Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.178
Filtrar
1.
Braz. j. biol ; 84: e258084, 2024. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360229

RESUMO

Food loss due to contamination caused by fungi has much impact on agriculture and leads to significant economic losses. Synthetic and natural fungicides have been used for avoiding losses of several food products due to fungal contamination. As a result, species of the genus Capsicum have been used for preserving food because of their chemical compounds with antifungal activity. Therefore, this study aimed at identifying some phenolic compounds found in both ethyl acetate extract (EAE) and methanolic extract (ME) from habanero pepper (C. chinense) ripe fruit by liquid chromatography tandem mass spectrometry with electrospray ionization (LC-ESI-MS/MS) and at evaluating their antifungal activities against fungi Sclerotinia sclerotiorum, Rhizopus stolonifer and Colletotrichum gloeosporioides. Extracts resulted from a sequential process of maceration. Antifungal activity was evaluated by the disk diffusion method (DDM) at the following doses of both diluted extracts: 25 µL, 50 µL, 100 µL and 200 µL. The chemical analysis showed that there were protocatechuic acid, gentisic acid, vanillic acid, kaempferol-3-O-robinobiosideo and naringenin in both extracts. EAE showed high inhibition of mycelial growth at both doses 100µL and 200µL against the three fungi while methanolic exhibited weak activity even at the highest dose under investigation. However, further in-depth studies are needed to reinforce their uses and practical applications to the agricultural field.


As perdas de alimentos por contaminação causada por fungos são de grande impacto negativo para a agricultura, gerando altos prejuízos econômicos. Para evitar as perdas de diversos produtos alimentícios pela contaminação fúngica são utilizados fungicidas sintéticos e naturais. As espécies do gênero Capsicum são usadas há muitos anos para auxiliar na conservação de alimentos por possuírem substâncias químicas com ação antifúngica entre outras. Neste contexto, o objetivo deste estudo foi identificar alguns compostos fenólicos por cromatografia líquida de alta eficiência acoplada à espectrometria de massas sequencial (LC-ESI-MS/MS) presentes nos extratos acetato de etila (EAE) e metanólico (ME) dos frutos maduros da pimenta biquinho (C. chinense) e avaliar atividade antifúngica de EAE e ME contra os fungos Sclerotinia sclerotiorum, Rhizopus stolonifer e Colletotrichum gloeosporioides. Os extratos foram obtidos de forma sequencial, utilizando o procedimento de maceração. A atividade antifúngica foi avaliada seguindo a metodologia de difusão em disco, nas doses de 25 µL, 50 µL, 100 µL e 200 µL de cada extrato diluído. A análise química evidenciou a presença de ácido protocatequico, ácido gentisico, ácido vanílico, kaempferol-3-O-robinobiosídeo e naringenina em ambos os extratos. EAE revelou maior poder de inibição do crescimento micelial nas doses de 100µL e 200µL contra os três fungos testados, enquanto ME exibiu fraca atividade inclusive na maior dose investigada. Entretanto, estudos mais aprofundados ainda são necessários para consolidar seu uso e aplicação prática na área agronômica.


Assuntos
Capsicum , Compostos Fenólicos , Antifúngicos
2.
Molecules ; 28(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175071

RESUMO

Cancer is a relevant health problem worldwide. In 2020, leukemias represented the 13th most commonly reported cancer cases worldwide but the 10th most likely to cause deaths. There has been a progressive increase in the efficacy of treatments for leukemias; however, these still generate important side effects, so it is imperative to search for new alternatives. Defensins are a group of antimicrobial peptides with activity against cancer cells. However, the cytotoxic mechanism of these peptides has been described mainly for animal defensins. This study shows that defensin γ-thionin (Capsicum chinense) is cytotoxic to the K562 leukemia cells with an IC50 = 290 µg/mL (50.26 µM) but not for human peripheral blood mononuclear cells. Results showed that γ-thionin did not affect the membrane potential; however, the peptide modified the mitochondrial membrane potential (ΔΨm) and the intracellular calcium release. In addition, γ-thionin induced apoptosis in K562 cells, but the activation of caspases 8 and 9 was not detected. Moreover, the activation of calpains was detected at one hour of treatment, suggesting that γ-thionin activates the caspase-independent apoptosis. Furthermore, the γ-thionin induced epigenetic modifications on histone 3 in K562 cells, increased global acetylation (~2-fold), and specific acetylation marks at lysine 9 (H3K9Ac) (~1.5-fold). In addition, γ-thionin increased the lysine 9 methylation (H3K9me) and dimethylation marks (H3K9me2) (~2-fold), as well as the trimethylation mark (H3K9me3) (~2-fold). To our knowledge, this is the first report of a defensin that triggers caspase-independent apoptosis in cancer cells via calpains and regulating chromatin remodelation, a novel property for a plant defensin.


Assuntos
Antineoplásicos , Capsicum , Leucemia Mielogênica Crônica BCR-ABL Positiva , Tioninas , Animais , Humanos , Tioninas/farmacologia , Células K562 , Capsicum/química , Peptídeos Antimicrobianos , Chile , Leucócitos Mononucleares/metabolismo , Lisina/farmacologia , Apoptose , Peptídeos/farmacologia , Antineoplásicos/farmacologia , Caspases/metabolismo , Defensinas/farmacologia , Epigênese Genética
3.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175241

RESUMO

Sweet peppers are consumed worldwide, and traditional uses have sparked interest in their applications as dietary antioxidants, which can be enhanced in plants using elicitors. These are endowed with phytochemicals with potential health benefits such as antioxidants, bioavailability, and bioaccessibility. The trend in metabolomics shows us chemical fingerprints linking metabolomics, innovative analytical form, and bioinformatics tools. The objective was to evaluate the impact of multiple stress interactions, elicitor concentrations, and electrical conductivity on the concentration of secondary metabolites to relate their response to metabolic pathways through the foliar application of a cocktail of said elicitors in pepper crops under greenhouse conditions. The extracts were analyzed by spectrophotometry and gas chromatography, and it was shown that the PCA analysis identified phenolic compounds and low molecular weight metabolites, confirming this as a metabolomic fingerprint in the hierarchical analysis. These compounds were also integrated by simultaneous gene and metabolite simulants to obtain effect information on different metabolic pathways. Showing changes in metabolite levels at T6 (36 mM H2O2 and 3.6 dS/m) and T7 (0.1 mM SA and 3.6 dS/m) but showing statistically significant changes at T5 (3.6 dS/m) and T8 (0.1 mM SA, 36 mM H2O2, and 3.6 dS/m) compared to T1 (32 dS/m) or control. Six pathways changed significantly (p < 0.05) in stress-induced treatments: aminoacyl t-RNA and valine-leucine-isoleucine biosynthesis, and alanine-aspartate-glutamate metabolism, glycoxylate-dicarboxylate cycle, arginine-proline, and citrate. This research provided a complete profile for the characterization of metabolomic fingerprint of bell pepper under multiple stress conditions.


Assuntos
Antioxidantes , Capsicum , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Capsicum/metabolismo , Peróxido de Hidrogênio/metabolismo , Cromatografia Gasosa , Metabolômica/métodos , Espectrofotometria
4.
Toxins (Basel) ; 15(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37235342

RESUMO

The uses of natural plant origin bioactive compounds are emerging as a promising strategy to detoxify aflatoxin B1 (AFB1). This study aimed to explore the potential of cooking, phytochemicals content, and antioxidant activities derived from garlic, ginger, cardamom, and black cumin to detoxify AFB1 on spice mix red pepper powder (berbere) and sauté. The effectiveness of the samples was analyzed for AFB1 detoxification potential through standard methods for the examination of food and food additives. These major spices showed an AFB1 level below the detection limit. After cooking in hot water for 7 min at 85 ℃, the experimental and commercial spice mix red pepper showed the maximum AFB1 detoxification (62.13% and 65.95%, respectively). Thus, mixing major spices to produce a spice mix red pepper powder had a positive effect on AFB1 detoxification in raw and cooked spice mix red pepper samples. Total phenolic content, total flavonoid content, 2,2-diphenyl-1-picrylhydrazyl, ferric ion reducing antioxidant power, and ferrous ion chelating activity revealed good positive correlation with AFB1 detoxification at p < 0.05. The findings of this study could contribute to mitigation plans of AFB1 in spice-processing enterprises. Further study is required on the mechanism of AFB1 detoxification and safety of the detoxified products.


Assuntos
Capsicum , Elettaria , Alho , Gengibre , Nigella sativa , Antioxidantes/farmacologia , Especiarias , Aflatoxina B1 , Pós
5.
Toxins (Basel) ; 15(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235343

RESUMO

As a condiment with extensive nutritional value, chili is easy to be contaminated by Aspergillus flavus (A. flavus) during field, transportation, and storage. This study aimed to solve the contamination of dried red chili caused by A. flavus by inhibiting the growth of A. flavus and detoxifying aflatoxin B1 (AFB1). In this study, Bacillus subtilis E11 (B. subtilis) screened from 63 candidate antagonistic bacteria exhibited the strongest antifungal ability, which could not only inhibit 64.27% of A. flavus but could also remove 81.34% of AFB1 at 24 h. Notably, scanning electron microscopy (SEM) showed that B. subtilis E11 cells could resist a higher concentration of AFB1, and the fermentation supernatant of B. subtilis E11 could deform the mycelia of A. flavus. After 10 days of coculture with B. subtilis E11 on dried red chili inoculated with A. flavus, the mycelia of A. flavus were almost completely inhibited, and the yield of AFB1 was significantly reduced. Our study first concentrated on the use of B. subtilis as a biocontrol agent for dried red chili, which could not only enrich the resources of microbial strains for controlling A. flavus but also could provide theoretical guidance to prolong the shelf life of dried red chili.


Assuntos
Aspergillus flavus , Capsicum , Bacillus subtilis , Capsicum/microbiologia , Aflatoxina B1 , Antifúngicos
6.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240124

RESUMO

Meprin and TRAF homology (MATH)-domain-containing proteins are pivotal in modulating plant development and environmental stress responses. To date, members of the MATH gene family have been identified only in a few plant species, including Arabidopsis thaliana, Brassica rapa, maize, and rice, and the functions of this gene family in other economically important crops, especially the Solanaceae family, remain unclear. The present study identified and analyzed 58 MATH genes from three Solanaceae species, including tomato (Solanum lycopersicum), potato (Solanum tuberosum), and pepper (Capsicum annuum). Phylogenetic analysis and domain organization classified these MATH genes into four groups, consistent with those based on motif organization and gene structure. Synteny analysis found that segmental and tandem duplication might have contributed to MATH gene expansion in the tomato and the potato, respectively. Collinearity analysis revealed high conservation among Solanaceae MATH genes. Further cis-regulatory element prediction and gene expression analysis showed that Solanaceae MATH genes play essential roles during development and stress response. These findings provide a theoretical basis for other functional studies on Solanaceae MATH genes.


Assuntos
Capsicum , Solanaceae , Solanum lycopersicum , Solanum tuberosum , Solanaceae/genética , Solanaceae/metabolismo , Tiopronina/metabolismo , Filogenia , Solanum lycopersicum/genética , Capsicum/genética , Solanum tuberosum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
PLoS Pathog ; 19(5): e1011380, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155712

RESUMO

Many herbivorous insects rely on plant volatiles to locate their host plants. Vector-borne viral infections induce changes in plant volatiles, which render infected plants more attractive to insect vectors. However, the detailed mechanisms underlying the olfactory responses of insect vectors induced by the volatiles produced by virus-infected plants are poorly understood. Here, we show that volatiles emitted by pepper (Capsicum annuum) plants infected with tomato zonate spot virus (TZSV), particularly the volatile cis-3-hexenal, which is recognized by chemosensory protein 1 of the thrips Frankliniella intonsa (FintCSP1), are more attractive to F. intonsa than the volatiles emitted by non-infected pepper plants. FintCSP1 is highly abundant in the antenna of F. intonsa. Silencing of FintCSP1 significantly decreased electroantennogram responses of F. intonsa antennae to cis-3-hexenal and impaired thrips' responses to TZSV-infected pepper plants and cis-3-hexenal, as assessed using a Y-tube olfactometer. Three-dimensional model predictions indicated that FintCSP1 consists of seven α-helixes and two disulfide bridges. Molecular docking analysis suggested that cis-3-hexenal is positioned deep inside the binding pocket of FintCSP1 and binds to residues of the protein. We combined site-directed mutagenesis and fluorescence binding assays and identified three hydrophilic residues, Lys26, Thr28, and Glu67, of FintCSP1 as being critical for cis-3-hexenal binding. Furthermore, CSP of F. occidentalis (FoccCSP) is also a key olfactory protein involved in modulating the behaviour of F. occidentalis to TZSV-infected pepper. This study revealed the specific binding characteristics of CSPs to cis-3-hexenal and confirmed the general hypothesis that virus infections induce changes in host volatiles, which can be recognized by the olfactory proteins of the insect vector to enhance vector attraction and this may facilitate viral spread and transmission.


Assuntos
Capsicum , Vírus de Plantas , Solanum lycopersicum , Tisanópteros , Animais , Tisanópteros/fisiologia , Simulação de Acoplamento Molecular
8.
Molecules ; 28(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241977

RESUMO

Chili is one of the world's most widely used horticultural products. Many dishes around the world are prepared using this fruit. The chili belongs to the genus Capsicum and is part of the Solanaceae family. This fruit has essential biomolecules such as carbohydrates, dietary fiber, proteins, and lipids. In addition, chili has other compounds that may exert some biological activity (bioactivities). Recently, many studies have demonstrated the biological activity of phenolic compounds, carotenoids, and capsaicinoids in different varieties of chili. Among all these bioactive compounds, polyphenols are one of the most studied. The main bioactivities attributed to polyphenols are antioxidant, antimicrobial, antihyperglycemic, anti-inflammatory, and antihypertensive. This review describes the data from in vivo and in vitro bioactivities attributed to polyphenols and capsaicinoids of the different chili products. Such data help formulate functional foods or food ingredients.


Assuntos
Capsicum , Capsicum/metabolismo , Capsaicina/farmacologia , Capsaicina/metabolismo , Frutas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Fenóis/metabolismo , Polifenóis/farmacologia , Polifenóis/metabolismo
9.
Viruses ; 15(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243167

RESUMO

The dominant Pvr4 gene in pepper (Capsicum annuum) confers resistance to members of six potyvirus species, all of which belong to the Potato virus Y (PVY) phylogenetic group. The corresponding avirulence factor in the PVY genome is the NIb cistron (i.e., RNA-dependent RNA polymerase). Here, we describe a new source of potyvirus resistance in the Guatemalan accession C. annuum cv. PM949. PM949 is resistant to members of at least three potyvirus species, a subset of those controlled by Pvr4. The F1 progeny between PM949 and the susceptible cultivar Yolo Wonder was susceptible to PVY, indicating that the resistance is recessive. The segregation ratio between resistant and susceptible plants observed in the F2 progeny matched preferably with resistance being determined by two unlinked recessive genes independently conferring resistance to PVY. Inoculations by grafting resulted in the selection of PVY mutants breaking PM949 resistance and, less efficiently, Pvr4-mediated resistance. The codon substitution E472K in the NIb cistron of PVY, which was shown previously to be sufficient to break Pvr4 resistance, was also sufficient to break PM949 resistance, a rare example of cross-pathogenicity effect. In contrast, the other selected NIb mutants showed specific infectivity in PM949 or Pvr4 plants. Comparison of Pvr4 and PM949 resistance, which share the same target in PVY, provides interesting insights into the determinants of resistance durability.


Assuntos
Capsicum , Potyvirus , Solanum tuberosum , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Filogenia , Antivirais , Doenças das Plantas , Solanum tuberosum/metabolismo
10.
Ecotoxicol Environ Saf ; 257: 114925, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080127

RESUMO

Large areas of soil in southern China are contaminated with cadmium (Cd) and are deficient in boron (B). Previously, we suggested that B supplementation could reduce Cd accumulation in hot peppers (Capsicum annuum L.); however, the physiological mechanisms underlying this reduction remain unclear. In this study, the uptake and translocation of Cd in hot pepper plants were investigated using hydroponic experiments with different B and Cd treatments. A pot experiment was performed to verify whether B decreased the Cd concentration in hot peppers by minimizing the Cd translocation rate. The results of the dose- and time-dependent experiments showed that B supplementation reduced root Cd uptake and root-to-shoot Cd translocation. Additionally, B supplementation increased the root length, diameter, volume, surface area, and number of root forks and tips, as well as improving the relative absorbance of carboxyl groups under Cd exposure, leading to enhanced Cd fixation in the cell walls of the roots. As a result, the fruit Cd concentration decreased because B inhibited Cd translocation from the roots. Overall, the results demonstrate that B supplementation can reduce Cd accumulation in hot peppers by promoting normal root growth and development and by limiting the uptake and translocation of Cd.


Assuntos
Capsicum , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Boro/farmacologia , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Transporte Biológico , Raízes de Plantas
11.
Food Res Int ; 168: 112763, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120214

RESUMO

Chili paste, is a popular traditional product derived from chili pepper, and its fermentation system is affected by the variable concentration of capsaicin, which originates from the peppers. In the present study, the effects of capsaicin and fermentation time on the microbial community and flavor compounds of chili paste were investigated. After capsaicin supplementation, the total acid was significantly decreased (p < 0.05) along with lower total bacteria, especially lactic acid bacteria. Lactiplantibacillus, Lactobacillus, Weissella, Issatchenkia, Trichoderma, and Pichia were the shared and predominant genera; whereas, the Bacteroides and Kazachstania abundance was significantly increased due to the selection effect of capsaicin over time. Additionally, alterations of the microbial interaction networks and their metabolic preferences led to less lactic acid content with greater accumulation of ethyl nonanoate, methyl nonanoate, etc. This study will provide a perspective for selecting chili pepper varieties and improving the quality of fermented chili paste.


Assuntos
Capsicum , Cânfora/metabolismo , Capsaicina , Capsicum/metabolismo , Fermentação , Mentol/metabolismo
12.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108695

RESUMO

Ascorbic acid (AsA) is an antioxidant with significant functions in both plants and animals. Despite its importance, there has been limited research on the molecular basis of AsA production in the fruits of Capsicum annuum L. In this study, we used Illumina transcriptome sequencing (RNA-seq) technology to explore the candidate genes involved in AsA biosynthesis in Capsicum annuum L. A total of 8272 differentially expressed genes (DEGs) were identified by the comparative transcriptome analysis. Weighted gene co-expression network analysis identified two co-expressed modules related to the AsA content (purple and light-cyan modules), and eight interested DEGs related to AsA biosynthesis were selected according to gene annotations in the purple and light-cyan modules. Moreover, we found that the gene GDP-L-galactose phosphorylase (GGP) was related to AsA content, and silencing GGP led to a reduction in the AsA content in fruit. These results demonstrated that GGP is an important gene controlling AsA biosynthesis in the fruit of Capsicum annuum L. In addition, we developed capsanthin/capsorubin synthase as the reporter gene for visual analysis of gene function in mature fruit, enabling us to accurately select silenced tissues and analyze the results of silencing. The findings of this study provide the theoretical basis for future research to elucidate AsA biosynthesis in Capsicum annuum L.


Assuntos
Capsicum , Glicogênio Fosforilase Muscular , Ácido Ascórbico/genética , Frutas/genética , Capsicum/genética , Galactose , Fosforilases , Regulação da Expressão Gênica de Plantas
13.
Sensors (Basel) ; 23(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112381

RESUMO

Automation in agriculture can save labor and raise productivity. Our research aims to have robots prune sweet pepper plants automatically in smart farms. In previous research, we studied detecting plant parts by a semantic segmentation neural network. Additionally, in this research, we detect the pruning points of leaves in 3D space by using 3D point clouds. Robot arms can move to these positions and cut the leaves. We proposed a method to create 3D point clouds of sweet peppers by applying semantic segmentation neural networks, the ICP algorithm, and ORB-SLAM3, a visual SLAM application with a LiDAR camera. This 3D point cloud consists of plant parts that have been recognized by the neural network. We also present a method to detect the leaf pruning points in 2D images and 3D space by using 3D point clouds. Furthermore, the PCL library was used to visualize the 3D point clouds and the pruning points. Many experiments are conducted to show the method's stability and correctness.


Assuntos
Capsicum , Semântica , Redes Neurais de Computação , Algoritmos , Agricultura
14.
Viruses ; 15(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37112863

RESUMO

Seed lots of tomato and capsicum (Solanum lycopersicon and Capsicum annuum, respectively) are required to be free of quarantine pests before their entry to Australia is permitted. Testing of samples from 118 larger seed lots in the period 2019-2021 revealed that 31 (26.3%) carried one or more of four Tobamovirus species, including tomato mottle mosaic virus (ToMMV), which is a quarantine pest for Australia. Testing of samples from a further 659 smaller seed lots showed that 123 (18.7%) carried a total of five Tobamovirus species, including ToMMV and tomato brown rugose fruit virus (ToBRFV), which is also a quarantine pest for Australia. Estimated prevalence of contamination by tobamoviruses ranged from 0.388% to 0.004% in contaminated larger seed lots. Analyses of these data allow us to estimate probabilities of detection of contamination under different regulatory settings.


Assuntos
Capsicum , Solanum lycopersicum , Tobamovirus , Tobamovirus/genética , Prevalência , Doenças das Plantas , Sementes
15.
Food Res Int ; 168: 112789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120235

RESUMO

In the Shennongjia region of China, two types of zha-chili with distinct flavors exist: the first type (P zha-chili) uses a significant amount of chili pepper but no potato, while the other (PP zha-chili) contains a smaller amount of chili pepper but a proportion of potato. In order to investigate the bacterial diversity and sensory properties of these two types of zha-chili, this study employed a combination of amplicon sequencing, culture-based methods, and sensory technology. The results of the study showed statistically significant differences (P < 0.05) in bacterial diversity and communities between the two types of zha-chili. In particular, four dominant lactic acid bacteria (LAB) genera - Lactiplantibacillus, Lactococcus, Leuconostoc, and Weissella - were significantly enriched in PP zha-chili. The findings suggest that the proportions of chili pepper and potato can influence the bacterial diversity and content of LAB, with a higher proportion of chili pepper potentially inhibiting the growth of harmful species within the Enterobacteriaceae family. The study also used culture-based methods to identify the most dominant bacteria in the zha-chili samples as Lactiplantibacillus plantarum group, Companilactobacillus alimentarius, and Lacticaseibacillus paracasei. Correlation analysis indicated that LAB likely plays a significant role in shaping the aroma profile of zha-chili, with Levilactobacillus, Leuconostoc, Lactiplantibacillus, and Lactococcus showing correlation with E-nose sensory indices. However, these LAB were not significantly correlated with the taste properties of zha-chili. The study provides new insights into the influence of chili pepper and potato on the microbial diversity and flavor properties of zha-chili, and also presents potential LAB isolates for future research on zha-chili.


Assuntos
Capsicum , Lactobacillales , Weissella , Bactérias , Enterobacteriaceae , Leuconostoc , Lactococcus
16.
Food Chem ; 419: 136052, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37015167

RESUMO

This research was conducted to explore the influence of cold shock on the firmness, a quality marker in chili pepper during 0-21 d storage and determine mechanism by cold shock impacted pectin. Chili peppers were exposed to cold shock precooling (0 ± 2 °C water/ice mixture) for 0-, 30-, 90- and 150-min, respectively. Results showed that cold shock alleviated loss of firmness throughout storage. Firmness was positively associated with sodium carbonate-soluble pectin content (r = 0.44), methylation degree of CDTA-soluble pectin (r = 0.82) and water-soluble pectin (WSP, r = 0.87), but negatively associated with WSP content (r = -0.76), and the activities of ß-galactosidase (r = -0.72) and pectinlyase (r = -0.74). Cold shock for 90 min was determined to be optimal. This study confirms the applicability of cold shock precooling to maintain firmness and thereby to extend the shelf life of chili pepper.


Assuntos
Capsicum , Pectinas , Capsicum/química , Cânfora , Mentol/química , Resposta ao Choque Frio , Água
17.
Naturwissenschaften ; 110(3): 15, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071226

RESUMO

Metallic nanoparticles of different compositions have already found numerous applications in various branches of industry, agriculture, and medicine. Given the well-known antibacterial activity of Ag, silver nanoparticles (AgNPs) are constantly being investigated for their promising ability to fight antibiotic-resistant pathogens. A promising candidate for AgNPs biosynthesis is chili pepper Capsicum annuum, cultivated worldwide and known for accumulating significant amounts of active substances. Phytochemical screening of aqueous extract of C. annuum pericarps demonstrated accumulation of 4.38 mg/g DW of total capsaicinoids, 14.56 mg GAE/g DW of total phenolic compounds, 1.67 mg QE/g DW of total flavonoids, and 1.03 mg CAE/g DW of total phenolic acids. All determined aromatic compounds carry various active functional groups, which effectively participate in the biosynthesis of AgNPs and are characterized by high antioxidant potential. Therefore, the present research focused on the facile, quick, and effective procedure for the biosynthesis of AgNPs, which were analyzed for their morphology such as shape and size through UV-visible, Fourier-transform infrared spectroscopy (FTIR) assays, and scanning electron microscopy. We found that the AgNPs biosynthesis resulted in changes in FTIR spectra, depicting the rearrangement of numerous functional groups, while the nanoparticles themselves were shown to be stable, spherical, 10-17 nm in size. Also we investigated the antibacterial properties of biosynthesized AgNPs, obtained with C. annuum fruit extracts, against a common phytopathogen Clavibacter michiganensis subsp. michiganensis. As was shown by zone inhibition assay, AgNPs showed dose-dependent 5.13-6.44 cm antibacterial activity, greatly exceeding the 4.98 cm inhibition area, produced by the precursor salt, AgNO3.


Assuntos
Capsicum , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
18.
Physiol Plant ; 175(2): e13909, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37026423

RESUMO

Pathogenesis-related (PR) signaling plays multiple roles in plant development under abiotic and biotic stress conditions and is regulated by a plethora of plant physiological as well as external factors. Here, our study was conducted to evaluate the role of an ACC deaminase-producing endophytic bacteria in regulating ethylene-induced PR signaling in red pepper plants under salt stress. We also evaluated the efficiency of the bacteria in down-regulating the PR signaling for efficient colonization and persistence in the plant endosphere. We used a characteristic endophyte, Methylobacterium oryzae CBMB20 and its ACC deaminase knockdown mutant (acdS- ). The wild-type M. oryzae CBMB20 was able to decrease ethylene emission by 23% compared to the noninoculated and acdS- M. oryzae CBMB20 inoculated plants under salt stress. The increase in ethylene emission resulted in enhanced hydrogen peroxide concentration, phenylalanine ammonia-lyase activity, ß-1,3 glucanase activity, and expression profiles of WRKY, CaPR1, and CaPTI1 genes that are typical salt stress and PR signaling factors. Furthermore, the inoculation of both the bacterial strains had shown induction of PR signaling under normal conditions during the initial inoculation period. However, wild-type M. oryzae CBMB20 was able to down-regulate the ethylene-induced PR signaling under salt stress and enhance plant growth and stress tolerance. Collectively, ACC deaminase-producing endophytic bacteria down-regulate the salt stress-mediated PR signaling in plants by regulating the stress ethylene emission levels and this suggests a new paradigm in efficient colonization and persistence of ACC deaminase-producing endophytic bacteria for better plant growth and productivity.


Assuntos
Capsicum , Capsicum/metabolismo , Estresse Salino , Etilenos/metabolismo , Bactérias/metabolismo
19.
J Biosci Bioeng ; 135(6): 466-473, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37005199

RESUMO

Capsicum annuum L. production is impeded by various biotic factors, including fungal diseases caused by Colletotrichum capsici, Pythium aphanidermatum, and Fusarium oxysporum. Various plant extracts and essential oils are increasingly used to control different plant diseases. In this study, licorice (Glycyrrhiza glabra) cold water extract (LAE) and thyme (Thymus vulgaris) essential oil (TO) were found to be highly effective against the C. annuum pathogens. LAE at 200 mg ml-1 demonstrated the maximum antifungal activity of 89.9% against P. aphanidermatum, whereas TO at 0.25 mg ml-1 showed 100% inhibition of C. capsici. However, when used in combination, much lower doses of these plant protectants (100 mg ml-1 LAE and 0.125 mg ml-1 TO) exhibited a synergistic effect in controlling the fungal pathogens. Metabolite profiling using gas chromatography-mass spectrometry and high resolution-liquid chromatography-mass spectrophotometry analysis showed the presence of several bioactive compounds. Enhanced cellular components leakage revealed damage to the fungal cell wall and membrane due to and LAE treatment, which can be attributed to the TO lipophilicity and triterpenoid saponins of LAE. TO and LAE treatments also caused a reduction in ergosterol biosynthesis might be due to the presence of thymol and sterol components in the botanicals. Although the aqueous extracts have a low preparation cost, their uses are limited by modest shelf life and lacklustre antifungal effect. We have shown that these limitations can be bypassed by combining oil (TO) with the aqueous extract (LAE). This study further opens the avenues for utilizing these botanicals against other fungal phytopathogens.


Assuntos
Capsicum , Glycyrrhiza , Óleos Voláteis , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antifúngicos/farmacologia , Thymus (Planta)/química , Óleos de Plantas/farmacologia
20.
Braz J Biol ; 83: e268941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37042854

RESUMO

Capsaicin (CAP) is the main compound responsible for the spicy flavor of Capsicum plants. However, its application can be inhibited due to its pungency and toxicity. This study aimed to evaluate and compare the cytotoxic effect of CAP and its analogs N-benzylbutanamide (AN1), N-(3-methoxybenzyl) butanamide (AN2), N-(4-hydroxy-3-methoxybenzyl) butanamide (AN3), N-(4-hydroxy-3-methoxybenzyl) hexanamide (AN4) and N-(4-hydroxy-3-methoxybenzyl) tetradecanamide (AN5) on the hepatoma cells of Rattus norvegicus using the MTT test. The results showed cytotoxicity of CAP at concentrations of 100, 150, 175, and 200 µM (24 hours), AN1 at 150 and 175 µM (48 hours), AN2 at 50 µM (24 hours) and 10, 25, 50, and 75 µM (48 hours), AN4 at 175 µM (24 hours), and AN5 at 50 µM (48 hours). Removing the hydroxyl radical from the vanillyl group of capsaicin, together with reducing the acyl chain to 3 carbons, which is the case of AN2, resulted in the best biological activity. Increasing the carbon chain in the acyl group of the capsaicin molecule, which is the case of AN5, also showed evident cytotoxic effects. The present study proves that the chemical modifications of capsaicin changed its biological activity.


Assuntos
Capsaicina , Capsicum , Animais , Ratos , Capsaicina/farmacologia , Capsaicina/química , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...