Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.188
Filtrar
1.
Gene ; 806: 145935, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34478821

RESUMO

Soluble molecules of programmed death ligand 1 (sPD-L1) are known to modulate T-cell depletion, an important mechanism of hepatitis B virus (HBV) persistence and liver disease progression. In addition, PD-L1 polymorphisms in the 3'-UTR can influence PD-L1 expression and have been associated with cancer risk, although not definitively. The purpose of this study was to investigate the association of PD-L1 polymorphisms and circulating levels of sPD-L1 in HBV infection and live disease progression. In this study, five hundred fifty-one HBV infected patients of the three clinically well-defined subgroups chronic hepatitis B (CHB, n = 186), liver cirrhosis (LC, n = 142) and hepatocellular carcinoma (HCC, n = 223) and 240 healthy individuals (HC) were enrolled. PD-L1 polymorphisms (rs2297136 and rs4143815) were genotyped by in-house validated ARMS assays. Logistic regression models were applied in order to determine the association of PD-L1 polymorphisms with HBV infection as well as with progression of related liver diseases. Plasma sPD-L1 levels were quantified by ELISA assays. The PD-L1 rs2297136 AA genotype was associated with HBV infection susceptibility (HBV vs. HC: OR = 1.6; 95%CI = 1.1-2.3; p = 0.0087) and disease progression (LC vs. CHB: OR = 1.8; 95%CI = 1.1-2.9; p = 0.018). Whereas, the rs2297136 GG genotype was a protective factor for HCC development. Plasma sPD-L1 levels were significantly high in HBV patients (p < 0.0001) and higher in the LC followed by CHB and HCC groups. High sPD-L1 levels correlated with increased liver enzymes and with advanced liver disease progression (Child-pugh C > B > A, p < 0.0001) and BCLC classification (BCLC D > C > B > A, p = 0.031). We could, for the first time, conclude that PD-L1 rs2297136 polymorphism and plasma sPD-L1 protein levels associate with HBV infection and HBV-related liver disease progression.


Assuntos
Antígeno B7-H1/genética , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/genética , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Polimorfismo Genético , Regiões 3' não Traduzidas , Adulto , Idoso , Antígeno B7-H1/sangue , Biomarcadores/sangue , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , Progressão da Doença , Feminino , Expressão Gênica , Predisposição Genética para Doença , Vírus da Hepatite B/crescimento & desenvolvimento , Hepatite B Crônica/complicações , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/virologia , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Cirrose Hepática/virologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes
2.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2719-2736, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472291

RESUMO

Primary liver cancer (PLC) is an aggressive tumor and prone to metastasize and recur. According to pathological features, PLC are mainly categorized into hepatocellular carcinoma, intrahepatic cholangiocarcinoma, mixed hepatocellular cholangiocarcinoma, and fibrolamelic hepatocellular carcinoma, etc. At present, surgical resection, radiotherapy and chemotherapy are still the main treatments for PLC, but the specificities are poor and the clinical effects are limited with a 5-year overall survival rate of 18%. Liver cancer stem cells (LCSCs) are a specific cell subset existing in liver cancer tissues. They harbor the capabilities of self-renewal and strong tumorigenicity, driving tumor initiation, metastasis, drug resistance and recurrence of PLC. Therefore, the identification of molecular markers and the illustration of mechanisms for stemness maintenance of LCSCs can not only reveal the molecular mechanisms of PLC tumorigenesis, but also lay a theoretical foundation for the molecular classification, prognosis evaluation and targeted therapy of PLC. The latest research showed that the combination of 5-fluorouracil and CD13 inhibitors could inhibit the proliferation of CD13+ LCSCs, thereby reducing overall tumor burden. Taken together, LCSCs could be the promising therapeutic targets of PLC in the future. This review summarizes the latest progress in molecular markers, mechanisms for stemness maintenance and targeted therapies of LCSCs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Células-Tronco Neoplásicas , Prognóstico
3.
Medicine (Baltimore) ; 100(35): e27187, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477178

RESUMO

ABSTRACT: It is well-known that microRNAs are able to regulate the expression of target mRNAs through complementary base-pairing to their 3'-untranslated regions (3'UTR) sequences. This study aimed to investigate whether single nucleotide polymorphisms resided in the 3'UTR sequences in patients with chronic hepatitis B viruses (HBV) infection are associated with the development and metastasis of hepatocellular carcinoma (HCC). Seventeen single nucleotide polymorphisms in the 3'UTR sequence of 10 genes regulated or affected by hepatitis B virus X protein were found by bioinformatics methods. Two hundred fifteen patients with HBV-related HCC and 216 patients with chronic HBV infection were recruited. Through case-control study, only found that the von Hippel-Lindau gene rs1642742 (G>A) may be associated with the occurrence and metastasis of HCC. The ORs of the frequencies of rs1642742 A allele versus G allele were 1.424 (P = .038, 95% confidence interval [CI] = 1.019-1.989) between HBV-related HCC and chronic HBV infection group and were 2.004 (P = .037, 95%CI = 1.031-3.895) between tumor metastasis and non-metastasis group, respectively. Through multivariate regression analysis, we also found that rs1642742 AA genotype was an independent risk factor for tumor metastasis (odds ratio = 2.227, 95% CI = 1.043-4.752, P = .038) in HBV-related HCC group. Our study suggested that Von Hippel-Lindau rs1642742 contributed to susceptibility to developing HCC and correlated with tumor metastasis.


Assuntos
Carcinoma Hepatocelular/genética , Hepatite B Crônica/complicações , Neoplasias Hepáticas/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Adulto , Carcinoma Hepatocelular/virologia , Feminino , Humanos , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Polimorfismo de Nucleotídeo Único
4.
FASEB J ; 35(9): e21814, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369624

RESUMO

Alteration in glucose homeostasis during cancer metabolism is an important phenomenon. Though several important transcription factors have been well studied in the context of the regulation of metabolic gene expression, the role of epigenetic readers in this regard remains still elusive. Epigenetic reader protein transcription factor 19 (TCF19) has been recently identified as a novel glucose and insulin-responsive factor that modulates histone posttranslational modifications to regulate glucose homeostasis in hepatocytes. Here we report that TCF19 interacts with a non-histone, well-known tumor suppressor protein 53 (p53) and co-regulates a wide array of metabolic genes. Among these, the p53-responsive carbohydrate metabolic genes Tp53-induced glycolysis and apoptosis regulator (TIGAR) and Cytochrome C Oxidase assembly protein 2 (SCO2), which are the key regulators of glycolysis and oxidative phosphorylation respectively, are under direct regulation of TCF19. Remarkably, TCF19 can form different transcription activation/repression complexes which show substantial overlap with that of p53, depending on glucose-mediated variant stress situations as obtained from IP/MS studies. Interestingly, we observed that TCF19/p53 complexes either have CBP or HDAC1 to epigenetically program the expression of TIGAR and SCO2 genes depending on short-term high glucose or prolonged high glucose conditions. TCF19 or p53 knockdown significantly altered the cellular lactate production and led to increased extracellular acidification rate. Similarly, OCR and cellular ATP production were reduced and mitochondrial membrane potential was compromised upon depletion of TCF19 or p53. Subsequently, through RNA-Seq analysis from patients with hepatocellular carcinoma, we observed that TCF19/p53-mediated metabolic regulation is fundamental for sustenance of cancer cells. Together the study proposes that TCF19/p53 complexes can regulate metabolic gene expression programs responsible for mitochondrial energy homeostasis and stress adaptation.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mitocôndrias/genética , Chaperonas Moleculares/genética , Monoéster Fosfórico Hidrolases/genética , Fatores de Transcrição/genética , Transcrição Genética/genética , Proteína Supressora de Tumor p53/genética , Adaptação Biológica/genética , Apoptose/genética , Linhagem Celular Tumoral , Metabolismo Energético/genética , Glucose/genética , Células Hep G2 , Homeostase/genética , Humanos , Potencial da Membrana Mitocondrial/genética , Estresse Fisiológico/genética , Ativação Transcricional/genética
5.
Mol Biol (Mosk) ; 55(4): 676-682, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34432785

RESUMO

Hepatocellular Carcinoma (HCC) is the fourth leading cause of cancer-related death in the World. Epidermal Growth Factor Receptor (EGFR) pathway plays an important role in HCC tumorigenesis. In the tumor microenvironment of HCC, the expression of EGF is aberrant. Here we describe the EGF-dependent regulation of URGCP gene in Human Hepatoma cancer cells (Hep3B). The effect of EGF cytokine on Hep3B proliferation was shown using MTT method. EGF-mediated URGCP expression was determined at mRNA and protein level with qRT-PCR analyses and Western blotting method, respectively. Different lengths of URGCP promoter constructs were transient transfected in to Hep3B cells and the basal promoter activities were determined in the presence of EGF. In addition, some pathway analyses were performed to find out the mechanism of EGF mediated up-regulation of the URGCP gene. In the presence of EGF, URGCP expression increases in concentration and time dependent manner. EGF mediated URGCP up-regulation might depend on a cis-acting element located between -344 and -482 positions in its promoter.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Neoplasias , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/genética , Humanos , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , Oncogenes , Microambiente Tumoral , Regulação para Cima
6.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445462

RESUMO

Liver cancer is the sixth most common cancer worldwide with high morbidity and mortality. Programmed death ligand 1 (PD-L1) is a major ligand of programmed death 1 receptor (PD1), and PD1/PD-L1 checkpoint acts as a negative regulator of the immune system. Cancers evade the host's immune defense via PD-L1 expression. This study aimed to investigate the effects of tumor-related cytokines, interferon gamma (IFNγ), and tumor necrosis factor alpha (TNFα) on PD-L1 expression in human hepatocellular carcinoma cells, HepG2. Furthermore, as atorvastatin, a cholesterol-lowering agent, is documented for its immunomodulatory properties, its effect on PD-L1 expression was investigated. In this study, through real-time RT-PCR, Western blot, and immunocytochemistry methods, PD-L1 expression in both mRNA and protein levels was found to be synergistically upregulated in HepG2 by a combination of IFNγ and TNFα, and STAT1 activation was mainly responsible for that synergistic effect. Next, atorvastatin can inhibit the induction of PD-L1 by either IFNγ alone or IFNγ/TNFα combination treatment in HepG2 cells. In conclusion, in HepG2 cells, expression of PD-L1 was augmented by cytokines in the tumor microenvironment, and the effect of atorvastatin on tumor immune response through inhibition of PD-L1 induction should be taken into consideration in cancer patients who have been prescribed atorvastatin.


Assuntos
Atorvastatina/farmacologia , Antígeno B7-H1/imunologia , Carcinoma Hepatocelular/imunologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/imunologia , Proteínas de Neoplasias/imunologia , Antígeno B7-H1/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias/genética
7.
Nat Commun ; 12(1): 4878, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385447

RESUMO

A postprandial increase of translation mediated by eukaryotic Initiation Factor 6 (eIF6) occurs in the liver. Its contribution to steatosis and disease is unknown. In this study we address whether eIF6-driven translation contributes to disease progression. eIF6 levels increase throughout the progression from Non-Alcoholic Fatty Liver Disease (NAFLD) to hepatocellular carcinoma. Reduction of eIF6 levels protects the liver from disease progression. eIF6 depletion blunts lipid accumulation, increases fatty acid oxidation (FAO) and reduces oncogenic transformation in vitro. In addition, eIF6 depletion delays the progression from NAFLD to hepatocellular carcinoma, in vivo. Mechanistically, eIF6 depletion reduces the translation of transcription factor C/EBPß, leading to a drop in biomarkers associated with NAFLD progression to hepatocellular carcinoma and preserves mitochondrial respiration due to the maintenance of an alternative mTORC1-eIF4F translational branch that increases the expression of transcription factor YY1. We provide proof-of-concept that in vitro pharmacological inhibition of eIF6 activity recapitulates the protective effects of eIF6 depletion. We hypothesize the existence of a targetable, evolutionarily conserved translation circuit optimized for lipid accumulation and tumor progression.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/genética , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Clofazimina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Inativação Gênica , Humanos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Fatores de Iniciação de Peptídeos/antagonistas & inibidores , Fatores de Iniciação de Peptídeos/metabolismo
8.
Bioengineered ; 12(1): 4054-4069, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34369278

RESUMO

During the pandemic of the coronavirus disease 2019, there exist quite a few studies on angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 infection, while little is known about ACE2 in hepatocellular carcinoma (HCC). The detailed mechanism among ACE2 and HCC still remains unclear, which needs to be further investigated. In the current study with a total of 6,926 samples, ACE2 expression was downregulated in HCC compared with non-HCC samples (standardized mean difference = -0.41). With the area under the curve of summary receiver operating characteristic = 0.82, ACE2 expression showed a better ability to differentiate HCC from non-HCC. The mRNA expression of ACE2 was related to the age, alpha-fetoprotein levels and cirrhosis of HCC patients, and it was identified as a protected factor for HCC patients via Kaplan-Meier survival, Cox regression analyses. The potential molecular mechanism of ACE2 may be relevant to catabolic and cell division. In all, decreasing ACE2 expression can be seen in HCC, and its protective role for HCC patients and underlying mechanisms were explored in the study.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Carcinoma Hepatocelular/genética , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , Receptores Virais/genética , alfa-Fetoproteínas/genética , Fatores Etários , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , Área Sob a Curva , COVID-19/virologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/mortalidade , Cirrose Hepática/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/classificação , Proteínas de Neoplasias/metabolismo , Fatores de Proteção , Mapeamento de Interação de Proteínas , Curva ROC , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Análise de Sobrevida , alfa-Fetoproteínas/metabolismo
9.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445559

RESUMO

Scutellarein (SCU) is a well-known flavone with a broad range of biological activities against several cancers. Human hepatocellular carcinoma (HCC) is major cancer type due to its poor prognosis even after treatment with chemotherapeutic drugs, which causes a variety of side effects in patients. Therefore, efforts have been made to develop effective biomarkers in the treatment of HCC in order to improve therapeutic outcomes using natural based agents. The current study used SCU as a treatment approach against HCC using the HepG2 cell line. Based on the cell viability assessment up to a 200 µM concentration of SCU, three low-toxic concentrations of (25, 50, and 100) µM were adopted for further investigation. SCU induced cell cycle arrest at the G2/M phase and inhibited cell migration and proliferation in HepG2 cells in a dose-dependent manner. Furthermore, increased PTEN expression by SCU led to the subsequent downregulation of PI3K/Akt/NF-κB signaling pathway related proteins. In addition, SCU regulated the metastasis with EMT and migration-related proteins in HepG2 cells. In summary, SCU inhibits cell proliferation and metastasis in HepG2 cells through PI3K/Akt/NF-κB signaling by upregulation of PTEN, suggesting that SCU might be used as a potential agent for HCC therapy.


Assuntos
Apigenina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais Cultivadas
10.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445212

RESUMO

Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs with covalent closed loop structure. Researchers have revealed that circRNAs play an important role in human diseases. As experimental identification of interactions between circRNA and disease is time-consuming and expensive, effective computational methods are an urgent need for predicting potential circRNA-disease associations. In this study, we proposed a novel computational method named GATNNCDA, which combines Graph Attention Network (GAT) and multi-layer neural network (NN) to infer disease-related circRNAs. Specially, GATNNCDA first integrates disease semantic similarity, circRNA functional similarity and the respective Gaussian Interaction Profile (GIP) kernel similarities. The integrated similarities are used as initial node features, and then GAT is applied for further feature extraction in the heterogeneous circRNA-disease graph. Finally, the NN-based classifier is introduced for prediction. The results of fivefold cross validation demonstrated that GATNNCDA achieved an average AUC of 0.9613 and AUPR of 0.9433 on the CircR2Disease dataset, and outperformed other state-of-the-art methods. In addition, case studies on breast cancer and hepatocellular carcinoma showed that 20 and 18 of the top 20 candidates were respectively confirmed in the validation datasets or published literature. Therefore, GATNNCDA is an effective and reliable tool for discovering circRNA-disease associations.


Assuntos
Neoplasias da Mama , Carcinoma Hepatocelular , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Neoplasias Hepáticas , Redes Neurais de Computação , RNA Circular , RNA Neoplásico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
11.
World J Gastroenterol ; 27(28): 4667-4686, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34366628

RESUMO

BACKGROUND: Sorafenib is the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Y-box binding protein 1 (YB-1) is closely correlated with tumors and drug resistance. However, the relationship between YB-1 and sorafenib resistance and the underlying mechanism in HCC remain unknown. AIM: To explore the role and related mechanisms of YB-1 in mediating sorafenib resistance in HCC. METHODS: The protein expression levels of YB-1 were assessed in human HCC tissues and adjacent nontumor tissues. Next, we constructed YB-1 overexpression and knockdown hepatocarcinoma cell lines with lentiviruses and stimulated these cell lines with different concentrations of sorafenib. Then, we detected the proliferation and apoptosis in these cells by terminal deoxynucleotidyl transferase dUTP nick end labeling, flow cytometry and Western blotting assays. We also constructed a xenograft tumor model to explore the effect of YB-1 on the efficacy of sorafenib in vivo. Moreover, we studied and verified the specific molecular mechanism of YB-1 mediating sorafenib resistance in hepatoma cells by digital gene expression sequencing (DGE-seq). RESULTS: YB-1 protein levels were found to be higher in HCC tissues than in corresponding nontumor tissues. YB-1 suppressed the effect of sorafenib on cell proliferation and apoptosis. Consistently, the efficacy of sorafenib in vivo was enhanced after YB-1 was knocked down. Furthermore, KEGG pathway enrichment analysis of DGE-seq demonstrated that the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was essential for the sorafenib resistance induced by YB-1. Subsequently, YB-1 interacted with two key proteins of the PI3K/Akt signaling pathway (Akt1 and PIK3R1) as shown by searching the BioGRID and HitPredict websites. Finally, YB-1 suppressed the inactivation of the PI3K/Akt signaling pathway induced by sorafenib, and the blockade of the PI3K/Akt signaling pathway by LY294002 mitigated YB-1-induced sorafenib resistance. CONCLUSION: Overall, we concluded that YB-1 augments sorafenib resistance through the PI3K/Akt signaling pathway in HCC and suggest that YB-1 is a key drug resistance-related gene, which is of great significance for the application of sorafenib in advanced-stage HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Proteínas de Transporte , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sorafenibe/farmacologia , Proteína 1 de Ligação a Y-Box
12.
J Biomed Nanotechnol ; 17(7): 1284-1292, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34446132

RESUMO

This study aimed to introduce nano-gold PCR for detection of TERT methylation, and explore the correlation between TERT methylation and prognosis of hepatocellular carcinoma (HCC). From March 2016 to March 2018, 154 HBV carriers treated in our hospital were enrolled in the study and divided into HCC (68 cases), cirrhosis (45 cases) and chronic hepatitis (CH) groups (41 cases) based on clinical disease. HCC patients were further divided into methylation (30 cases) and non-methylation (38 cases) subgroup based on methylation status of the TERT. TERT methylation of HCC specimens were 44.12% and 35.24% by nano-PCR and conventional PCR, respectively. The TERT methylation and TERT expression in HCC specimens were higher than for cirrhosis and CH specimens. A significant positive correlation was observed between TERT methylation and TERT expression. AFP, Edmondson classification, tumor size, hilar lymph node and intrahepatic metastasis, and TNM staging in the methylation group were higher than in non-methylation group. Further, overall survival and progression-free survival were significantly shorter. Nano-gold PCR is more sensitive in detecting TERT methylation. As CHB progresses, TERT methylation increases. Greater methylation of the gene is associated with worse prognosis in HCC patients.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Telomerase , Carcinoma Hepatocelular/genética , Metilação de DNA , Ouro , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Humanos , Neoplasias Hepáticas/genética , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Telomerase/genética
13.
Biomed Res Int ; 2021: 3445970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458365

RESUMO

Mounting evidence has recently shown that role of long noncoding RNA is critical in many human cancers. lncRNA GSTM3TV2 was first proven to play a vital role in pancreatic cancer. However, the mechanism of lncRNA GSTM3TV2 in hepatocellular carcinoma (HCC) is still uncovered. Here, we object to distinguish the expression of lncRNA GSTM3TV2 and reveal its mechanistic relationship with HCC. We observed that the expression of lncRNA GSTM3TV2 and FOSL2 were upregulated in HCC. Knockdown of lncRNA GSTM3TV2 significantly inhibited cell proliferation. Meanwhile, the migration and invasion of HCC cells were greatly decreased by the downregulated lncRNA GSTM3TV2. The luciferase reporter assays showed that lncRNA GSTM3TV2 could be directly bound to miR-597, and the level of miR-597 was also decreased in the tumor tissues. lncRNA GSTM3TV2 could stabilize FOSL2 expression, resulting in the oncogenic properties of lncRNA GSTM3TV2 in HCC. Our study indicated the oncogenic activities of lncRNA GSTM3TV2 and emphasized the role of the miR-597/FOSL2 signaling pathway.


Assuntos
Carcinoma Hepatocelular/metabolismo , Antígeno 2 Relacionado a Fos/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Antígeno 2 Relacionado a Fos/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Transdução de Sinais , Regulação para Cima
14.
J Transl Med ; 19(1): 359, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412629

RESUMO

BACKGROUND: Although an association between the cytochrome P4502D6 (CYP2D6) *10 (100C>T) polymorphism and hepatocellular carcinoma (HCC) is known, the mechanism remains unclear. Here we aimed to explore mechanisms of CYP2D6*10 (100C>T) polymorphism conferring to HCC, and screen markers for HCC. METHODS: Label-free global proteome profiling with 34 normal livers and peritumor tissue from 61 HCC patients was performed, and angiopoietin-like protein-6 (ANGPTL6) was evaluated in 2 liver samples validation cohorts and 2 blood specimens validation cohorts. RESULTS: We found a significantly decreased frequency of TT in HCC patients which reduced HCC susceptibility by 69.2% and was accompanied by lowered enzymatic activity for CYP2D6. Proteomic analysis revealed 1342 differentially expressed proteins (DEPs) that were associated with HCC and 88 DEPs were identified as 100 TT-related proteins, likely underlying the susceptibility to HCC. Twenty-two upregulated DEPs and 66 downregulated DEPs were mainly related to lipid metabolism and the extracellular matrix, respectively. High ANGPTL6 was associated with a higher risk to HCC and worse prognosis. ANGPTL6 was both an independent risk factor and an independent prognostic factor for HCC and exhibited strong potential for predicting HCC occurrence, with comparable AUC values and higher sensitivity compared with alpha-fetoprotein. CONCLUSIONS: The TT genotype-associated decreased risk of HCC appears to be related to lowered CYP2D6 activity and altered protein expression in the tumor microenvironment, and ANGPTL6 is a promising new diagnostic and prognostic biomarker for HCC. Our findings reveal new mechanistic insights for polymorphisms related to HCC risk and provide avenues for screening for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Semelhantes a Angiopoietina/genética , Biomarcadores , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Citocromo P-450 CYP2D6/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Prognóstico , Proteômica , Microambiente Tumoral
15.
Biomed Res Int ; 2021: 4873678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337013

RESUMO

LIHC (liver hepatocellular carcinoma) mostly occurs in patients with chronic liver disease. It is primarily induced by a vicious cycle of liver injury, inflammation, and regeneration that usually last for decades. The G protein nucleolar 2 (GNL2), as a protein-encoding gene, is also known as NGP1, Nog2, Nug2, Ngp-1, and HUMAUANTIG. Few reports are shown towards the specific biological function of GNL2. Meanwhile, it is still unclear whether it is related to the pathogenesis of carcinoma up to date. Here, our study attempts to validate the role and function of GNL2 in LIHC via multiple databases and functional assays. After analysis of gene expression profile from The Cancer Genome Atlas (TCGA) database, GNL2 was largely heightened in LIHC, and its overexpression displayed a close relationship with different stages and poor prognosis of carcinoma. After enrichment analysis, the data revealed that the genes coexpressed with GNL2 probably participated in ribosome biosynthesis which was essential for unrestricted growth of carcinoma. Cell functional assays presented that GNL2 knockdown by siRNA in LIHC cells MHCC97-H and SMCC-7721 greatly reduced cell proliferation, migration, and invasion ability. All in all, these findings capitulated that GNL2 could be a promising treatment target and prognosis biomarker for LIHC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Proteínas de Ligação ao GTP/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Proteínas de Ligação ao GTP/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Prognóstico , Reprodutibilidade dos Testes , Transdução de Sinais/genética
16.
Biomed Res Int ; 2021: 8849415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337056

RESUMO

Hepatocellular carcinoma (HCC) is a common malignant tumor of the digestive system, and its early asymptomatic characteristic increases the difficulty of diagnosis and treatment. This study is aimed at obtaining some novel biomarkers with diagnostic and prognostic meaning and may find out potential therapeutic targets for HCC. We screen differentially expressed genes (DEGs) from the HCC gene expression profile GSE14520 using GEO2R. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted by using the clusterProfiler software while a protein-protein interaction (PPI) network was performed based on the STRING database. Then, prognosis analysis of hub genes was conducted using The Cancer Genome Atlas (TCGA) database. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to further verify the expression of hub genes and explore the correlation between gene expression and clinicopathological parameters. A total of 1053 DEGs were captured, containing 497 upregulated genes and 556 downregulated genes. GO and KEGG analysis indicated that the downregulated DEGs were mainly enriched in the fatty acid catabolic process while upregulated DEGs were primarily enriched in the cell cycle. Simultaneously, ten hub genes (CYP3A4, UGT1A6, AOX1, UGT1A4, UGT2B15, CDK1, CCNB1, MAD2L1, CCNB2, and CDC20) were identified by the PPI network. Five prognosis-related hub genes (CYP3A4, CDK1, CCNB1, MAD2L1, and CDC20) were uncovered by the survival analysis based on TCGA database. The ten hub genes were further validated by qRT-PCR using samples obtained from our hospital. The prognosis-related hub genes such as CYP3A4, CDK1, CCNB1, MAD2L1, and CDC20 could be considered potential diagnosis biomarkers and prognosis targets for HCC. We also use Oncomine for further verification, and we found CCNB1, CCNB2, CDK1, and CYP3A4 which were highly expressed in HCC. Meanwhile, CCNB1, CCNB2, and CDK1 are highly expressed in almost all cancer types, which may play an important role in cancer. Still, further functional study should be conducted to explore the underlying mechanism and biological effect in the near future.


Assuntos
Carcinoma Hepatocelular/genética , Biologia Computacional , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , Transdução de Sinais/genética , Adulto , Idoso , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes , Análise de Sobrevida , Transcriptoma , Regulação para Cima/genética
17.
BMC Genomics ; 22(1): 592, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348664

RESUMO

BACKGROUND: Genetic aberrations in hepatocellular carcinoma (HCC) are well known, but the functional consequences of such aberrations remain poorly understood. RESULTS: Here, we explored the effect of defined genetic changes on the transcriptome, proteome and phosphoproteome in twelve tumors from an mTOR-driven hepatocellular carcinoma mouse model. Using Network-based Integration of multi-omiCS data (NetICS), we detected 74 'mediators' that relay via molecular interactions the effects of genetic and miRNA expression changes. The detected mediators account for the effects of oncogenic mTOR signaling on the transcriptome, proteome and phosphoproteome. We confirmed the dysregulation of the mediators YAP1, GRB2, SIRT1, HDAC4 and LIS1 in human HCC. CONCLUSIONS: This study suggests that targeting pathways such as YAP1 or GRB2 signaling and pathways regulating global histone acetylation could be beneficial in treating HCC with hyperactive mTOR signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Preparações Farmacêuticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Transcriptoma
18.
Theranostics ; 11(16): 8092-8111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335982

RESUMO

Active c-Src non-receptor tyrosine kinase localizes to the plasma membrane via N-terminal lipid modification. Membranous c-Src causes cancer initiation and progression. Even though transmembrane 4 L six family member 5 (TM4SF5), a tetraspan(in), can be involved in this mechanism, the molecular and structural influence of TM4SF5 on c-Src remains unknown. Methods: Here, we investigated molecular and structural details by which TM4SF5 regulated c-Src devoid of its N-terminus and how cell-penetrating peptides were able to interrupt c-Src activation via interference of c-Src-TM4SF5 interaction in hepatocellular carcinoma models. Results: The TM4SF5 C-terminus efficiently bound the c-Src SH1 kinase domain, efficiently to the inactively-closed form. The complex involved protein tyrosine phosphatase 1B able to dephosphorylate Tyr530. The c-Src SH1 domain alone, even in a closed form, bound TM4SF5 to cause c-Src Tyr419 and FAK Y861 phosphorylation. Homology modeling and molecular dynamics simulation studies predicted the directly interfacing residues, which were further validated by mutational studies. Cell penetration of TM4SF5 C-terminal peptides blocked the interaction of TM4SF5 with c-Src and prevented c-Src-dependent tumor initiation and progression in vivo. Conclusions: Collectively, these data demonstrate that binding of the TM4SF5 C-terminus to the kinase domain of inactive c-Src leads to its activation. Because this binding can be abolished by cell-penetrating peptides containing the TM4SF5 C-terminus, targeting this direct interaction may be an effective strategy for developing therapeutics that block the development and progression of hepatocellular carcinoma.


Assuntos
Proteína Tirosina Quinase CSK/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas de Membrana/metabolismo , Proteína Tirosina Quinase CSK/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Genes src/genética , Genes src/fisiologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Peptídeos/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Tetraspaninas/genética , Tetraspaninas/metabolismo
19.
World J Surg Oncol ; 19(1): 241, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389000

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, and due to its complex pathogenic factors, its prognosis is poor. N6-methyladenosine (m6A) RNA methylation plays an important role in the tumorigenesis, progression, and prognosis of many tumors. The m6A RNA methylation regulator small nuclear ribonucleoprotein polypeptide C (SNRPC), which encodes one of the specific protein components of the U1 small nuclear ribonucleoprotein (snRNP) particle, has been proven to be related to the prognosis of patients with HCC. However, the effect of SNRPC on the tumor microenvironment and immunotherapy in HCC remains unclear. CASE PRESENTATION: The HCC RNA-seq profiles in The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases, including 421 LIHC and 440 LIRI-JP samples, respectively, were used in this study. Both the expression of SNRPC in HCC was upregulated in the TCGA and ICGC databases compared to normal tissues. Next, the expression of SNRPC was validated as a risk factor for prognosis by Kaplan-Meier analysis and employed to establish a nomogram with T pathologic stage. By gene set variation (GSVA) analysis and gene set enrichment (GSEA) analysis, we found that SNRPC was mainly related to protein metabolism and the immune process. Furthermore, the estimation of stromal and immune cells in malignant tumor tissues using expression (ESTIMATE), microenvironment cell population counter (MCP-counter), and single sample GSEA (ssGSEA) algorithms revealed that the high-SNRPC group had a lower stromal score, lower abundance of endothelial cells and fibroblasts, and lower immune infiltration. Ultimately, a tumor immune dysfunction and exclusion (TIDE) analysis revealed that patients in the low-SNRPC group may be more sensitive to immune checkpoint inhibitor therapy. CONCLUSION: SNRPC could serve as a promising prognostic and immunotherapeutic marker in HCC and might contribute to new directions and strategies for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adenosina/análogos & derivados , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Células Endoteliais , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Metilação , Prognóstico , RNA/genética , Microambiente Tumoral
20.
Medicine (Baltimore) ; 100(31): e26623, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34397798

RESUMO

BACKGROUND: Cyclin F (CCNF) dysfunction has been implicated in various forms of cancer, offering a new avenue for understanding the pathogenic mechanisms underlying hepatocellular carcinoma (HCC). We aimed to evaluate the role of CCNF in HCC using publicly available data from The Cancer Genome Atlas (TCGA). METHOD: We used TCGA data and Gene Expression Omnibus (GEO) data to analyze the differential expression of CCNF between tumor and adjacent tissues and the relationship between CCNF and clinical characteristics. We compared prognosis of patients with HCC with high and low CCNF expression and constructed receiver operating characteristic (ROC) curves. In addition, we also explored the types of gene mutations in relevant groups and conducted Gene Set Enrichment Analysis (GSEA). RESULTS: The expression of CCNF in liver cancer tissues was significantly increased compared with that in adjacent tissues, and patients with high CCNF expression had a worse prognosis than those with low CCNF expression. Patients with high CCNF expression also had more somatic mutations. High expression of CCNF hampers the prognosis independently. The GSEA showed that the "http://www.gsea-msigdb.org/gsea/msigdb/cards/BIOCARTA_WNT_PATHWAY" Wnt pathway, "http://www.gsea-msigdb.org/gsea/msigdb/cards/BIOCARTA_P53_PATHWAY" P53 pathway, "http://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_PI3K_AKT_MTOR_SIGNALING" PI3K/Akt/mTOR pathway, "http://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_NOTCH_SIGNALING" Notch pathway were enriched in patients with the high CCNF expression phenotype. CONCLUSION: High CCNF expression can be seen as an independent risk factor for poor survival in HCC. Its expression may serve as a target for the diagnosis and treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular/genética , Ciclinas/genética , Neoplasias Hepáticas/genética , Transdução de Sinais/genética , Carcinoma Hepatocelular/metabolismo , Ciclinas/metabolismo , Bases de Dados Genéticas , Feminino , Expressão Gênica , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Fosfatidilinositol 3-Quinase/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Curva ROC , Receptores Notch/metabolismo , Taxa de Sobrevida , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...