 1 × 108 colony-forming units/mL), suspended for 5 min, and observed daily for changes in their condition. Continuous dilution was used to determine the number of colony-forming units. Gram, periodic acid-Schiff, Papanicolaou, and hematoxylin and eosin staining were used to determine the extent of infection. Enzyme-linked immunosorbent assay(ELISA) was used to determine the levels of proinflammatory cytokines IL-1ß and IL-18. TLR2, TLR4, MyD88, NF-κB, NLRP3, ASC, and caspase-1 protein expression were determined using western blotting. RESULTS: C. albicans infection destroyed the integrity of the vaginal mucosa, increased fungal burden and the influx of neutrophils into the vaginal cavity, and promoted the secretion of proinflammatory cytokines. C. albicans stimulated the expression of TLR2, TLR4, MyD88, NF-κB, NLRP3, ASC, and caspase-1 in vaginal tissue. Fungal burden, hyphal formation, and C. albicans adhesion were reduced in the 20 and 40 mL/kg LXD groups. Hematoxylin and eosin staining showed that inflammation was reduced and the stratum corneum had recovered in the 20 and 40 mL/kg LXD groups. LXD (20 and 40 mL/kg) significantly reduced IL-1ß, IL-18 levels and the number of neutrophils in vaginal lavage and decreased TLR2, TLR4, MyD88, NF-κB, NLRP3, ASC, and caspase-1 expression. CONCLUSIONS: This study systematically demonstrated the therapeutic effect of LXD on protein expression and pathological conditions in VVC mice. The results showed that LXD could eliminate the invasion of vaginal hyphae in mice, reduce the recruitment of neutrophils, and reduce the expression of TLR/MyD88 pathway-related proteins and NLRP3 inflammasome. The above results clearly indicate that LXD may profoundly regulate NLRP3 inflammasome through the TLR/MyD88 pathway and play a therapeutic role in VVC.
Assuntos
Candidíase Vulvovaginal , Camundongos , Humanos , Feminino , Animais , Candidíase Vulvovaginal/microbiologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Interleucina-18/uso terapêutico , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/farmacologia , Candida albicans , Citocinas/metabolismo , Caspases/metabolismoRESUMO
In this study, we investigated the structures of lanthanide (Eu(III), Dy(III), and Gd(III)) complexes with p-coumaric (p-CAH2) and caffeic (CFAH3) acids using the FTIRKBr, FTIRATR, and Raman spectroscopic methods. The compositions of the solid phase caffeinates and p-coumarates were obtained on the basis of the amounts of hydrogen and carbon determined using an elemental analysis. The degree of hydration and the thermal decomposition of each compound were examined via a thermal analysis of TG, DTG, and DSC. Antioxidant spectroscopic tests were performed using the DPPH (1,1-diphenyl-2-picrylhydrazyl radical), FRAP (ferric reducing antioxidant activity), and ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (diammonium salt radical cation) methods. The antimicrobial activity of each compound against Escherichia coli, Bacillus subtilis, and Candida albicans was investigated. The electrical properties of the liposomes which mimicked the microbial surfaces formed in the electrolyte containing the tested compounds were also investigated. The above biological properties of the obtained complexes were compared with the activities of p-CAH2 and CFAH3. The obtained data suggest that lanthanide complexes are much more thermally stable and have higher antimicrobial and antioxidant properties than the ligands (with the exception of CFAH3 in the case of antioxidant activity tests). The Gd(III) complexes revealed the highest biological activity among the studied lanthanide complexes.
Assuntos
Anti-Infecciosos , Elementos da Série dos Lantanídeos , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Bacillus subtilis , Candida albicans , Escherichia coli , Elementos da Série dos Lantanídeos/farmacologiaRESUMO
One of the main challenges of medicinal chemistry is the search for new substances with antimicrobial potential that could be used in the fight against pathogenic microorganisms. Therefore, the antimicrobial activity of newly synthesized compounds is still being investigated. Carbazole-containing compounds appear to be promising antibacterial, antifungal, and antiviral agents. The aim of this study was to examine the antimicrobial potential and toxicity of newly synthesized isomeric fluorinated 4-[4-(benzylamino)butoxy]-9H-carbazole derivatives. Their antimicrobial activity against bacteria and fungi was tested according to CLSI guidelines. Similarly to previously studied carbazole-containing compounds, the tested derivatives showed the ability to effectively inhibit the growth of Gram-positive bacteria. The addition of carbazole derivatives 2, 4, and 8 at the concentration of 16 µg/mL caused the inhibition of S. aureus growth by over 60%. The MIC value of compounds 2-5 and 7-10 was 32 µg/mL for Staphylococcus strains. Gram-negative strains of E. coli and P. aeruginosa were found to be more resistant to the tested carbazole derivatives. E. coli cells treated with compounds 3 and 8 at a concentration of 64 µg/mL resulted in a greater-than-40% reduction in bacterial growth. In the case of the P. aeruginosa strain, all compounds in the highest concentration that we tested limited growth by 35-42%. Moreover, an over-60% inhibition of fungal growth was observed in the cultures of C. albicans and A. flavus incubated with 64 µg/mL of compounds 2 or 7 and 1 or 4, respectively. The hemolysis of red blood cells after their incubation with the tested carbazole derivatives was in the range of 2-13%. In the case of human fibroblast cells, the toxicity of the tested compounds was higher. Derivative 1, functionalized with fluorine in position 2 and its hydrobromide, was the least toxic. The obtained results indicated the antimicrobial potential of the tested 4-[4-(benzylamino)butoxy]-9H-carbazole derivatives, especially against S. aureus strains; therefore, it is worth further modifying these structures, in order to enhance their activity against pathogenic microorganisms.
Assuntos
Escherichia coli , Staphylococcus aureus , Humanos , Antifúngicos/farmacologia , Candida albicans , Carbazóis/toxicidade , Pseudomonas aeruginosaRESUMO
BACKGROUND: Chlamydia psittaci (C. psittaci) causes parrot fever in humans. Development of metagenomic next-generation sequencing (mNGS) enables the identification of C. psittaci. METHODS: This study aimed to determine the epidemiological and clinical characteristics of parrot fever cases in China. A multi-center observational study was conducted in 44 tertiary and secondary hospitals across 14 provinces and municipalities between April 2019 and October 2021. RESULTS: A total of 4545 patients with complicated or atypical pulmonary infection were included in the study, among which the prevalence of C. psittaci was determined to be 2.1% using mNGS. The prevalence of C. psittaci was further determined across demographic groups and types of specimens. It was significantly higher in patients with senior age (2.6% in those > 50 years), winter-spring (3.6%; particularly in December, January, and February), and southwestern (3.4%) and central and southern China (2.7%) (each P < 0.001). Moreover, the prevalence was the highest in bronchoalveolar lavage fluid (BALF) (2.9%), compared with sputum (1.1%) and peripheral blood specimens (0.9%). Additionally, co-infection of principal microorganisms was compared. Certain microorganisms were more likely to co-infect in parrot fever cases, such as Candida albicans in BALF (26.7%) and peripheral blood (6.3%), compared with non-parrot fever cases (19.7% and 1.3%); however, they did not significantly differ (each P > 0.05). CONCLUSION: Parrot fever remains low in patients with complicated or atypical pulmonary infection. It is likely to occur in winter-spring and southwestern region in China. BALF may be the optimal specimen in the application of mNGS. Co-infection of multiple microorganisms should be further considered.
Assuntos
Coinfecção , Pneumonia , Psitacose , Humanos , Pessoa de Meia-Idade , Psitacose/diagnóstico , Psitacose/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Candida albicans , China/epidemiologia , Pneumonia/epidemiologiaRESUMO
In present work, a series of quinoline derivatives linked to chalcone moiety have been prepared, and their in vitro and in vivo antifungal activities against C. albicans have been evaluated. The results indicated that quinoline combined with fluconazole (FLC) showed good inhibitory activity against C. albicans. Especially, compound PK-10 combined with FLC displayed the best antifungal activity against 14 FLC-resistant C. albicans strains with almost no cytotoxicity. Preliminary mechanistic studies proved that PK-10 combined with FLC could inhibit the hyphae formation of C. albicans, induce the accumulation of reactive oxygen species (ROS), the damage of mitochondrial membrane potential and the decrease of intracellular ATP content, which led to mitochondrial dysfunction. In vivo studies found obvious effects of the co-treatment regimen had obvious effects based on histological analysis, body weight curves, and coefficients of major organs. Therefore, the optimization of quinolone-chalcone derivatives combined with FLC could exert the potent antifungal activity in vitro and in vivo obviously, suggesting them as new agents to treat drug-resistant C. albicans infection.
Assuntos
Antifúngicos , Chalconas , Hidroxiquinolinas , Quinolonas , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Chalconas/farmacologia , Fluconazol/farmacologia , Hidroxiquinolinas/farmacologia , Quinolonas/farmacologiaRESUMO
OBJECTIVE: Oral candidiasis is a common fungal infection that affects the oral mucosa, and happens when Candida albicans interacts with bacteria in the oral microbiota, such as Streptococcus mutans, causing severe early childhood caries. C. albicans and S. mutans mixed biofilms are challenging to treat with conventional antimicrobial therapies, thus, new anti-infective drugs are required. This study aimed to test a drug delivery system based on chitosan microparticles loaded with geranium and lemongrass essential oils to inhibit C. albicans and S. mutans mixed biofilms. METHODOLOGY: Chitosan microparticles loaded with essential oils (CM-EOs) were obtained by spray-drying. Susceptibility of planktonic were performed according CLSI at 4 to 2,048 µg/mL. Mixed biofilms were incubated at 37ºC for 48 h and exposed to CM-EOs at 256 to 4,096 µg/mL. The antimicrobial effect was evaluated using the MTT assay, with biofilm architectural changes analyzed by scanning electron microscopy. RAW 264.7 cell was used to evaluate compound cytotoxicity. RESULTS: CM-EOs had better planktonic activity against C. albicans than S. mutans. All samples reduced the metabolic activity of mixed C. albicans and S. mutans biofilms, with encapsulated oils showing better activity than raw chitosan or oils. The microparticles reduced the biofilm on the slides. The essential oils showed cytotoxic effects against RAW 264.7 cells, but encapsulation into chitosan microparticles decreased their toxicity. CONCLUSION: This study demonstrates that chitosan loaded with essential oils may provide an alternative method for treating diseases caused by C. albicans and S. mutans mixed biofilm, such as dental caries.
Assuntos
Quitosana , Cárie Dentária , Óleos Voláteis , Pré-Escolar , Humanos , Óleos Voláteis/farmacologia , Candida albicans , Streptococcus mutans , Quitosana/farmacologia , Cárie Dentária/prevenção & controle , BiofilmesRESUMO
OBJECTIVE: Deterioration of oral hygiene is closely related to an increase in severity and mortality of corona virus disease-19 (COVID-19), and also contributes to the development of various diseases such as aspiration pneumonia or Alzheimer's. Oral care is attracting high interest in Japan, which has entered a super-aging society. In this study, we aimed to investigate whether commercially available Hinora® (HO), an oral care gel containing hinokitiol and 4-isopropyl-3-methylphenol (IPMP), has biofilm formation inhibitory and antimicrobial activities against various intraoral pathogen microorganisms. METHOD: Candida species, Aggregatibacter actinomycetemcomitans, Staphylococcus aureus, and Pseudomonas aeruginosa were selected during the study period, all of which were analyzed using antimicrobial disc, microorganism turbidity, and crystal violet assays. In addition, the germ tube test using Candida albicans (C. albicans) was performed with a modification of Mackenzie's method. Images for morphological observation of the germ tubes were acquired using an inverted microscope. For comparison between products, we used Refrecare® (RC), which only contains hinokitiol (not containing IPMP). RESULTS: All the intraoral pathogenic microorganisms showed drug susceptibility against undiluted forms of HO and/or RC. In particular, HO was more effective at lower concentrations than RC. In the HO-added group, inhibition circles were observed in all bacteria except P. aeruginosa when added at a concentration of 0.5 g/mL or more. The optical density values at 590 nm (crystal violet) and/or 600 nm (microorganism turbidity) of all the fungi and bacteria were significantly lower when cultured in medium with HO. Inhibition of growth or biofilm formation was observed when HO was added at a concentration of 0.05 g/mL or higher. To investigate the action mechanism of HO, germ tube tests were performed in C. albicans. The results showed that culturing C. albicans in soybean-casein digest broth with HO (0.05 g/mL) significantly suppressed germ tube formation. CONCLUSIONS: These data suggest that oral care gel-containing hinokitiol and IPMP has strong biofilm formation inhibitory activity, as well as antifungal and antimicrobial effects against Candida fungi and multiple intraoral pathogenic microorganisms. Therefore, it may be a promising treatment option for oral infections.
Assuntos
COVID-19 , Violeta Genciana , Antifúngicos , Candida , Candida albicans , GéisRESUMO
OBJECTIVE: Recent research has suggested that fungemia may demonstrate an epidemiologic shift in etiologic agents. This study focuses on the agents causing fungemia and antifungal resistance in a tertiary hospital. PATIENTS AND METHODS: We evaluated all-age fungemia cases admitted to Balikesir Ataturk City Hospital in 2017-2021. Blood cultures (BC) were studied using BacT/Alert® 3D (bioMérieux, Marcyl'Etoile, France) and Render BC128 System (Render Biotech Co. Ltd., Shenzhen, China). On the data, we explored only the first fungal positive samples or the first isolates in different episodes of the same patients. Upon The Clinical and Laboratory Standards Institute (CLSI) disk diffusion guidelines, conventional methods and the Phoenix™ 100 System (Becton Dickinson, Franklin Lakes, NJ, USA) were utilized for antifungal susceptibility identifications. RESULTS: The findings showed that 325 (0.84%) of 38,682 BC sets were positive for fungal growth. Except for four cases (1.2%) [Saprochaete capitata (n = 2); Trichosporon asahii (n = 1), and Saccharomyces cerevisiae (n = 1)], all positive cases yielded Candida spp. (98.8%) growth. In these patients, the following Candida spp. were isolated: Candida albicans complex (n = 155; 47.7%), Candida parapsilosis complex (n = 127; 39.1%), Candida glabrata complex (n = 19; 5.85%), Candida tropicalis (n = 12; 3.7%), Candida kefyr (n = 5; 1.54%), Candida krusei (n = 2; 0.62%), and Candida guilliermondii complex (n = 1; 0.31%). We also realized that while none of the Candida spp. had echinocandin resistance, 8 C. parapsilosis complex isolates were resistant to fluconazole, and 17 C. parapsilosis complex and 2 C. tropicalis isolates were susceptible dose-dependent to fluconazole. CONCLUSIONS: In brief, antifungal resistance is more likely to restrict therapeutic options, albeit it is, fortunately, not prevalent in Turkey despite a few recent reports. Yet, a robust detection or management of antifungal resistance requires species-level identification and strict compliance with relevant management guidelines. Besides, challenges in research may be compensated with a national data set built with data from local laboratories.
Assuntos
Fungemia , Humanos , Fungemia/tratamento farmacológico , Fungemia/epidemiologia , Fluconazol/farmacologia , Antifúngicos/farmacologia , Candida , Candida albicansRESUMO
Baicalein (BE), the major component of Scutellaria Baicalensis, exhibited potently antifungal activity against drug-resistant Candida albicans, and strong inhibition on biofilm formation. Therefore, a series of baicalein-core derivatives were designed and synthesized to find more potent compounds and investigate structure-activity relationship (SAR) and mode of action (MoA). Results demonstrate that A4 and B5 exert a more potent antifungal effect (MIC80 = 0.125 µg/mL) than BE (MIC80 = 4 µg/mL) when used in combination with fluconazole (FLC), while the MIC80 of FLC dropped from 128 µg/mL to 1 µg/mL. SAR analysis indicates that the presence of 5-OH is crucial for synergistic antifungal activities, while o-dihydroxyls and vic-trihydroxyls are an essential pharmacophore, whether they are located on the A ring or the B ring of flavonoids. The MoA demonstrated that these compounds exhibited potent antifungal effects by inhibiting hypha formation of C. albicans. However, sterol composition assay and enzymatic assay conducted in vitro indicated minimal impact of these compounds on sterol biosynthesis and Eno1. These findings were further confirmed by the results of the in-silico assay, which assessed the stability of the complexes. Moreover, the inhibition of hypha of this kind of compound could be attributed to their effect on the catalytic subunit of 1,3-ß-d-glucan synthase, 1,3-ß-d-glucan-UDP glucosyltransferase and glycosyl-phosphatidylinositol protein, rather than inhibiting ergosterol biosynthesis and Eno1 activity by Induced-Fit Docking and Molecular Dynamics Simulations. This study presents potential antifungal agents with synergistic effects that can effectively inhibit hypha formation. It also provides new insights into the MoA.
Assuntos
Antifúngicos , Flavanonas , Antifúngicos/farmacologia , Flavanonas/farmacologia , Flavonoides , Bioensaio , Candida albicansRESUMO
Introduction: Candida albicans, C. dubliniensis, and C. africana form the Candida albicans complex. Objective: To identify the phenotypic and pathogenic characteristics of isolates of the C. albicans complex preserved in a collection. Materials and methods: Three hundred presumptive strains of the C. albicans complex were evaluated using CHROMagarTM Candida. Germ tube production was determined by three methods, chlamydospores formation was assessed and colonies were characterized in artisanal agars (Rosmarinus officinalis and Nicotiana tabacum). MALDI-TOF was used as the gold standard identification test. To detect pathogenicity factors, we evaluated the hemolytic activity of each isolate and cocultured with Staphylococcus aureus, coagulase enzyme production, and biofilm formation. Results: Out of the 300 isolates, 43.7% produced germ tube in the heart-brain infusion broth and 47% of the isolates produced chlamydospores. In the artisan media, 6% of the isolates produced brown colonies on rosemary agar and 5% did so on tobacco agar. None of the strains hemolyzed the blood agar alone or cocultured with S. aureus. However, 50% of the isolates hemolyzed the potato dextrose agar supplemented with blood. All strains were coagulase producers, and biofilm production was variable. For germ tube production, the human serum method showed the same positivity as the milk broth method. All isolates were identified as C. albicans by MALDI-TOF. Conclusions: The use of proteomics, molecular tests or a combination of methods is required for species identification.
Introducción: Candida albicans, C. dubliniensis y C. africana forman el complejo Candida albicans. Objetivo: Identificar las características fenotípicas y patogénicas de aislamientos del complejo C. albicans conservados en una colección. Materiales y métodos. Se evaluaron 300 aislamientos identificados presuntivamente como del complejo C. albicans, utilizando CHROMagarTM Candida. Se determinó la producción del tubo germinal mediante tres métodos, se evaluó la producción de clamidosporas, se caracterizaron las colonias en agares artesanales (Rosmarinus officinalis y Nicotiana tabacum) y se utilizó MALDI-TOF como prueba de referencia para la identificación. Para detectar factores de patogenicidad, se evaluó la actividad hemolítica de los aislamientos independientes y en cocultivo con Staphylococcus aureus, la producción de enzima coagulasa y la formación de biopelículas. Resultados: El 43,7 % de los aislamientos produjo tubo germinal en caldo de medio infusión de cerebro-corazón y el 47 % generó clamidosporas. En los medios artesanales, en el 6 % de los aislamientos se obtuvieron colonias de color café en agar romero y, en el 5 %, en agar tabaco. Ninguna de las cepas hemolizó el agar sangre comercial (ni en presencia o ausencia de S. aureus), mientras que el 50 % hemolizó el agar papa dextrosa suplementado con sangre. Todos los aislamientos produjeron enzima coagulasa y la producción de biopelículas fue variable. Para la producción de tubo germinal, el método de suero humano mostró igual positividad que el de caldo de leche. Todos los aislamientos fueron identificados como C. albicans por MALDITOF. Conclusiones: Se requieren herramientas de proteómica y pruebas moleculares, o la combinación de métodos, para poder discriminar entre especies.
Assuntos
Candida albicans , Staphylococcus aureus , Ágar , CandidaRESUMO
Introduction. Medical device colonization by pathogenic microorganisms is a risk factor for increasing infections associated with health care and, consequently, the morbidity and mortality of intubated patients. In Colombia, fungal colonization of endotracheal tubes has not been described, and this information could lead to new therapeutic options for the benefit of patients. Objective. To describe the colonizing fungi of the endotracheal tubes from patients in the intensive care unit, along with its antifungal sensitivity profile. Materials and methods. We conducted a descriptive, observational study in two health centers for 12 months. Endotracheal tubes were collected from patients in intensive care units. Samples were processed for culture, fungi identification, and antifungal sensitivity profile assessment. Results. A total of 121 endotracheal tubes, obtained from 113 patients, were analyzed: 41.32 % of the tubes were colonized by Candida albicans (64.62%), C. nonalbicans (30.77%), Cryptococcus spp. (3.08%) or molds (1.54%). All fungi evaluated showed a high sensitivity to antifungals, with a mean of 91%. Conclusion. Fungal colonization was found in the endotracheal tubes of patients under invasive mechanical ventilation. The antifungal sensitivity profile in these patients was favorable. A clinical study is required to find possible correlations between the colonizing microorganisms and infectivity.
Introducción. La colonización por microorganismos patógenos de los dispositivos médicos usados en las unidades de cuidados intensivos es un factor de riesgo para el aumento de infecciones asociadas con la atención en salud y, por lo tanto, al de la morbilidad y la mortalidad de los pacientes intubados. En Colombia, no se ha descrito la colonización por hongos de los tubos endotraqueales, con lo cual se podrían considerar nuevas opciones terapéuticas para el beneficio de los pacientes. Objetivo. Describir los hongos que colonizan los tubos endotraqueales de los pacientes en unidades de cuidados intensivos, junto con su perfil de sensibilidad a los antifúngicos. Materiales y métodos. Se realizó un estudio observacional, descriptivo, en dos centros hospitalarios durante 12 meses. Se recolectaron tubos endotraqueales de pacientes de las unidades de cuidados intensivos. Estos fueron procesados para cultivar e identificar hongos, y para establecer su perfil de sensibilidad a los antifúngicos. Resultados. Se analizaron 121 tubos endotraqueales obtenidos de 113 pacientes. De estos, el 41,32 % se encontró colonizado por los hongos Candida albicans (64,61 %), C. no-albicans (30,77 %), Cryptococcus spp. (3,08 %) o mohos (1,54 %). Todos los hongos evaluados presentaron una gran sensibilidad a los antifúngicos, con un promedio del 91 %. Conclusión. Se encontró colonización fúngica en los tubos endotraqueales de pacientes con asistencia respiratoria mecánica. El perfil de sensibilidad en estos pacientes fue favorable. Se requiere un estudio clínico para correlacionar los microorganismos colonizadores y su capacidad de generar infección.
Assuntos
Candida albicans , Granisetron , Colômbia , TolnaftatoRESUMO
BACKGROUND: Farnesol is a Candida-secreted quorum-sensing molecule of great interest as a potential antifungal agent for serious and hardly curable infections-candidiasis, especially vulvovaginal candidiasis (VVC). METHODS: The effect of farnesol on cellular morphology and viability and evaluated the production of Th1 (IL-2), Th2 (IL-4), proinflammatory (IL-6), chemotactic (IL-8), and Th17 (IL-17) cytokines in the culture supernatants of vaginal epithelial cell line (VK2) were evaluated. Moreover, we tested the inhibitory effect of farnesol on C. albicans adhesion. Scanning electron microscopy was conducted to observe any VK2 cell ultrastructural changes. RESULTS: Only low concentrations (≤ 50 µmol/L) of farnesol did not affect the morphology and viability of the VK2 cells (P > 0.05). Farnesol reduced the adhesion of C. albicans to the VK2 cells. When treated with farnesol, statistical elevated levels of both IL-4 and IL-17 secreted by the infected VK2 cells were present in the culture supernatants (P < 0.05). CONCLUSIONS: Farnesol acts as a stimulator to up-regulate the Th17-type innate immune response, as well as Th2-type humoral immunity following C. albicans infection. Further research is required to select the optimal therapeutic dose to develop efficacious and safe mucosal immune adjuvant for treating VVCs.
Assuntos
Candida albicans , Farneseno Álcool , Farneseno Álcool/farmacologia , Interleucina-17 , Interleucina-4 , Imunidade Inata , Células EpiteliaisRESUMO
Candida albicans is the most abundant fungal species in oral cavity. As a smart opportunistic pathogen, it increases the virulence by switching its forms from yeasts to hyphae and becomes the major pathogenic agent for oral candidiasis. However, the overuse of current clinical antifungals and lack of new types of drugs highlight the challenges in the antifungal treatments because of the drug resistance and side effects. Anti-virulence strategy is proved as a practical way to develop new types of anti-infective drugs. Here, seven artemisinins, including artemisinin, dihydroartemisinin, artemisinic acid, dihydroartemisinic acid, artesunate, artemether and arteether, were employed to target at the hyphal development, the most important virulence factor of C. albicans. Artemisinins failed to affect the growth, but significantly inhibited the hyphal development of C. albicans, including the clinical azole resistant isolates, and reduced their damage to oral epithelial cells, while arteether showed the strongest activities. The transcriptome suggested that arteether could affect the energy metabolism of C. albicans. Seven artemisinins were then proved to significantly inhibit the productions of ATP and cAMP, while reduced the hyphal inhibition on RAS1 overexpression strain indicating that artemisinins regulated the Ras1-cAMP-Efg1 pathway to inhibit the hyphal development. Importantly, arteether significantly inhibited the fungal burden and infections with no systemic toxicity in the murine oropharyngeal candidiasis models in vivo caused by both fluconazole sensitive and resistant strains. Our results for the first time indicated that artemisinins can be potential antifungal compounds against C. albicans infections by targeting at its hyphal development.
Assuntos
Artemisininas , Candidíase Bucal , Animais , Camundongos , Candida albicans , Candidíase Bucal/tratamento farmacológico , Antifúngicos/farmacologia , Hifas , Artemisininas/farmacologiaRESUMO
The intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), is associated with health benefits due to its anti-inflammatory properties. This fatty acid also exhibits antifungal properties in vitro. In order to determine if this antifungal property is valid in vivo, we examined how EPA affects Candida albicans pathogenesis in the Caenorhabditis elegans infection model, an alternative to mammalian host models. The nematodes were supplemented with EPA prior to infection, and the influence of EPA on C. elegans lipid metabolism, survival and immune response was studied. In addition, the influence of EPA on hyphal formation in C. albicans was investigated. It was discovered that EPA supplementation changed the lipid composition, but not the unsaturation index of C. elegans by regulating genes involved in fatty acid and eicosanoid production. EPA supplementation also delayed killing of C. elegans by C. albicans due to the inhibition of hyphal formation in vivo, via the action of the eicosanoid metabolite of EPA, 17,18-epoxyeicosatetraenoic acid. Moreover, EPA supplementation also caused differential expression of biofilm-related gene expression in C. albicans and stimulated the immune response of C. elegans. This provides a link between EPA and host susceptibility to microbial infection in this model.
Assuntos
Caenorhabditis elegans , Ácido Eicosapentaenoico , Animais , Ácido Eicosapentaenoico/farmacologia , Candida albicans , Antifúngicos/farmacologia , Ácidos Graxos , MamíferosRESUMO
Infections that involve interkingdom microbial communities, such as those between bacteria and yeast pathogens, are difficult to treat, associated with worse patient outcomes, and may be a source of antimicrobial resistance. In this review, we address co-occurrence and co-infections of Candida albicans and Pseudomonas aeruginosa, two pathogens that occupy multiple infection niches in the human body, especially in immunocompromised patients. The interaction between the pathogen species influences microbe-host interactions, the effectiveness of antimicrobials and even infection outcomes, and may thus require adapted treatment strategies. However, the molecular details of bacteria-fungal interactions both inside and outside the infection sites, are insufficiently characterised. We argue that comprehensively understanding the P. aeruginosa-C. albicans interaction network through integrated systems biology approaches will capture the highly dynamic and complex nature of these polymicrobial infections and lead to a more comprehensive understanding of clinical observations such as reshaped immune defences and low antimicrobial treatment efficacy.
Assuntos
Anti-Infecciosos , Coinfecção , Humanos , Candida albicans , Pseudomonas aeruginosa/genética , Interações entre Hospedeiro e MicrorganismosRESUMO
AIMS: Umbelliprenin has shown promising biological activities, including immunoregulatory, anti-inflammatory, and anti-cancer effects. The present study investigated the growth inhibitory and apoptotic effects of umbelliprenin against Candida albicans in a BALB/c mice model of disseminated candidiasis. METHODS AND RESULTS: First, an antimicrobial assay via microdilution sensitivity test was performed. Then, twenty-five 6-week-old female BALB/c mice (20 ± 12 g) were divided into five groups of five mice, including one control group (no umbelliprenin treatment) and four experimental groups: C. albicans-infected mice treated with umbelliprenin at the doses of 5, 10, 20, and 40 mg kg -1. The brain, lung, kidney, spleen, and liver tissues were examined for fungal infection and histological lesions, and TUNEL staining was performed to assess apoptosis. The ß-1, 3-glucan synthase assay was used to evaluate enzymatic activity, and gene expression analysis was also performed to investigate the transcriptional changes of ERG11, CDR1, ALS1, and HWP1 genes. The MIC of umbelliprenin was 1.5 mg mL-1. Our results showed that at the 40 mg kg -1 dose, umbelliprenin was able to eradicate fungal infection in BALB/c mice. The percentage of apoptotic cells in umbelliprenin-treated groups increased in a concentration-dependent manner. Umbelliprenin (40 mg kg -1) also inhibited the expression of ß-1, 3-glucan synthase, and the genes involved in antifungal resistance (CDR1 and ERG11), as well as the expression of the genes encoding adhesins (ALS1 and HWP1). CONCLUSION: Our results showed that umbelliprenin could promote antifungal effects, partly via inducing apoptosis.
Assuntos
Antifúngicos , Candidíase , Feminino , Animais , Camundongos , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Candida albicans , Modelos Animais de DoençasRESUMO
Candida albicans (C. albicans) and Streptococcus mutans (S. mutans) biofilms involve in denture stomatitis. This study compared compound 1 to 2% chlorhexidine gluconate (CHX), Polident, and distilled water (DW) in biofilms reduction and effect on polymethylmethacrylate acrylic (PMMA) properties. The structure of lawsone (naphthoquinone derivative) was modified by the addition of an alkylnyloxy group to yield compound 1. Dual-species biofilms of C. albicans and S. mutans were developed on PMMA discs. The colony-forming unit count measured the number of residual biofilm cells after exposure to the test agents. PMMA discs were examined for color stability, surface roughness, hardness, and chemical structure after 28 days. At 3 min, compound 1 was less effective than CHX in reducing C. albicans (p = 0.004) and S. mutans (p = 0.034) but more effective than Polident in reducing C. albicans (p = 0.001). At 15 min, no viable cells were detectable for compound 1 and its effectiveness was comparable to CHX (p = 0.365). SEM showed fungal cell surface damages in CHX, compound 1 and Polident groups. Only color change was affected by time (p < 0.001) and type of test agent (p = 0.008), and only CHX reached a clinical perception level. Compound 1 is a promising agent for removing biofilm from the PMMA surface without substantially degrading surface properties.
Assuntos
Desinfetantes , Naftoquinonas , Polimetil Metacrilato , Biofilmes , Candida albicans , Naftoquinonas/farmacologia , Streptococcus mutans , Propriedades de Superfície , DentadurasRESUMO
Periodontitis is a widespread oral health problem caused by bacterial infections that lead to tooth loss and other systemic diseases. The aim of this study was to provide an alternative treatment for periodontitis by developing a metronidazole-loaded in situ forming matrix (ISM) using camphor as its matrix former. Five-percent w/w metronidazole dissolved in N-methyl pyrrolidone (NMP) with varying concentrations of camphor (30-50% w/w) and triacetin (0-25% w/w) were used. The physicochemical properties and antimicrobial activities of formulations were evaluated. Results showed that as the percentage of camphor increased, viscosity, density, contact angle, surface tension, and force of injection increased, while water tolerance decreased. The same trend was observed when increasing the triacetin concentration. The optimal metronidazole-loaded ISM was obtained at 40% w/w camphor and 5% w/w triacetin, which prolonged the release of metronidazole up to 6 days with Fickian diffusion release profile. The higher concentration of triacetin slowed down the phase inversion that led to an incomplete formation of the matrix and resulted in an inefficiently prolonged release of the metronidazole. Antimicrobial activities demonstrated that the developed formulation efficiently inhibited periodontitis-induced microorganisms including Porphyromonas gingivalis, Staphylococcus aureus, Escherichia coli, and Candida albicans. The metronidazole-loaded camphor-based ISM has potential as a new drug delivery system for periodontitis treatment.