Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.374
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1875): 20210477, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36871583

RESUMO

Rhythmic patterns in interactive contexts characterize human behaviours such as conversational turn-taking. These timed patterns are also present in other animals, and often described as rhythm. Understanding fine-grained temporal adjustments in interaction requires complementary quantitative methodologies. Here, we showcase how vocal interactive rhythmicity in a non-human animal can be quantified using a multi-method approach. We record vocal interactions in harbour seal pups (Phoca vitulina) under controlled conditions. We analyse these data by combining analytical approaches, namely categorical rhythm analysis, circular statistics and time series analyses. We test whether pups' vocal rhythmicity varies across behavioural contexts depending on the absence or presence of a calling partner. Four research questions illustrate which analytical approaches are complementary versus orthogonal. For our data, circular statistics and categorical rhythms suggest that a calling partner affects a pup's call timing. Granger causality suggests that pups predictively adjust their call timing when interacting with a real partner. Lastly, the ADaptation and Anticipation Model estimates statistical parameters for a potential mechanism of temporal adaptation and anticipation. Our analytical complementary approach constitutes a proof of concept; it shows feasibility in applying typically unrelated techniques to seals to quantify vocal rhythmic interactivity across behavioural contexts. This article is part of a discussion meeting issue 'Face2face: advancing the science of social interaction'.


Assuntos
Caniformia , Phoca , Animais , Comunicação , Aclimatação , Projetos de Pesquisa
2.
Proc Natl Acad Sci U S A ; 120(10): e2204892120, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848563

RESUMO

Wild mammals are icons of conservation efforts, yet there is no rigorous estimate available for their overall global biomass. Biomass as a metric allows us to compare species with very different body sizes, and can serve as an indicator of wild mammal presence, trends, and impacts, on a global scale. Here, we compiled estimates of the total abundance (i.e., the number of individuals) of several hundred mammal species from the available data, and used these to build a model that infers the total biomass of terrestrial mammal species for which the global abundance is unknown. We present a detailed assessment, arriving at a total wet biomass of ≈20 million tonnes (Mt) for all terrestrial wild mammals (95% CI 13-38 Mt), i.e., ≈3 kg per person on earth. The primary contributors to the biomass of wild land mammals are large herbivores such as the white-tailed deer, wild boar, and African elephant. We find that even-hoofed mammals (artiodactyls, such as deer and boars) represent about half of the combined mass of terrestrial wild mammals. In addition, we estimated the total biomass of wild marine mammals at ≈40 Mt (95% CI 20-80 Mt), with baleen whales comprising more than half of this mass. In order to put wild mammal biomass into perspective, we additionally estimate the biomass of the remaining members of the class Mammalia. The total mammal biomass is overwhelmingly dominated by livestock (≈630 Mt) and humans (≈390 Mt). This work is a provisional census of wild mammal biomass on Earth and can serve as a benchmark for human impacts.


Assuntos
Caniformia , Cervos , Humanos , Animais , Suínos , Biomassa , Cetáceos , Sus scrofa
3.
Minerva Dent Oral Sci ; 72(1): 45-53, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36847743

RESUMO

BACKGROUND: The long-term success of implant therapy depends not only on proper osseointegration, but also on the healing of the epithelium and the quality of the biological seal on the abutment and on the implant neck. This study aims to evaluate the possible use of dentinal adhesives on the surface of the transmucosal path of dental implants in order to create a hermetic seal between keratinized epithelium and abutment. METHODS: Four sections of 12 µm thickness were obtained from a sample of the oral mucosa. Scotchbond TM Universal Adhesive (3M ESPE, Seefeld, Germany) was carefully applied both to the samples and to the transmucosal path of titanium abutment (Win-Six, BioSAFin, Italy). The adhesives were polymerized. FT-IR analysis was performed on: 1) polymerized Scotchbond Universal Adhesive (3M ESPE, Seefeld, Germany); 2) the interface between the titanium abutment and the adhesive; 3) the interface between the adhesive and the mucosa; 4) the mucosa samples. RESULTS: Comparing the spectra, it emerged that the adhesive has established chemical bonds both on titanium and on the keratinized mucosa, involving different types of chemical interactions. CONCLUSIONS: The results of this in-vitro study are encouraging. In the future biocompatibility and comparative study with other adhesives will be required.


Assuntos
Caniformia , Mucosa Bucal , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio , Projetos de Pesquisa
4.
Mar Pollut Bull ; 188: 114692, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36753811

RESUMO

Ringed seals (Pusa hispida) play a crucial role in Arctic food webs as important pelagic predators and represent an essential component of Inuvialuit culture and food security. Plastic pollution is recognized as a global threat of concern, and Arctic regions may act as sinks for anthropogenic debris. To date, mixed evidence exists concerning the propensity for Canadian Arctic marine mammals to ingest and retain plastic. Our study builds on existing literature by offering the first assessment of plastic ingestion in ringed seals harvested in the western Canadian Arctic. We detected no evidence of microplastic (particles ≥80 µm) retention in the stomachs of ten ringed seals from the Inuvialuit Settlement Region (ISR) in the Northwest Territories, Canada. These results are consistent with previous studies that have found that some marine mammals do not accumulate microplastics in evaluated regions.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Canadá , Microplásticos , Plásticos , Cetáceos , Regiões Árticas
5.
PLoS One ; 18(1): e0269210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36607960

RESUMO

Facial vibrissae (whiskers) are thin, tapered, flexible, hair-like structures that are an important source of tactile sensory information for many species of mammals. In contrast to insect antennae, whiskers have no sensors along their lengths. Instead, when a whisker touches an object, the resulting deformation is transmitted to mechanoreceptors in a follicle at the whisker base. Previous work has shown that the mechanical signals transmitted along the whisker will depend strongly on the whisker's geometric parameters, specifically on its taper (how diameter varies with arc length) and on the way in which the whisker curves, often called "intrinsic curvature." Although previous studies have largely agreed on how to define taper, multiple methods have been used to quantify intrinsic curvature. The present work compares and contrasts different mathematical approaches towards quantifying this important parameter. We begin by reviewing and clarifying the definition of "intrinsic curvature," and then show results of fitting whisker shapes with several different functions, including polynomial, fractional exponent, elliptical, and Cesàro. Comparisons are performed across ten species of whiskered animals, ranging from rodents to pinnipeds. We conclude with a discussion of the advantages and disadvantages of using the various models for different modeling situations. The fractional exponent model offers an approach towards developing a species-specific parameter to characterize whisker shapes within a species. Constructing models of how the whisker curves is important for the creation of mechanical models of tactile sensory acquisition behaviors, for studies of comparative evolution, morphology, and anatomy, and for designing artificial systems that can begin to emulate the whisker-based tactile sensing of animals.


Assuntos
Caniformia , Percepção do Tato , Animais , Vibrissas/fisiologia , Mamíferos/anatomia & histologia , Tato/fisiologia
6.
Res Vet Sci ; 155: 62-68, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634544

RESUMO

Leptospirosis is a bacterial disease caused by the infection of pathogenic strains of the genus Leptospira, endemic in tropical and subtropical regions. Although well documented in terrestrial animals and humans, little information is available on its distribution and impact on marine animals. Despite clinical manifestations that may occur, the occurrence of carriers was suggested in some species. Nevertheless, there are few studies regarding the infection by Leptospira sp. in marine mammals. In this context, and considering the One Health approach, the present aimed to investigate pinnipeds' role as Leptospira sp. carriers. Kidneys of 47 pinnipeds of two species, Arctocephalus australis (n = 40) and Arctocephalus tropicalis (n = 7) were collected. DNA was extracted and the diagnosis was performed through LipL32-PCR and genetic characterization based on secY gene sequencing. Phylogenetic analysis and haplotype networks were constructed. Pathogenic Leptospira sp. DNA was detected in 31.9% (15/47) of the tested pinnipeds. It was possible to amplify and sequence eight strains (6 for A. australis, 2 for A. tropicalis), all identified as L. interrogans, with high similarity with sequences from Icterohaemorrhagiae serogroup. Phylogenetic analysis revealed sequences from the present study grouped in species-specific unique clusters, but very close to others from humans, wild animals, and domestic animals. We demonstrate that pinnipeds could act as carriers, and play an important role in leptospirosis dynamics.


Assuntos
Caniformia , Otárias , Leptospira , Leptospirose , Animais , Caniformia/microbiologia , Otárias/microbiologia , Leptospira/genética , Leptospirose/epidemiologia , Leptospirose/veterinária , Leptospirose/microbiologia , Filogenia
7.
Sci Total Environ ; 866: 161301, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36592909

RESUMO

Marine mammals are vulnerable to the bioaccumulation, biomagnification and lactational transfer of specific types of pollutants, such as industrial polychlorinated biphenyls (PCBs), due to their long-life spans, feeding at a high trophic level and unique fat stores that can serve as depots for these lipophilic contaminants. Currently, European countries are developing indicators for monitoring pollutants in the marine environment and assessing the state of biodiversity, requirements under both Regional Seas Conventions and European legislation. As sentinel species for marine ecosystem and human health, marine mammals can be employed to assess bioaccumulated contaminants otherwise below current analytical detection limits in water and lower trophic level marine biota. To aid the development of Regional Seas marine mammal contaminants indicators, as well as Member States obligations under descriptor 8 of the EU Marine Strategy Framework Directive, the current study aims to further develop appropriate methodological standards using data collected by the established UK marine mammal pollutant monitoring programme (1990 to 2017) to assess the trends and status of PCBs in harbour porpoises. Within this case study, temporal trends of PCB blubber concentration in juvenile harbour porpoises were analysed using multiple linear regression models and toxicity thresholds for the onset of physiological (reproductive and immunological) endpoints were applied to all sex-maturity groups. Mean PCB blubber concentrations were observed to decline in all harbour porpoise Assessment Units and OSPAR Assessment Areas in UK waters. However, a high proportion of animals were exposed to concentrations deemed to be a toxicological threat, though the relative proportion declined in most Assessment Units/Areas over the last 10 years of the assessment. Recommendations were made for improving the quality of the assessment going forward, including detailing monitoring requirements for the successful implementation of such an indicator.


Assuntos
Caniformia , Poluentes Ambientais , Phocoena , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Humanos , Bifenilos Policlorados/análise , Monitoramento Ambiental , Ecossistema , Cetáceos , Poluentes Ambientais/análise , Mamíferos , Poluentes Químicos da Água/análise
8.
Curr Biol ; 33(2): R50-R52, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36693305

RESUMO

Diandra Duengen and colleagues introduce Hoover, a male harbor seal famous for his imitation of human speech.


Assuntos
Caniformia , Phoca , Animais , Masculino , Humanos
9.
J Zoo Wildl Med ; 53(4): 838-843, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36640088

RESUMO

Gastrointestinal tract contrast medium studies are a valuable diagnostic modality to evaluate gastrointestinal anatomy, motility, and pathology. Four positive contrast medium studies were performed twice on a harbor seal (Phoca vitulina) and once each on two California sea lions (Zalophus californianus) to evaluate for gastrointestinal abnormalities by using barium-impregnated gelatin. Because marine mammals in human care routinely receive plain gelatin as a component of their diet and as secondary reinforcement, feeding a barium gelatin mitigates the need for tube feeding or restraint. Operant conditioning was used to position the pinnipeds for voluntary radiographs. The barium gelatin permitted adequate evaluation of gastric emptying and intestinal transit times and good evaluation of the structure of the intestinal tract. Full evaluation of gastric anatomy was limited due to the gelatin blocks not conforming to the stomach in their solid form and the barium quickly exiting the stomach as barium gelatin blocks disintegrated and because orthogonal views could not always be acquired. Even with these limitations, barium gelatin resulted in diagnostically valuable contrast imaging in a stress-free patient setting with reduced risk of aspiration and eliminated the effects that anesthesia can have on gastric motility as well as other anesthesia-associated risks.


Assuntos
Caniformia , Phoca , Leões-Marinhos , Humanos , Animais , Sulfato de Bário , Gelatina , Bário , Trato Gastrointestinal/diagnóstico por imagem
10.
Glob Chang Biol ; 29(7): 1809-1821, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36583369

RESUMO

Rapid anthropogenic climate change is driving threatened biodiversity one step closer to extinction. Effects on native biodiversity are determined by an interplay between species' exposure to climate change and their specific ecological and life-history characteristics that render them even more susceptible. Impacts on biodiversity have already been reported, however, a systematic risk evaluation of threatened marine populations is lacking. Here, we employ a trait-based approach to assess the risk of 90 threatened marine Mediterranean species to climate change, combining species' exposure to increased sea temperature and intrinsic vulnerability. One-quarter of the threatened marine biodiversity of the Mediterranean Sea is predicted to be under elevated levels of climate risk, with various traits identified as key vulnerability traits. High-risk taxa including sea turtles, marine mammals, Anthozoa and Chondrichthyes are highlighted. Climate risk, vulnerability and exposure hotspots are distributed along the Western Mediterranean, Alboran, Aegean, and Adriatic Seas. At each Mediterranean marine ecoregion, 21%-31% of their threatened species have high climate risk. All Mediterranean marine protected areas host threatened species with high risk to climate change, with 90% having a minimum of 4 up to 19 species of high climate risk, making the objective of a climate-smart conservation strategy a crucial task for immediate planning and action. Our findings aspire to offer new insights for systematic, spatially strategic planning and prioritization of vulnerable marine life in the face of accelerating climate change.


Assuntos
Caniformia , Espécies em Perigo de Extinção , Animais , Mudança Climática , Biodiversidade , Mar Mediterrâneo , Conservação dos Recursos Naturais , Ecossistema
11.
J Exp Biol ; 226(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576033

RESUMO

Seals haul out of water for extended periods during the annual molt, when they shed and regrow their pelage. This behavior is believed to limit heat loss to the environment given increased peripheral blood flow to support tissue regeneration. The degree to which time in water, particularly during the molt, may affect thermoregulatory costs is poorly understood. We measured the resting metabolism of three spotted seals (Phoca largha), one ringed seal (Pusa hispida) and one bearded seal (Erignathus barbatus) during and outside the molting period, while resting in water and when hauled out. Metabolic rates were elevated in spotted and ringed seals during molt, but comparable in water and air for individuals of all species, regardless of molt status. Our data indicate that elevated metabolism during molt primarily reflects the cost of tissue regeneration, while increased haul out behavior is driven by the need to maintain elevated skin temperatures to support tissue regeneration.


Assuntos
Caniformia , Phoca , Focas Verdadeiras , Animais , Água , Muda , Focas Verdadeiras/fisiologia , Regiões Árticas
12.
Mar Pollut Bull ; 186: 114433, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36495612

RESUMO

Microplastics (MPs, < 5 mm in size) are highly bioavailable to many taxa within the marine ecosystem, either ingested directly or indirectly through trophic transfer from polluted prey. The ingestion analysis of these MPs from top predators, such as pinnipeds in Mexico, is relatively unexplored. Forty-eight scats from California sea lions were collected on six rookeries along the Gulf of California. From these scat samples, 294 suspected MPs particles were classified and chemically analyzed; 34% were synthetic and semi-synthetic, and 66% were non-synthetic. Blue-colored polyethylene terephthalate fibers were the most common type of MP registered. During laboratory work, multiple contamination control measures were implemented. Although the ingestion pathway is still unknown, our results support the other authors that suggest the potential trophic transfer of MPs to top predators and incidental ingestion while foraging. The particles documented here provide important baseline information for future MP research in the Gulf of California.


Assuntos
Caniformia , Leões-Marinhos , Animais , Plásticos/análise , Microplásticos , México , Ecossistema
13.
Mar Pollut Bull ; 185(Pt A): 114288, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36330942

RESUMO

Plastic debris is of particular concern due to its abundance, and its persistence in the environment. In Argentina, the impact of plastic debris has been documented with a significant increase during the last years. However, evidence of debris ingestion remains low compared to other regions of the world. Between 2020 and 2022, one of the twenty-three individuals analyzed in this study (seven species: five birds and two marine mammals) had ingested plastic debris. A single macroplastic piece was found in the Great Grebe (Podiceps major). It was a hardy yellow elastic band that appears to be a packaging band in agreement with the debris category with the greatest number of reports. This study is a contribution to the few records of plastic ingestion in birds, on the east coast of South America.


Assuntos
Caniformia , Poluentes Químicos da Água , Humanos , Animais , Monitoramento Ambiental , Resíduos/análise , Poluentes Químicos da Água/análise , Argentina , Plásticos , Aves , Cetáceos , Ingestão de Alimentos
14.
Adv Mar Biol ; 93: 3-21, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36435593

RESUMO

Marine mammals are regarded in high esteem by the general public, and are recognized as flagship species for conservation, while at the same time they suffer from anthropogenic impacts on a global scale, and often in extreme ways. It seems there is a huge discrepancy between how we humans think about our fellow creatures in the sea, and how we behave to impact and/or conserve them. Here, I examine why the purely scientific and thus intellectual approach to marine mammal conservation has had limited success over the past decades. While there are some obvious success stories in cetacean conservation, the situation today is, for many species and populations, more dire than it has ever been. The idea of 'we need to know more'-a credo of the scientific community-often is politically misrepresented to postpone necessary conservation decisions. To adapt our path towards more profound and, importantly, more effective marine conservation, as conservationists we need to go deeper and change the narrative of separation, i.e., the concept of humans being set apart from the rest of nature. Instead, there is a need to create a narrative of connectedness, i.e., the consciousness of humans being an integral part of the planetary system. Rather than telling horror stories about the plight of marine mammals, conservationists also need to trigger positive emotions about them in ourselves. More holistic aspects of conservation need to be incorporated in our future efforts, including the fuller integration of traditional knowledge and indigenous wisdom, recognizing ecosystem functions of marine life and protecting the processes they sustain, respecting 'holiness' of nature while focusing on the animals' individuality, personhood and the cultural identity of distinct communities. Effective marine mammal conservation will be possible only on the basis of a profound change of our own values and a fundamental change of the societal system we are living in.


Assuntos
Caniformia , Cefapirina , Animais , Humanos , Ecossistema , Cetáceos , Efeitos Antropogênicos
15.
PLoS One ; 17(11): e0276757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395329

RESUMO

Marine renewables could form a significant part of the green energy mix. However, a potential environmental impact of tidal energy converters (TECs) is collision risk between a device and animal, which has been a significant barrier in the consenting process. While it is important to understand the number of collisions of an animal with the device, the relative speed at which an animal collides with the device, and the point on the animal where collision occurs, will determine whether a collision is fatal, which is important in understanding population-level impacts. Using a simulation-based collision risk model, this paper demonstrates a novel method for producing estimates of mortality. Extracting both the speed and the location of collisions between an animal and TEC, in this instance a seal and horizontal axis turbine, collision speed and location of collision are used to produce probabilities of mortality. To provide a hypothetical example we quantified the speed and position at which a collision occurs to estimate mortality and, using collision position, we determine all predicted collisions with the head of the animal as fatal, for example, whilst deeming other collisions non-fatal. This is the first collision risk model to incorporate speed at the point of contact and the location where the collision occurs on the animal, to estimate the probability of mortality resulting from a collision. The hypothetical scenarios outline how these important variables extracted from the model can be used to predict the proportion of fatal events. This model enables a comprehensive approach that ultimately provides advancements in collision risk modelling for use in the consenting process of TECs. Furthermore, these methods can easily be adapted to other renewable energy devices and receptors, such as wind and birds.


Assuntos
Caniformia , Vento , Animais , Simulação por Computador , Energia Renovável , Aves
16.
Sci Rep ; 12(1): 17695, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271251

RESUMO

The genus Pseudoterranova includes parasite species of cetaceans and pinnipeds. The third stage larva (L3) of seal-infecting species occur in second intermediate or paratenic fish hosts mainly in neritic waters. This study firstly describes a Pseudoterranova L3 from meso/bathypelagic fishes off Macaronesia. L3s were morphologically and genetically studied by light microscopy and sequencing of the mtDNA cox2 and entire ITS rDNA genes. Bayesian inferences were performed with sequences from the larvae and selected sequences from GenBank. The nematode L3s were molecularly identified as Pseudoterranova ceticola, a parasite of kogiid whales. Such larvae were collected from Bolinichthys indicus, Chauliodus danae, Eupharynx pelecanoides, Diaphus rafinesquii, D. mollis, Diretmus argenteus and Maulisia argipalla. They mainly occurred in the viscera of these fishes. Pseudoterranova ceticola L3 were small (< 12 mm) and whitish, and a prominent characteristic is a circumoral ridge extending from the ventral boring tooth which differentiate them from Pseudoterranova spp. L3 maturing in pinnipeds and Terranova sensu lato larvae that mature in poikilotherms. The shape of the tail: conical, long, pointed, ventrally curved and lacking mucron also distinguish these larvae from those of the pinniped-infecting Pseudoterranova spp. Phylogenetic analyses based on mtDNA cox2 and ITS rDNA sequences suggest that P. ceticola is closely related to Skrjabinisakis spp., and not with Pseudoterranova spp. parasitizing pinnipeds. The related species Skrjabinisakis paggiae, S. brevispiculata and S. physeteris (until recently belonging to genus Anisakis), are as P. ceticola also parasites of physeteroid cetaceans. The morphology and morphological variation of the larvae of the cetacean parasite P. ceticola is thoroughly described for the first time. These L3 can readily be morphologically distinguished from those of the pinniped-infecting Pseudoterranova spp. The parasite likely completes its life cycle in the mesopelagic and bathypelagic realm, with meso/bathypelagic fish as 2nd intermediate or paratenic hosts and kogiids as final host. Thus, Pseudoterranova from cetaceans appear to be morphologically, genetically, and ecologically differentiated to those from pinnipeds, suggesting that they are not congeneric.


Assuntos
Ascaridoidea , Caniformia , Doenças dos Peixes , Animais , Larva , Filogenia , Ciclo-Oxigenase 2/genética , Teorema de Bayes , Ascaridoidea/genética , Peixes/genética , DNA Ribossômico/genética , Baleias/genética , DNA Mitocondrial/genética , Doenças dos Peixes/parasitologia
17.
Microbiologyopen ; 11(5): e1329, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36314752

RESUMO

The Gram-negative bacteria Brucella ceti and Brucella pinnipedialis circulate in marine environments primarily infecting marine mammals, where they cause an often-fatal disease named brucellosis. The increase of brucellosis among several species of cetaceans and pinnipeds, together with the report of sporadic human infections, raises concerns about the zoonotic potential of these pathogens on a large scale and may pose a threat to coastal communities worldwide. Therefore, the characterization of the B. ceti and B. pinnipedialis genetic features is a priority to better understand the pathological factors that may impact global health. Moreover, an in-depth functional analysis of the B. ceti and B. pinnipedialis genome in the context of virulence and pathogenesis was not undertaken so far. Within this picture, here we present the comparative whole-genome characterization of all B. ceti and B. pinnipedialis genomes available in public resources, uncovering a collection of genetic tools possessed by these aquatic bacterial species compared to their zoonotic terrestrial relatives. We show that B. ceti and B. pinnipedialis genomes display a wide host-range infection capability and a polyphyletic phylogeny within the genus, showing a genomic structure that fits the canonical definition of closeness. Functional genome annotation led to identifying genes related to several pathways involved in mechanisms of infection, others conferring pan-susceptibility to antimicrobials and a set of virulence genes that highlight the similarity of B. ceti and B. pinnipedialis genotypes to those of Brucella spp. displaying human-infecting phenotypes.


Assuntos
Brucella , Brucelose , Caniformia , Animais , Humanos , Brucella/genética , Brucelose/microbiologia , Caniformia/microbiologia , Cetáceos/microbiologia
18.
Chemosphere ; 308(Pt 3): 136448, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115469

RESUMO

Although lipophilic compounds have been the focus of numerous studies in marine mammals, their association with lipids is widely accepted, but rarely scrutinized. This pilot study aimed to investigate potential relationships between individual lipids from different lipid classes identified through a non-targeted Nuclear Magnetic Resonance (NMR) based lipidomics approach and legacy POPs in the blubber of long-finned pilot whales, sperm whales, common bottlenose dolphins, and Indo-Pacific bottlenose dolphins. Concentrations of selected POPs such as HCB and HCHs in sperm whales from Tasmania were found to differ from those in long-finned pilot whales and common bottlenose dolphins from the same location. Profiles of NMR spectra measured in blubber of sperm whales were also distinctly different compared to the pilot whales and common bottlenose dolphins. Two groups of Indo-Pacific bottlenose dolphins from South Australia that were 20 years apart showed highly comparable profiles of NMR signals despite having higher concentrations of several POP classes in the more recent group. More specific correlations were investigated between selected POPs (n = 12) and all detected NMR signals (n = 63) in all species. Outcomes were species-specific, but difficult to interpret due to the lack of available literature for marine mammals and the small sample sizes per species. Because of the key role of lipids in the bioaccumulation of POPs and in the incidence of diseases, more attention should be given to the identification and characterization of lipid species in future toxicological studies. However, future studies should focus on one marine mammal species to increase sample sizes and limit the number of confounding factors, such as diet, that can influence POP and lipid levels and profiles.


Assuntos
Golfinho Nariz-de-Garrafa , Caniformia , Baleia Comum , Poluentes Químicos da Água , Baleias Piloto , Tecido Adiposo/química , Animais , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Hexaclorobenzeno/análise , Lipídeos/análise , Poluentes Orgânicos Persistentes , Projetos Piloto , Cachalote , Poluentes Químicos da Água/análise
19.
Mar Pollut Bull ; 183: 114095, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36070639

RESUMO

Pinnipeds are sentinel species for marine pollution, but their role as vectors of trace elements (TEs) or rare earth elements (REEs) to ecosystems has been poorly studied. The present study tested pinniped feces for 61 elements, including REEs. Feces of adult seals (Mirounga leonina, Hydrurga leptonyx) from Fildes Bay, King George Island, Antarctica, were analyzed by ICP-MS. TEs varied by several orders of magnitude across the suite examined herein, with Fe, Al, Zn, Mn, HgII and Sr as the top six in both species. Of the REEs, Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Y and Yb were found consistently in all samples and ranged from 0.935 to 0.006 µg g-1 d.w. The results show that both species act as biovector organisms of TEs and REEs through feces in remote environments, whose actual impacts and long-term fate need further exploration.


Assuntos
Caniformia , Metais Terras Raras , Oligoelementos , Animais , Regiões Antárticas , Ecossistema , Ilhas , Mamíferos , Metais Terras Raras/análise , Oligoelementos/análise
20.
Anim Cogn ; 25(5): 1015-1018, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36152088

RESUMO

In this theme issue, our multidisciplinary contributors highlight the cognitive adaptations of marine mammals. The cognitive processes of this group are highly informative regarding how animals cope with specifics of and changes in the environment, because, not only did modern marine mammals evolve from numerous, non-related terrestrial animals to adapt to an aquatic lifestyle, but some of these species regularly move between two worlds, land and sea. Here, we bring together scientists from different fields and take the reader on a journey that begins with the ways in which modern marine mammals (whales, dolphins, seals, sea lions and manatees) utilize their perceptual systems, next moves into studies of the constraints and power of individuals' cognitive flexibility, and finally showcases how those systems are deployed in social and communicative contexts. Considering the cognitive processes of the different marine mammals in one issue from varying perspectives will help us understand the strength of cognitive flexibility in changing environments-in marine mammals and beyond.


Assuntos
Caniformia , Golfinhos , Leões-Marinhos , Focas Verdadeiras , Animais , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...