Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.472
Filtrar
1.
Sci Rep ; 14(1): 15329, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961199

RESUMO

GDP-L-galactose phosphorylase (GGP) is a key rate-limiting enzyme in plant ascorbic acid synthesis, which plays an important role in plant growth and development as well as stress response. However, the presence of GGP and its function in potato and pepper are not known. In this study, we first identified two GGP genes in each potato and pepper genomes using a genome-wide search approach. We then analyzed their physicochemical properties, conserved domains, protein structures and phylogenetic relationships. Phylogenetic tree analysis revealed that members of the potato and pepper GGP gene families are related to eggplant (Solanum melongena L.), Arabidopsis (Arabidopsis thaliana L.), tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.), with tomato being the most closely related. The promoter sequences mainly contain homeopathic elements such as light-responsive, hormone-responsive and stress-responsive, with light-responsive elements being the most abundant. By analyzing the structure of the genes, it was found that there is no transmembrane structure or signal peptide in the GGP gene family of potatoes and peppers, and that all of its members are hydrophilic proteins. The expression profiles of different tissues show that StGGP1 has the highest expression levels in leaves, StGGP2 has the highest expression levels in stamens, and CaGGPs have the highest expression levels in the early stages of fruit development (Dev1). It was found that StGGPs and CaGGPs genes showed different response to phytohormones and abiotic stresses. Abscisic acid (ABA) treatment induced the most significant change in the expression of StGGPs, while the expression of CaGGPs showed the most pronounced change under methyl jasmonate (MeJA) treatment. StGGPs responded mainly to dark treatment, whereas CaGGPs responded mainly to NaCl stress. These results provide an important basis for a detailed study about the functions of GGP homologous genes in potato and pepper in response to abiotic stresses.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Solanum tuberosum , Estresse Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras Genéticas
2.
Sci Rep ; 14(1): 15383, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965309

RESUMO

The drought can cause a decrease in food production and loss of biodiversity. In northern Mexico, an arid region, the chiltepin grows as a semi-domesticated crop that has been affected in its productivity and yield. An alternative to mitigate the effect of drought and aid in its conservation could be using Plant Growth-Promoting Bacteria (PGPB). The present study evaluated the capacity of native Bacillus spp., isolated from arid soils, as PGPBs and drought stress tolerance inducers in chiltepin under controlled conditions. Chiltepin seeds and seedlings were inoculated with native strains of Bacillus spp. isolated from arid soils, evaluating germination, vegetative, and drought stress tolerance parameters. The PGPBs improved vegetative parameters such as height, stem diameter, root length, and slenderness index in vitro. B. cereus (Bc25-7) improved in vitro survival of stressed seedlings by 68% at -1.02 MPa. Under greenhouse conditions, seedlings treated with PGPBs exhibited increases in root length (9.6%), stem diameter (13.68%), leaf fresh weight (69.87%), and chlorophyll content (38.15%). Bc25-7 alleviated severe water stress symptoms (7 days of water retention stress), and isolates B. thuringiensis (Bt24-4) and B. cereus (Bc25-7, and Bc30-2) increased Relative Water Content (RWC) by 51%. Additionally, the treated seeds showed improved germination parameters with a 46.42% increase in Germination Rate (GR). These findings suggest that using PGPBs could be an alternative to mitigate the effect of drought on chiltepin.


Assuntos
Bacillus , Capsicum , Secas , Plântula , Capsicum/crescimento & desenvolvimento , Capsicum/microbiologia , Capsicum/fisiologia , Bacillus/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Estresse Fisiológico , Germinação , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , México
3.
PeerJ ; 12: e17578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948222

RESUMO

In the eastern coastal regions of Odisha, wilt caused by Fusarium oxysporum f. sp.capsici is an extremely damaging disease in chilli. This disease is very difficult to manage with chemical fungicides since it is soil-borne in nature. The natural rhizosphere soil of the chilli plant was used to isolate and test bacterial antagonists for their effectiveness and ability to promote plant growth. Out of the fifty-five isolates isolated from the rhizosphere of healthy chilli plants, five isolates, namely Iso 01, Iso 17, Iso 23, Iso 24, and Iso 32, showed their highly antagonistic activity against F. oxysporum f. sp. capsici under in vitro. In a dual culture, Iso 32 (73.3%) and Iso 24 (71.5%) caused the highest level of pathogen inhibition. In greenhouse trials, artificially inoculated chilli plants treated with Iso 32 (8.8%) and Iso 24 (10.2%) had decreased percent disease incidence (PDI), with percent disease reduction over control of 85.6% and 83.3%, respectively. Iso 32 and Iso 24 treated chilli seeds have shown higher seed vigor index of 973.7 and 948.8, respectively, as compared to untreated control 636.5. Furthermore, both the isolates significantly increased plant height as well as the fresh and dry weight of chilli plants under the rolled paper towel method. Morphological, biochemical, and molecular characterization identified Bacillus amyloliquefaciens (MH491049) as the key antagonist. This study demonstrates that rhizobacteria, specifically Iso 32 and Iso 24, can effectively protect chilli plants against Fusarium wilt while promoting overall plant development. These findings hold promise for sustainable and eco-friendly management of Fusarium wilt in chilli cultivation.


Assuntos
Fusarium , Doenças das Plantas , Rizosfera , Microbiologia do Solo , Fusarium/isolamento & purificação , Fusarium/patogenicidade , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Capsicum/microbiologia , Capsicum/crescimento & desenvolvimento , Antibiose/fisiologia , Desenvolvimento Vegetal
4.
Environ Geochem Health ; 46(9): 318, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001898

RESUMO

Bell peppers, a globally significant crop, face infestations from various pests. In a study, bell peppers were treated with deltamethrin, ethion, fenazaquin, and fenpropathrin at recommended and double the doses, repeated twice with a 10-day interval. The QuEChERS method underwent validation for linearity, matrix match, accuracy, and precision in bell pepper matrices for residue analysis. The limit of detection for the tested pesticides on bell peppers was 0.01 mg/L, with a quantification limit of 0.05 mg/L. Recovery studies showed a range of 94.80% to 102.80%. Initial deposits of deltamethrin, ethion, fenazaquin, and fenpropathrin on bell peppers at recommended doses were 0.371, 1.237, 0.617, and 0.640 mg/L, respectively, and at double doses were 0.712, 1.945, 1.221, and 1.189 mg/L, respectively. Safe waiting periods of 10, 11, 10, and 8 days were suggested for deltamethrin, ethion, fenazaquin, and fenpropathrin, respectively. The corresponding half-lives for the pesticides were 1.96, 1.79, 2.06, and 1.69 days, all following first-order dissipation kinetics. Dietary risk assessment indicated Hazard Quotients (HQ) below 1 and Theoretical Maximum Daily Intake (TMDI) below Acceptable Daily Intake (ADI) and Maximum Permissible Intake (MPI) levels. Therefore, at their recommended doses, the pesticides were deemed safe for bell pepper cultivation.


Assuntos
Capsicum , Contaminação de Alimentos , Inseticidas , Resíduos de Praguicidas , Piretrinas , Capsicum/química , Resíduos de Praguicidas/análise , Piretrinas/análise , Contaminação de Alimentos/análise , Cinética , Medição de Risco , Humanos , Nitrilas/toxicidade , Nitrilas/análise , Exposição Dietética
5.
Nutrients ; 16(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999870

RESUMO

Investigations into human longevity are increasingly focusing on healthspan enhancement, not just lifespan extension. Lifestyle modifications and nutritional choices, including food supplements, can significantly affect aging and general health. Phytochemicals in centenarians' diets, such as those found in Timut pepper, a Nepalese spice with various medicinal properties, may contribute to their longevity. Similarly, Sichuan pepper, a related species, has demonstrated anti-inflammatory and neuroprotective activities. With the broader purpose of uncovering a novel treatment to address aging and its comorbidities, this study aims to investigate the potential lifespan- and healthspan-promoting effects of Timut pepper using the model organism Caenorhabditis elegans. We show that Timut pepper extract extends C. elegans' lifespan at different maintenance temperatures and increases the proportion of active nematodes in their early adulthood. In addition, we show that Timut pepper extract enhances speed and distance moved as the nematodes age. Finally, Timut pepper extract assures extracellular matrix homeostasis by slowing the age-dependent decline of collagen expression.


Assuntos
Caenorhabditis elegans , Capsicum , Colágeno , Longevidade , Extratos Vegetais , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Animais , Extratos Vegetais/farmacologia , Colágeno/metabolismo , Capsicum/química , Envelhecimento/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo
7.
PeerJ ; 12: e17511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006019

RESUMO

Background: Capsicum chinense Jacq. (Ghost Pepper) is well-known for its high pungency and pleasant aroma. The recent years witnessed a significant decline in popularity of this important crop due to the use of inferior planting material and lack of elite lines. To maintain constant performance across a variety of settings, it is crucial to choose stable lines with high yield and capsaicin content, as these are the most promising traits of Ghost Pepper. Method: In this study, 120 high-capsaicin genotypes were subjected to a 3-year (kharif 2017, 2018 and 2019) stability investigation utilizing two well-known stability methods: Eberhart-Russell (ER) and additive main effects and multiple interaction (AMMI). Three replications were used following Randomized Complete Block Design for 11 traits. The experiment soil was sandy loam with pH 4.9. Minimum and maximum temperature of 18.5 °C, 17.5 °C, 17.4 °C and 32.2 °C, 31.3 °C, 32.7 °C and rainfall of 1,781, 2,099, 1,972 mm respectively was recorded for the study period. Result: The genotype-environment linear interaction (G×E Lin.) was highly significant for days to 50% flowering, capsaicin content, fruit length and girth, fruit yield per plant and number of fruits per plant at p < 0.005. G×E interaction for fruit yield and capsaicin content in AMMI-analysis of variance reported 67.07% and 71.51% contribution by IPCA-1 (interactive principal component axis) and 32.76% and 28.49% by IPCA-2, respectively. Eight genotypes were identified to be stable with high yield and capsaicin content. The identified stable lines can be opted for cultivation to reduce the impact of crop failure when grown in different macro-environments. Moreover, the pharmaceutical and spice sectors will also be benefitted from the lines with high capsaicin content. Further research assessing the lines' performance across various regions of India can provide a solid foundation for the crop's evaluation at national level.


Assuntos
Capsaicina , Capsicum , Frutas , Genótipo , Capsicum/crescimento & desenvolvimento , Capsicum/genética , Capsicum/química , Capsicum/metabolismo , Capsaicina/metabolismo , Capsaicina/análise , Frutas/crescimento & desenvolvimento , Frutas/química , Frutas/genética , Frutas/metabolismo , Interação Gene-Ambiente
8.
Sci Rep ; 14(1): 15830, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982145

RESUMO

Demequina, commonly found in coastal and marine environments, represents a genus of Actinomycetes. In this study, strains Demequina PMTSA13T and OYTSA14 were isolated from the rhizosphere of Capsicum annuum, leading to the discovery of a novel species, Demequina capsici. Bacteria play a significant role in plant growth, yet there have been no reports of the genus Demequina acting as plant growth-promoting bacteria (PGPB). Comparative genomics analysis revealed ANI similarity values of 74.05-80.63% for PMTSA13T and 74.02-80.54% for OYTSA14, in comparison to various Demequina species. The digital DNA-DNA hybridization (dDDH) values for PMTSA13T ranged from 19 to 39%, and 19.1-38.6% for OYTSA14. Genome annotation revealed the presence of genes associated with carbohydrate metabolism and transport, suggesting a potential role in nutrient cycling and availability for plants. These strains were notably rich in genes related to 'carbohydrate metabolism and transport (G)', according to their Cluster of Orthologous Groups (COG) classification. Additionally, both strains were capable of producing auxin (IAA) and exhibited enzymatic activities for cellulose degradation and catalase. Furthermore, PMTSA13T and OYTSA14 significantly induced the growth of Arabidopsis thaliana seedlings primarily attributed to their capacity to produce IAA, which plays a crucial role in stimulating plant growth and development. These findings shed light on the potential roles of Demequina strains in plant-microbe interactions and agricultural applications. The type strain is Demequina capsici PMTSA13T (= KCTC 59028T = GDMCC 1.4451T), meanwhile OYTSA14 is identified as different strains of Demequina capsici.


Assuntos
Capsicum , Filogenia , Rizosfera , Capsicum/microbiologia , Capsicum/crescimento & desenvolvimento , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/classificação , RNA Ribossômico 16S/genética , Genoma Bacteriano , Desenvolvimento Vegetal
9.
Sci Rep ; 14(1): 16584, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020069

RESUMO

In this study, the effect of Thymus vulgaris essential oil (TVO) nanoemulsion (NE, 500 mg/L) in combination with ultrasound (ultrasound-NE) on the microbial and physiological quality of green bell pepper was investigated. The TVO-NE droplet size and zeta potential were 84.26 nm and - 0.77 mV, respectively. The minimum inhibitory concentrations of the TVO and TVO-NE against E. coli and S. aureus were about 0.07 and 7 g/L, respectively. The NE-ultrasound treatment exhibited the lowest peroxidase activity and respiration rate with no detrimental effect on texture, total phenolic content, antioxidant activity, pH, and TSS. Although the NE-ultrasound treatment showed the highest weight loss and electrolytic leakage, it exhibited the best visual color and appearance. The NE-ultrasound treatment descended the total viable/mold and yeast counts significantly compared to control. Results showed that treating the bell peppers with NE-ultrasound can result in bell peppers with good postharvest quality and extended shelf life.


Assuntos
Capsicum , Escherichia coli , Nanocápsulas , Óleos Voláteis , Staphylococcus aureus , Thymus (Planta) , Thymus (Planta)/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Capsicum/química , Capsicum/microbiologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Conservação de Alimentos/métodos , Ultrassom/métodos , Antioxidantes/farmacologia , Ondas Ultrassônicas , Emulsões
10.
Biochemistry ; 63(14): 1824-1836, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968244

RESUMO

Faced with the emergence of multiresistant microorganisms that affect human health, microbial agents have become a serious global threat, affecting human health and plant crops. Antimicrobial peptides have attracted significant attention in research for the development of new microbial control agents. This work's goal was the structural characterization and analysis of antifungal activity of chitin-binding peptides from Capsicum baccatum and Capsicum frutescens seeds on the growth of Candida and Fusarium species. Proteins were initially submitted to extraction in phosphate buffer pH 5.4 and subjected to chitin column chromatography. Posteriorly, two fractions were obtained for each species, Cb-F1 and Cf-F1 and Cb-F2 and Cf-F2, respectively. The Cb-F1 (C. baccatum) and Cf-F1 (C. frutescens) fractions did not bind to the chitin column. The electrophoresis results obtained after chromatography showed two major protein bands between 3.4 and 14.2 kDa for Cb-F2. For Cf-F2, three major bands were identified between 6.5 and 14.2 kDa. One band from each species was subjected to mass spectrometry, and both bands showed similarity to nonspecific lipid transfer protein. Candida albicans and Candida tropicalis had their growth inhibited by Cb-F2. Cf-F2 inhibited the development of C. albicans but did not inhibit the growth of C. tropicalis. Both fractions were unable to inhibit the growth of Fusarium species. The toxicity of the fractions was tested in vivo on Galleria mellonella larvae, and both showed a low toxicity rate at high concentrations. As a result, the fractions have enormous promise for the creation of novel antifungal compounds.


Assuntos
Antifúngicos , Candida , Quitina , Fusarium , Simulação de Acoplamento Molecular , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Quitina/química , Quitina/metabolismo , Fusarium/efeitos dos fármacos , Candida/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Animais , Capsicum/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Testes de Sensibilidade Microbiana , Ligação Proteica , Conformação Proteica
11.
J Food Drug Anal ; 32(2): 184-193, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934688

RESUMO

Aflatoxin B1, a major global food safety concern, is produced by toxigenic fungi during crop growing, drying, and storage, and shows increasing annual prevalence. This study aimed to detect aflatoxin B1 in chili samples using ATR-FTIR coupled with machine learning algorithms. We found that 83.6% of the chili powder samples were contaminated with Aspergillus and Penicillium species, with aflatoxin B1 levels ranging from 7.63 to 44.32 µg/kg. ATR-FTIR spectroscopy in the fingerprint region (1800-400 cm-1) showed peak intensity variation in the bands at 1587, 1393, and 1038 cm-1, which are mostly related to aflatoxin B1 structure. The PCA plots from samples with different trace amounts of aflatoxin B1 could not be separated. Vibrational spectroscopy combined with machine learning was applied to address this issue. The logistic regression model had the best F1 score with the highest %accuracy (73%), %sensitivity (73%), and %specificity (71%), followed by random forest and support vector machine models. Although the logistic regression model contributed significant findings, this study represents a laboratory research project. Because of the peculiarities of the ATR-FTIR spectral measurements, the spectra measured for several batches may differ, necessitating running the model on multiple spectral ranges and using increased sample sizes in subsequent applications. This proposed method has the potential to provide rapid and accurate results and may be valuable in future applications regarding toxin detection in foods when simple onsite testing is required.


Assuntos
Aflatoxina B1 , Aspergillus , Capsicum , Contaminação de Alimentos , Capsicum/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Aflatoxina B1/análise , Contaminação de Alimentos/análise , Aspergillus/química , Pós/química , Penicillium/química
12.
PeerJ ; 12: e17601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938608

RESUMO

Background: Tungsten (W) is an emerging heavy metal pollutant, yet research remains scarce on the biomonitor and sensitive biomarkers for W contamination. Methods: In this study, celery and pepper were chosen as study subjects and subjected to exposure cultivation in solutions with five different levels of W. The physiological and biochemical toxicities of W on these two plants were systematically analyzed. The feasibility of utilizing celery and pepper as biomonitor organisms for W contamination was explored and indicative biomarkers were screened. Results: The results indicated that W could inhibit plants' root length, shoot height, and fresh weight while concurrently promoting membrane lipid peroxidation. Additionally, W enhanced the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and total antioxidant capacity (TAOC) to counteract oxidative damage. From a physiological perspective, pepper exhibited potential as a biomonitor for W contamination. Biochemical indicators suggested that SOD could serve as a sensitive biomarker for W in celery, while TAOC and POD were more suitable for the roots and leaves of pepper. In conclusion, our study investigated the toxic effects of W on celery and pepper, contributing to the understanding of W's environmental toxicity. Furthermore, it provided insights for selecting biomonitor organisms and sensitive biomarkers for W contamination.


Assuntos
Apium , Capsicum , Tungstênio , Apium/efeitos dos fármacos , Capsicum/efeitos dos fármacos , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Tungstênio/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo , Biomarcadores/metabolismo , Ecotoxicologia/métodos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estresse Oxidativo/efeitos dos fármacos
13.
Food Res Int ; 190: 114657, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945630

RESUMO

Because of its peculiar flavor, chili oil is widely used in all kinds of food and is welcomed by people. Chili pepper is an important raw material affecting its quality, and commercial chili oil needs to meet various production needs, so it needs to be made with different chili peppers. However, the current compounding method mainly relies on the experience of professionals and lacks the basis of objective numerical analysis. In this study, the chroma and capsaicinoids of different chili oils were analyzed, and then the volatile components were determined by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion migration spectrometer (GC-IMS) and electronic nose (E-nose). The results showed that Zidantou chili oil had the highest L*, b*, and color intensity (ΔE) (52.76 ± 0.52, 88.72 ± 0.89, and 118.84 ± 1.14), but the color was tended to be greenyellow. Xinyidai chili oil had the highest a* (65.04 ± 0.2). But its b* and L* were relatively low (76.17 ± 0.29 and 45.41 ± 0.16), and the oil was dark red. For capsaicinoids, Xiaomila chili oil had the highest content of capsaicinoids was 2.68 ± 0.07 g/kg, Tianjiao chili oil had the lowest content of capsaicinoids was 0.0044 ± 0.0044 g/kg. Besides, 96 and 54 volatile flavor substances were identified by GC-MS and GC-IMS respectively. And the main volatile flavor substances of chili oil were aldehydes, alcohols, ketones, and esters. A total of 11 key flavor compounds were screened by the relative odor activity value (ROAV). Moguijiao chili oil and Zidantou chili oil had a prominent grass aroma because of hexanal, while Shizhuhong chili oil, Denglongjiao chili oil, Erjingtiao chili oil, and Zhoujiao chili oil had a prominent floral aroma because of 2, 3-butanediol. Chili oils could be well divided into 3 groups by the partial least squares discriminant analysis (PLS-DA). According to the above results, the 10 kinds of chili oil had their own characteristics in color, capsaicinoids and flavor. Based on quantitative physicochemical indicators and flavor substances, the theoretical basis for the compounding of chili oil could be provided to meet the production demand more scientifically and accurately.


Assuntos
Capsicum , Cromatografia Gasosa-Espectrometria de Massas , Óleos de Plantas , Paladar , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Capsicum/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos de Plantas/análise , Óleos de Plantas/química , Nariz Eletrônico , Capsaicina/análise , Aromatizantes/análise , Cor , Odorantes/análise
14.
Plant Physiol Biochem ; 213: 108834, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879988

RESUMO

Selenium (Se) is one of the fifteen essential nutrients required by the human body. Mycorrhizal microorganisms play a crucial role in enhancing selenium availability in plants. However, limited research exists on the impact of arbuscular mycorrhizal fungi (AMF) on selenium accumulation and transport in pepper plants. This study employed a pot experiment to investigate the changes in pepper plant growth, selenium accumulation, and transformation following inoculation with AMF and varying concentrations of exogenous selenium. The results indicate that exogenous selenium application in pepper has dual effects. At low concentrations (≤8 mg L⁻1), it promotes growth and nutrient accumulation, whereas high concentrations (>16 mg L⁻1) inhibit these processes. AMF inoculation positively influences selenium accumulation and transport in peppers, significantly increasing yield per plant by 17.89%, vitamin C content by 67.36%, flavonoid content by 43.26%, capsaicin content by 14.82%, DPPH radical scavenging rate by 18.18%, and ABTS radical scavenging rate by 27.81%. Additionally, it significantly reduces selenocysteine methyltransferase (SMT) enzyme activity, while minimally affecting ATP sulfurylase (ATPS) and adenosyl sulfate reductase (APR) enzyme activities. The combined treatment of AMF and 8 mg L⁻1 exogenous selenium has been proven to be the most effective for selenium enrichment in peppers, offering new insights into utilizing exogenous selenium and AMF inoculation to enhance selenium content in peppers.


Assuntos
Capsicum , Selênio , Capsicum/metabolismo , Capsicum/microbiologia , Capsicum/efeitos dos fármacos , Selênio/metabolismo , Micorrizas/fisiologia , Micorrizas/metabolismo , Glomeromycota/fisiologia , Ácido Ascórbico/metabolismo
15.
Curr Microbiol ; 81(7): 209, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834921

RESUMO

The metabolomic and genomic characterization of an endophytic Bacillus safensis Ni7 was carried out in this study. This strain has previously been isolated from the xerophytic plant Nerium indicum L. and reported to enhance the drought tolerance in Capsicum annuum L. seedlings. The effects of drought stress on the morphology, biofilm production, and metabolite production of B. safensis Ni7 are analyzed in the current study. From the results obtained, the organism was found to have multiple strategies such as aggregation and clumping, robust biofilm production, and increased production of surfactin homologues under the drought induced condition when compared to non-stressed condition. Further the whole genome sequencing (WGS) based analysis has demonstrated B. safensis Ni7 to have a genome size of 3,671,999 bp, N50 value of 3,527,239, and a mean G+C content of 41.58%. Interestingly the organism was observed to have the presence of various stress-responsive genes (13, 20U, 16U,160, 39, 17M, 18, 26, and ctc) and genes responsible for surfactin production (srfAA, srfAB, srfAC, and srfAD), biofilm production (epsD, epsE, epsF, epsG, epsH, epsI, epsK, epsL, epsM, epsN, and pel), chemotaxis (cheB_1, cheB_2, cheB_3, cheW_1, cheW_2 cheR, cheD, cheC, cheA, cheY, cheV, and cheB_4), flagella synthesis (flgG_1, flgG_2, flgG_3, flgC, and flgB) as supportive to the drought tolerance. Besides these, the genes responsible for plant growth promotion (PGP), including the genes for nitrogen (nasA, nasB, nasC, nasD, and nasE) and sulfur assimilation (cysL_1&L_2, cysI) and genes for phosphate solubilization (phoA, phoP_1& phoP_2, and phoR) could also be predicted. Along with the same, the genes for catalase, superoxide dismutase, protein homeostasis, cellular fitness, osmoprotectants production, and protein folding could also be predicted from its WGS data. Further pan-genome analysis with plant associated B. safensis strains available in the public databases revealed B. safensis Ni7 to have the presence of a total of 5391 gene clusters. Among these, 3207 genes were identified as core genes, 954 as shell genes and 1230 as cloud genes. This variation in gene content could be taken as an indication of evolution of strains of Bacillus safensis as per specific conditions and hence in the case of B. safensis Ni7 its role in habitat adaptation of plant is well expected. This diversity in endophytic bacterial genes may attribute its role to support the plant system to cope up with stress conditions. Overall, the study provides genomic evidence on Bacillus safensis Ni7 as a stress alleviating microbial partner in plants.


Assuntos
Bacillus , Biofilmes , Secas , Endófitos , Genoma Bacteriano , Estresse Fisiológico , Endófitos/genética , Endófitos/metabolismo , Endófitos/fisiologia , Bacillus/genética , Bacillus/metabolismo , Bacillus/fisiologia , Biofilmes/crescimento & desenvolvimento , Metabolômica , Sequenciamento Completo do Genoma , Genômica , Composição de Bases , Capsicum/microbiologia
16.
Sci Rep ; 14(1): 14691, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926509

RESUMO

Pepper agronomic traits serve as pivotal indicators for characterizing germplasm attributes and correlations. It is important to study differential genotypic variation through phenotypic differences of target traits. Whole genome resequencing was used to sequence the whole genome among different individuals of species with known reference genomes and annotations, and based on this, differential analyses of individuals or populations were carried out to identify SNPs for agronomic traits related to pepper. This study conducted a genome-wide association study encompassing 26 key agronomic traits in 182 upward-growing fruits of C. frutescens and C. annuum. The population structure (phylogenetics, population structure, population principal component analysis, genetic relationship) and linkage disequilibrium analysis were realized to ensure the accuracy and reliability of GWAS results, and the optimal statistical model was determined. A total of 929 SNPs significantly associated with 26 agronomic traits, were identified, alongside the detection of 519 candidate genes within 100 kb region adjacent to these SNPs. Additionally, through gene annotation and expression pattern scrutiny, genes such as GAUT1, COP10, and DDB1 correlated with fruit traits in Capsicum frutescens and Capsicum annuum were validated via qRT-PCR. In the CH20 (Capsicum annuum) and YB-4 (Capsicum frutescens) cultivars, GAUT1 and COP10 were cloned with cDNA lengths of 1065 bp and 561 bp, respectively, exhibiting only a small number of single nucleotide variations and nucleotide deletions. This validation provides a robust reference for molecular marker-assisted breeding of pepper agronomic traits, offering both genetic resources and theoretical foundations for future endeavors in molecular marker-assisted breeding for pepper.


Assuntos
Capsicum , Frutas , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Fenótipo , Locos de Características Quantitativas , Filogenia , Genoma de Planta
17.
Sci Rep ; 14(1): 14801, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926600

RESUMO

Several factors, such as pruning and phytohormones, have demonstrated an influence on both the quantity and quality in the bell pepper. A factorial experiment using a completely randomized design was conducted on the Lumos yellow bell in a greenhouse. Treatments were the fruit pruning (0, 10, and 30%) and foliar application of phytohormones auxin (AUX) and gibberellic acid (GA3) at concentrations of 10 µM AUX, 10 µM GA3, 10 µM AUX + 10 µM GA3+, and 20 µM AUX + 10 µM GA3 along with controls. The plants were sprayed with phytohormones in four growth stages (1: flowering stage when 50% of the flowers were on the plant, 2: fruiting stage when 50% of the fruits were the size of peas, 3: fruit growth stage when 50% of the fruits had reached 50% of their growth, and 4: ripening stage when 50% of the fruits were at color break). The results of the present investigation showed that pruning rate of 30% yielded the highest flesh thickness and vitamin C content, decreased seed count and hastened fruit ripening. The use of GA3 along with AUX has been observed to augment diverse fruit quality characteristics. According to the results, the application of 10% pruning in combination with 20 µM AUX and 10 µM GA3 demonstrated the most significant levels of carotenoids, chlorophyll, and fruit length. The experimental group subjected to the combined treatment of 30% pruning and 10 µM AUX + 10 µM GA3 showed the most noteworthy levels of vitamin C, fruit weight, and fruit thickness. The groups that received the 10 µM GA3 and 20 µM AUX + 10 µM GA3 treatments exhibited the most favorable fruit flavor. According to the research results, the implementation of hormonal treatments 10 µM AUX and 10 µM AUX + 10 µM GA3 in combination with a 30% pruning strategy resulted in the most advantageous yield of bell peppers.


Assuntos
Capsicum , Frutas , Giberelinas , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Capsicum/crescimento & desenvolvimento , Capsicum/efeitos dos fármacos , Capsicum/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia
18.
Genes (Basel) ; 15(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38927667

RESUMO

The Cucumber mosaic virus (CMV) presents a significant threat to pepper cultivation worldwide, leading to substantial yield losses. We conducted a transcriptional comparative study between CMV-resistant (PBC688) and -susceptible (G29) pepper accessions to understand the mechanisms of CMV resistance. PBC688 effectively suppressed CMV proliferation and spread, while G29 exhibited higher viral accumulation. A transcriptome analysis revealed substantial differences in gene expressions between the two genotypes, particularly in pathways related to plant-pathogen interactions, MAP kinase, ribosomes, and photosynthesis. In G29, the resistance to CMV involved key genes associated with calcium-binding proteins, pathogenesis-related proteins, and disease resistance. However, in PBC688, the crucial genes contributing to CMV resistance were ribosomal and chlorophyll a-b binding proteins. Hormone signal transduction pathways, such as ethylene (ET) and abscisic acid (ABA), displayed distinct expression patterns, suggesting that CMV resistance in peppers is associated with ET and ABA. These findings deepen our understanding of CMV resistance in peppers, facilitating future research and variety improvement.


Assuntos
Capsicum , Cucumovirus , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Cucumovirus/genética , Cucumovirus/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Capsicum/virologia , Capsicum/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Etilenos/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia
19.
Biochem J ; 481(13): 883-901, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38884605

RESUMO

Catalase is a major antioxidant enzyme located in plant peroxisomes that catalyzes the decomposition of H2O2. Based on our previous transcriptomic (RNA-Seq) and proteomic (iTRAQ) data at different stages of pepper (Capsicum annuum L.) fruit ripening and after exposure to nitric oxide (NO) enriched atmosphere, a broad analysis has allowed us to characterize the functioning of this enzyme. Three genes were identified, and their expression was differentially modulated during ripening and by NO gas treatment. A dissimilar behavior was observed in the protein expression of the encoded protein catalases (CaCat1-CaCat3). Total catalase activity was down-regulated by 50% in ripe (red) fruits concerning immature green fruits. This was corroborated by non-denaturing polyacrylamide gel electrophoresis, where only a single catalase isozyme was identified. In vitro analyses of the recombinant CaCat3 protein exposed to peroxynitrite (ONOO-) confirmed, by immunoblot assay, that catalase underwent a nitration process. Mass spectrometric analysis identified that Tyr348 and Tyr360 were nitrated by ONOO-, occurring near the active center of catalase. The data indicate the complex regulation at gene and protein levels of catalase during the ripening of pepper fruits, with activity significantly down-regulated in ripe fruits. Nitration seems to play a key role in this down-regulation, favoring an increase in H2O2 content during ripening. This pattern can be reversed by the exogenous NO application. While plant catalases are generally reported to be tetrameric, the analysis of the protein structure supports that pepper catalase has a favored quaternary homodimer nature. Taken together, data show that pepper catalase is down-regulated during fruit ripening, becoming a target of tyrosine nitration, which provokes its inhibition.


Assuntos
Capsicum , Catalase , Frutas , Óxido Nítrico , Proteínas de Plantas , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/enzimologia , Capsicum/metabolismo , Catalase/metabolismo , Catalase/genética , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Frutas/enzimologia , Frutas/efeitos dos fármacos , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Ácido Peroxinitroso/metabolismo
20.
Theor Appl Genet ; 137(7): 161, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874630

RESUMO

KEY MESSAGE: CaPCR1 (Capana12g002165) was a candidate gene regulating fruit concave/pointed tip shape in pepper. The concave shape of the fruit tip in pepper plants is highly susceptible to drought and low temperature stresses, resulting in the appearance of a pointed tip fruit, which affects its commercial value. However, few studies on the process of fruit tip development and regulatory genes in pepper have been reported. Herein, the developmental process of the ovary before anthesis, especially changes in the shape of the ovary tip, was studied in detail. The results showed that the final fruit tip shape was consistent with the ovary tip shape before anthesis, and a concave tip shape gradually developed. F4 recombinant inbred lines (RILs) were constructed to map the genes regulating fruit tip shape through hybridization of the LRS and SBS pepper inbred lines. CaPCR1 (Capana12g002165), an OFP (OVATE Family Protein) family gene, was located in the candidate region on chr12. Three SNPs were found in the protein coding sequence of CaPCR1 between SBS and LRS, but only one SNP led to amino acid variation. Sequence variations, including base replacements, deletions and insertions, were also detected in the gene promoter region. The relative expression level of the CaPCR1 gene was significantly greater in the concave tip ovary than in the pointed tip ovary. qRT‒PCR analysis revealed that the CaPCR1 gene was expressed mainly in the gynoecium, placenta and green fruit pericarp, which was consistent with its function in ovary and fruit development. Taken together, these results suggested that CaPCR1 is a candidate gene involved in fruit tip shape determination in pepper.


Assuntos
Capsicum , Frutas , Proteínas de Plantas , Polimorfismo de Nucleotídeo Único , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapeamento Cromossômico , Genes de Plantas , Fenótipo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...