Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.925
Filtrar
2.
Chem Biol Interact ; 347: 109599, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34343525

RESUMO

BACKGROUND: Geraniol, a natural monoterpene, is a component of many plant essential oils. It contains many medicinal and pharmacological properties. Doxorubicin is an anticancer drug; however, its clinical usage is limited due to its cumulative and dose-dependent cardiotoxicity. This study investigates geraniol as a protective agent against doxorubicin-induced cardiotoxicity and explores possible underlying mechanisms of action. METHODS: Male Sprague-Dawley rats were allocated into five groups. Groups 1 and 2 were administered saline and geraniol 200 mg/kg/day/orally, respectively, for 15 days. Group 3 was administered intraperitoneal doxorubicin (5 mg/kg/IP on the 5th, 10th and 15th days to achieve a cumulative dose of 15 mg/kg) to induce cardiotoxicity. The fourth and fifth groups were treated with either geraniol 100 mg/kg or 200 mg/kg orally and doxorubicin to equal the doxorubicin dose administered to Group 3. RESULTS: Treatment with geraniol significantly ameliorated cardiac damage and restored serum cardiac injury marker levels in doxorubicin treated animals. Geraniol upregulated Nrf2 and HO-1 expression, elevated total antioxidant capacity, decreased the nuclear accumulation of kappa-light-chain enhancer of activated B cells (NF-κB), decreased the phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), suppressed tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), and interleukin-18 (IL-18) levels, and restored the levels of Bax and caspase-3 and 9 in heart tissue. CONCLUSION: Geraniol may function as a potential activator of nuclear factor erythroid 2-related factor 2 (Nrf2), which subsequently improves Nrf2-dependent antioxidative signaling, diminishes apoptosis and subdues the inflammatory response. The downstream result is protection of the heart from doxorubicin-induced cardiotoxicity.


Assuntos
Monoterpenos Acíclicos/uso terapêutico , Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Cymbopogon/química , Doxorrubicina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Cardiotoxicidade/patologia , Eletrocardiografia/efeitos dos fármacos , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Miocárdio/patologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
3.
Eur J Pharm Sci ; 166: 105977, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34416387

RESUMO

Chemotherapy has several adverse effects to patients, some of which are life-threatening. We hypothesized that Doxorubicin induced microbiome imbalance and intestinal damage may contribute to Doxorubicin induced cardiac dysfunction. Male adult (2-3 months) C57BL/6 mice were administered 3 mg/kg, 5 mg/kg, 7.5 mg/kg,15 mg/kg, 20 mg/kg doses of Doxorubicin. Echocardiography was performed at 7 and 14 days after Doxorubicin administration. 16S rRNA amplicon sequencing was used to characterize microbiome changes. Fecal microbiota transplantation (FMT) was performed to evaluate the role of the microbiota on Doxorubicin induced cardiac dysfunction. Doxorubicin dose dependently increases mortality rate and induces cardiac dysfunction. 5 mg/kg-Doxorubicin significantly induces decreased left ventricular ejection fraction (LVEF) and fraction shortening (FS) as well as increased cardiac fibrosis, inflammation and oxidative stress respond without increasing mortality. 5 mg/kg-Doxorubicin induces significant decreased colorectum length, increased loss of goblet cells, numbers of ulcers and infiltration of lymphocyte clusters and decreased tight junction protein ZO-1, as well as increased plasma endotoxin level measured by ELISA assay. 16S rRNA microbiota analysis shows that Doxorubicin-induced microbiota dysbiosis with decreased community richness compared with normal control mice. FMT to Doxorubicin-5 mg treated mice significantly improved cardiac function by increasing LVEF and FS as well as decreased perivascular and interstitial fibrosis; increased colorectum length, decreased the loss of goblet cells,infiltration of lymphocyte clusters,the number of ulcers and plasma endotoxin level; improved microbiota composition, function and diversity with increased abundance of Alloprevotella, Prevotellaceae_UCG-001 and Rikenellaceae_RC9_gut_group. We find that normal fecal transplantation improves cardiac function, decreases gut damage and alter microbiota composition induced by Doxorubicin. The microbiota appears to contribute to heart-gut interaction.


Assuntos
Microbioma Gastrointestinal , Animais , Cardiotoxicidade , Doxorrubicina/toxicidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Volume Sistólico , Função Ventricular Esquerda
4.
Medicina (Kaunas) ; 57(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34441012

RESUMO

Cardiotoxicity is a well-recognised side effect of cancer-related therapies with a great impact on outcomes and quality of life in the cancer survivor population. The pathogenesis of chemotherapy-induced cardiotoxicity in patients with gastrointestinal cancers involves various molecular mechanisms, and the combined use of various chemotherapies augments the risk of each drug used alone. In terms of cardiotoxicity diagnosis, novel biomarkers, such as troponins, brain natriuretic peptide (BNP), myeloperoxidases and miRNAs have been recently assessed. Echocardiography is a noninvasive imaging method of choice for the primary assessment of chemotherapy-treated patients to generally evaluate the cardiovascular impact of these drugs. Novel echocardiography techniques, like three-dimensional and stress echocardiography, will improve diagnosis efficacy. Cardiac magnetic resonance (CMR) can evaluate cardiac morphology, function and wall structure. Corroborated data have shown the importance of CMR in the early evaluation of patients with gastrointestinal cancers, treated with anticancer drugs, but further studies are required to improve risk stratification in these patients. In this article, we review some important aspects concerning the cardiotoxicity of antineoplastic drugs used in gastrointestinal cancers. We also discuss the mechanism of cardiotoxicity, the role of biomarkers and the imaging methods used in its detection.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Neoplasias , Antineoplásicos/efeitos adversos , Biomarcadores , Cardiotoxicidade , Ecocardiografia , Neoplasias Gastrointestinais/tratamento farmacológico , Humanos , Neoplasias/tratamento farmacológico , Qualidade de Vida
5.
Life Sci ; 283: 119849, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343539

RESUMO

AIMS: Cardiotoxicity of doxorubicin frequently complicates treatment outcome. Aberrantly activated calcium/calmodulin pathway can eventually trigger signaling cascades that mediate cardiotoxicity. Therefore, we tested the hypothesis that trifluoperazine, a strong calmodulin antagonist, may alleviate this morbidity. MATERIALS AND METHODS: Heart failure and cardiotoxicity were assessed via echocardiography, PCR, immunohistochemistry, histopathology, Masson's trichrome staining and transmission electron microscopy. Whereas liver and kidney structural and functional alterations were evaluated histopathologically and biochemically. KEY FINDINGS: Results revealed that combination treatment with trifluoperazine could overcome doxorubicin-induced heart failure with reduced ejection fraction. Moreover, heart weight/body weight ratio and histopathological examination showed that trifluoperazine mitigated doxorubicin-induced cardiac atrophy, inflammation and myofibril degeneration. Transmission electron microscopy further confirmed the marked restoration of the left ventricular ultrastructures by trifluoperazine pretreatment. In addition, Masson's trichrome staining revealed that trifluoperazine could significantly inhibit doxorubicin-induced left ventricular remodeling by fibrosis. Of note, doxorubicin induced the expression of myocardial nuclear NF-κB-p65 and caspase-3 which were markedly inhibited by trifluoperazine, suggesting that cardioprotection conferred by trifluoperazine involved, at least in part, suppression of NF-κB and apoptosis. Furthermore, biochemical and histopathological examinations showed that trifluoperazine improved doxorubicin-induced renal and hepatic impairments both functionally and structurally. SIGNIFICANCE: In conclusion, the present in vivo study is the first to provide evidences underscoring the protective effects of trifluoperazine that may pave the way for repurposing this calmodulin antagonist in ameliorating organ toxicity by doxorubicin.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotoxicidade , Cardiotoxinas/efeitos adversos , Doxorrubicina/efeitos adversos , Miocárdio/metabolismo , Fator de Transcrição RelA/metabolismo , Trifluoperazina/farmacologia , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Cardiotoxinas/farmacologia , Caspase 3/metabolismo , Doxorrubicina/farmacologia , Masculino , Camundongos , Miocárdio/patologia
6.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361024

RESUMO

The use of chemicals to boost food production increases as human consumption also increases. The insectidal, nematicidal and acaricidal chemical carbofuran (CAF), is among the highly toxic carbamate pesticide used today. Alongside, copper oxide nanoparticles (CuO) are also used as pesticides due to their broad-spectrum antimicrobial activity. The overuse of these pesticides may lead to leaching into the aquatic environments and could potentially cause adverse effects to aquatic animals. The aim of this study is to assess the effects of carbofuran and copper oxide nanoparticles into the cardiovascular system of zebrafish and unveil the mechanism behind them. We found that a combination of copper oxide nanoparticle and carbofuran increases cardiac edema in zebrafish larvae and disturbs cardiac rhythm of zebrafish. Furthermore, molecular docking data show that carbofuran inhibits acetylcholinesterase (AChE) activity in silico, thus leading to impair cardiac rhythms. Overall, our data suggest that copper oxide nanoparticle and carbofuran combinations work synergistically to enhance toxicity on the cardiovascular performance of zebrafish larvae.


Assuntos
Carbofurano/toxicidade , Inibidores da Colinesterase/toxicidade , Cobre/toxicidade , Coração/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Praguicidas/toxicidade , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Sítios de Ligação , Carbofurano/farmacologia , Cardiotoxicidade , Sinergismo Farmacológico , Praguicidas/farmacologia , Ligação Proteica , Peixe-Zebra
7.
Toxicol Lett ; 350: 213-224, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252509

RESUMO

The metal/metal alloy-based implants and prostheses are in use for over a century, and the rejections, revisions, and metal particle-based toxicities were reported concurrently. Complications developed due to metal ions, metal debris, and organo-metallic particles in orthopedic patients have been a growing concern in recent years. It was reported that local and systemic toxicity caused by such released products from the implants is one of the major reasons for implant rejection and revision. Even though the description of environmental metal toxicants and safety limits for their exposure to humans were well established in the literature, an effort was not adequately performed in the case of implant-based metal toxicology. Since the metal ion concentration in serum acts as a possible indicator of the systemic toxicity, this review summarizes the reported human serum safe limits, toxic limits, and concentration range (µg/L, ppb, etc.) for mild to severe symptoms of six (cardiac, hepatic, neuro, nephron, dermal and endocrine) systemic toxicities for twelve most commonly used metallic implants. It also covers the widely used metal ion quantification techniques and systemic toxicity treatments reported.


Assuntos
Cardiotoxicidade/etiologia , Intoxicação por Metais Pesados/etiologia , Íons/toxicidade , Metais/toxicidade , Próteses e Implantes/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Intoxicação por Metais Pesados/sangue , Humanos , Íons/sangue , Masculino , Metais/sangue , Pessoa de Meia-Idade
8.
Am J Cardiol ; 154: 86-91, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34233837

RESUMO

Methamphetamine-associated cardiomyopathy (MACM) in an increasingly prevalent disease yet presenting clinical characteristics have not been well studied. We studied consecutive patients with MACM presenting between June 2018 and March 2020 who were interviewed for drug use and medical history. We retrospectively identified an age- and gender-matched cohort of Non-MACM (NMACM) patients and compared clinical characteristics. 140 patients (70 MACM and 70 NMACM) were studied. MACM patients were young (49.6 ± 10 years) and predominantly male (94%). Compared to NMACM, MACM patients were more likely to be Caucasian (21% vs 6%, p = 0.007) and homeless (47% vs 7%, p = 0.001). MACM was characterized by lower left ventricular ejection fraction (EF) (p <0.001) and greater LV end diastolic volume (LVEDV) (p = 0.024). Right ventricular (RV) dilation was present more often (p = s0.001) and was more often severe (p = 0.03). Among MACM cases, half of the cohort developed MACM within 5 years of starting MA (18% within 1 year). There was no apparent relationship between frequency or amount of MA used weekly with time until heart failure onset. Drug use patterns were not clearly related to the degree of LV structural change however there were more consistent, significant associations with RV and right atrial (RA) size parameters. In conclusion, patients with MACM have more severe myocardial impairment with lower EF, greater LVEDV and RV dilation. Drug use patterns do not clearly impact degree of LV structural changes by echocardiography however may be related to RV and RA size.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Cardiomiopatias/fisiopatologia , Estimulantes do Sistema Nervoso Central/efeitos adversos , Metanfetamina/efeitos adversos , Administração Intranasal , Adulto , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/epidemiologia , Cardiotoxicidade , Estudos de Casos e Controles , Ecocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fumar , Volume Sistólico , Disfunção Ventricular Esquerda
9.
Nihon Yakurigaku Zasshi ; 156(4): 214-219, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34193698

RESUMO

Although the cardiotoxicity of anti-cancer drugs is an important issue, the underlying mechanisms remain unknown. To develop a sensitive assay system for cardiotoxicity, we examined effects of anticancer drugs on contractile functions of human iPS cell-derived cardiomyocytes by using non-invasive motion field imaging analysis with extended drug exposure time. We succeeded in continuously measuring stable contractile function. The continued exposure revealed that the difference in cardiotoxicity between cardiotoxic doxorubicin and less toxic erlotinib was more evident after 8 days of treatment than with 3 days of treatment, suggesting that continued exposure improved the predictive power for cardiotoxicity of anti-cancer drugs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Cardiotoxicidade , Células Cultivadas , Doxorrubicina/efeitos adversos , Humanos
10.
Curr Protoc ; 1(7): e196, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34289259

RESUMO

The cardiomyocyte is the main cell type in the heart responsible for its contractile function. Culturing primary cardiomyocytes from mammalian sources to study their function remains challenging as they are terminally differentiated and cease to multiply soon after birth. The major technical hurdles associated with primary cardiomyocyte culture include attaining high yields, obtaining healthy/viable cells that show spontaneous contractions upon culture, and avoiding contamination by non-myocyte cardiac cell types such as fibroblasts and endothelial cells. The yield and the quality of the cardiomyocytes obtained are impacted by a variety of factors, such as the purity of the reagents, composition of the digestion mixture, the digestion conditions, and the temperature of the tissue during different steps of isolation. Here, we provide a simplified workflow to isolate, culture, and maintain neonatal primary cardiomyocytes from rats/mice in culture dishes, which can then be used to study, for instance, cardiac hypertrophy and drug-induced cardiotoxicity. © 2021 Wiley Periodicals LLC. Basic Protocol: Isolation and culture of primary cardiomyocytes from rat/mouse pups Support Protocol: Coating of tissue culture plates with extracellular matrix substrates for efficient cardiomyocyte attachment.


Assuntos
Células Endoteliais , Miócitos Cardíacos , Animais , Cardiomegalia , Cardiotoxicidade , Diferenciação Celular , Camundongos , Ratos
11.
Environ Sci Pollut Res Int ; 28(33): 44726-44754, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34231153

RESUMO

Pesticides are used to control pests that harm plants, animals, and humans. Their application results in the contamination of the food and water systems. Pesticides may cause harm to the human body via occupational exposure or the ingestion of contaminated food and water. Once a pesticide enters the human body, it may create health consequences such as cardiotoxicity. There is not enough information about pesticides that cause cardiotoxicity in the literature. Currently, there are few reports that summarized the cardiotoxicity due to some pesticide groups. This necessitates reviewing the current literature regarding pesticides and cardiotoxicity and to summarize them in a concrete review. The objectives of this review article were to summarize the advances in research related to pesticides and cardiotoxicity, to classify pesticides into certain groups according to cardiotoxicity, to discuss the possible mechanisms of cardiotoxicity, and to present the agents that ameliorate cardiotoxicity. Approximately 60 pesticides were involved in cardiotoxicity: 30, 13, and 17 were insecticides, herbicides, and fungicides, respectively. The interesting outcome of this study is that 30 and 13 pesticides from toxicity classes II and III, respectively, are involved in cardiotoxicity. The use of standard antidotes for pesticide poisoning shows health consequences among users. Alternative safe medical management is the use of cardiotoxicity-ameliorating agents. This review identifies 24 ameliorating agents that were successfully used to manage 60 cases. The most effective agents were vitamin C, curcumin, vitamin E, quercetin, selenium, chrysin, and garlic extract. Vitamin C showed ameliorating effects in a wide range of toxicities. The exposure mode to pesticide residues, where 1, 2, 3, and 4 are aerial exposure to pesticide drift, home and/or office exposure, exposure due to drinking contaminated water, and consumption of contaminated food, respectively. General cardiotoxicity is represented by 5, whereas 6, 7, 8 and 9 are electrocardiogram (ECG) of hypotension due to exposure to OP residues, ECG of myocardial infraction due to exposure to OPs, ECG of hypertension due to exposure to OC and/or PY, and normal ECG respectively.


Assuntos
Inseticidas , Exposição Ocupacional , Resíduos de Praguicidas , Praguicidas , Animais , Cardiotoxicidade , Humanos , Resíduos de Praguicidas/análise , Praguicidas/toxicidade
12.
Ecotoxicol Environ Saf ; 222: 112514, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280841

RESUMO

Pendimethalin (PND) is one of the best sellers of selective herbicide in the world and has been frequently detected in the water. However, little is known about its effects on cardiac development. In this study, we used zebrafish to investigate the developmental and cardiac toxicity of PND. We exposed the zebrafish embryos with a serial of concentrations at 3, 4, and 5 mg/L at 5.5-72 h post-fertilization (hpf). We found that PND exposure can reduce the heart rate, survival rate, and body length of zebrafish embryos. Furthermore, we identified many malformations including pericardial and yolk sac edema, spinal deformity, and cardiac looping abnormality. In addition, PND increased the expression of reactive oxygen species and malondialdehyde and reduced the activity of superoxide dismutase (Antioxidant enzymes); We examined the expression of cardiac development-related genes and the apoptosis markers, and found changes of the following marker: vmhc, nppa, tbx5a, nkx2.5, gata4, tbx2b and FoxO1, bax, bcl-2, p53, casp-9, casp-3. Our data showed that activation of Wnt pathway can rescue the cardiac abnormalities caused by PND. Our results provided new evidence for the toxicity of PND and suggested that the PND residual should be treated as a hazard in the environment.


Assuntos
Embrião não Mamífero , Peixe-Zebra , Compostos de Anilina , Animais , Apoptose , Cardiotoxicidade/metabolismo , Embrião não Mamífero/metabolismo , Estresse Oxidativo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
EBioMedicine ; 69: 103456, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34233258

RESUMO

BACKGROUND: Doxorubicin, an anthracycline chemotherapeutic agent, is widely used in the treatment of many cancers. However, doxorubicin posts a great risk of adverse cardiovascular events, which are thought to be caused by oxidative stress. We recently reported that the ubiquitin E3 ligase TRIM21 interacts and ubiquitylates p62 and negatively regulates the p62-Keap1-Nrf2 antioxidant pathway. Therefore, we sought to determine the role TRIM21 in cardiotoxicity induced by oxidative damage. METHODS: Using TRIM21 knockout mice, we examined the effects of TRIM21 on cardiotoxicity induced by two oxidative damage models: the doxorubicin treatment model and the Left Anterior Descending (LAD) model. We also explored the underlying mechanism by RNA-sequencing of the heart tissues, and by treating the mouse embryonic fibroblasts (MEFs), immortalized rat cardiomyocyte line H9c2, and immortalized human cardiomyocyte line AC16 with doxorubicin. FINDINGS: TRIM21 knockout mice are protected from heart failure and fatality in both the doxorubicin and LAD models. Hearts of doxorubicin-treated wild-type mice exhibit deformed mitochondria and elevated level of lipid peroxidation reminiscent of ferroptosis, which is alleviated in TRIM21 knockout hearts. Mechanistically, TRIM21-deficient heart tissues and cultured MEFs and H9c2 cells display enhanced p62 sequestration of Keap1 and are protected from doxorubicin-induced ferroptosis. Reconstitution of wild-type but not the E3 ligase-dead and the p62 binding-deficient TRIM21 mutants impedes the protection from doxorubicin-induced cell death. INTERPRETATION: Our study demonstrates that TRIM21 ablation protects doxorubicin-induced cardiotoxicity and illustrates a new function of TRIM21 in ferroptosis, and suggests TRIM21 as a therapeutic target for reducing chemotherapy-related cardiotoxicity. FUNDING: NIH (CA129536; DK108989): data collection, analysis. Shanghai Pujiang Program (19PJ1401900): data collection. National Natural Science Foundation (31971161): data collection. Department of Veteran Affairs (BX004083): data collection. Tianjin Science and Technology Plan Project (17ZXMFSY00020): data collection.


Assuntos
Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Ferroptose , Cardiopatias/genética , Miócitos Cardíacos/efeitos dos fármacos , Ribonucleoproteínas/genética , Animais , Cardiotoxicidade/genética , Linhagem Celular , Células Cultivadas , Cardiopatias/etiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Ratos
14.
Nutrients ; 13(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201904

RESUMO

Doxorubicin is an anthracycline that is commonly used as a chemotherapy drug due to its cytotoxic effects. The clinical use of doxorubicin is limited due to its known cardiotoxic effects. Treatment with anthracyclines causes heart failure in 15-17% of patients, resulting in mitochondrial dysfunction, the accumulation of reactive oxygen species, intracellular calcium dysregulation, the deterioration of the cardiomyocyte structure, and apoptotic cell death. Polyphenols have a wide range of beneficial properties, and particular importance is given to Bergamot Polyphenolic Fraction; Oleuropein, one of the main polyphenolic compounds of olive oil; and Cynara cardunculus extract. These natural compounds have particular beneficial characteristics, owing to their high polyphenol contents. Among these, their antioxidant and antoproliferative properties are the most important. The aim of this paper was to investigate the effects of these three plant derivatives using an in vitro model of cardiotoxicity induced by the treatment of rat embryonic cardiomyoblasts (H9c2) with doxorubicin. The biological mechanisms involved and the crosstalk existing between the mitochondria and the endoplasmic reticulum were examined. Bergamot Polyphenolic Fraction, Oleuropein, and Cynara cardunculus extract were able to decrease the damage induced by exposure to doxorubicin. In particular, these natural compounds were found to reduce cell mortality and oxidative damage, increase the lipid content, and decrease the concentration of calcium ions that escaped from the endoplasmic reticulum. In addition, the direct involvement of this cellular organelle was demonstrated by silencing the ATF6 arm of the Unfolded Protein Response, which was activated after treatment with doxorubicin.


Assuntos
Cardiotoxicidade/tratamento farmacológico , Cynara/química , Doxorrubicina/efeitos adversos , Olea/química , Extratos Vegetais/farmacologia , Animais , Antraciclinas , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Glucosídeos Iridoides , Mitocôndrias , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Polifenóis/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207549

RESUMO

Doxorubicin (DOX) is a widely used anticancer drug. However, its clinical use is severely limited due to drug-induced cumulative cardiotoxicity, which leads to progressive cardiomyocyte dysfunction and heart failure. Enormous efforts have been made to identify potential strategies to alleviate DOX-induced cardiotoxicity; however, to date, no universal and highly effective therapy has been introduced. Here we reported that cinnamic acid (CA) derivatives exert a multitarget protective effect against DOX-induced cardiotoxicity. The experiments were performed on rat cardiomyocytes (H9c2) and human induced-pluripotent-stem-cell-derived cardiomyocytes (hiPSC-CMs) as a well-established model for cardiac toxicity assessment. CA derivatives protected cardiomyocytes by ameliorating DOX-induced oxidative stress and viability reduction. Our data indicated that they attenuated the chemotherapeutic's toxicity by downregulating levels of caspase-3 and -7. Pre-incubation of cardiomyocytes with CA derivatives prevented DOX-induced motility inhibition in a wound-healing assay and limited cytoskeleton rearrangement. Detailed safety analyses-including hepatotoxicity, mutagenic potential, and interaction with the hERG channel-were performed for the most promising compounds. We concluded that CA derivatives show a multidirectional protective effect against DOX-induced cardiotoxicity. The results should encourage further research to elucidate the exact molecular mechanism of the compounds' activity. The lead structure of the analyzed CA derivatives may serve as a starting point for the development of novel therapeutics to support patients undergoing DOX therapy.


Assuntos
Cardiotônicos/farmacologia , Cardiotoxicidade , Cinamatos/farmacologia , Doxorrubicina/efeitos adversos , Miócitos Cardíacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Doxorrubicina/farmacologia , Células Hep G2 , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos
16.
Biomed Pharmacother ; 138: 111521, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311525

RESUMO

Euphorbiae pekinensis Radix (EP) is effective in treating various diseases, but it's toxicity is a major obstacle in use in clinical. Although EP was processed with vinegar to reduce it's toxicity, the detailed mechanism of toxicity in EP have not been clearly delineated. This study investigate the toxicity attenuation-mechanism of Euphorbiae pekinensis after being processed with vinegar (VEP) and the toxic mechanism of four compounds from EP on zebrafish embryos. The contents of four compounds decreased obviously in VEP. Correspondingly, slower development on embryos can be seen as some symptoms like reduction of heart rate, liver area and gastrointestinal peristalsis after exposed to the compounds. Some obvious pathological signals such as pericardial edema and yolk sac edema were observed. Furthermore, the compounds could increase the contents of MDA and GSH-PX and induce oxidative damage by inhibiting the activity of SOD. Also, four compounds could provoke apoptosis by up-regulating the expression level of p53, MDM2, Bax, Bcl-2 and activating the activity of caspase-3, caspase-9. In conclusion, the four compounds play an important role in the toxicity attenuation effects of VEP, which may be related to the apoptosis induction and oxidative damage. This would contribute to the clinical application and further toxicity-reduction mechanism research.


Assuntos
Euphorbia/toxicidade , Trato Gastrointestinal/efeitos dos fármacos , Coração/efeitos dos fármacos , Fígado/efeitos dos fármacos , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/toxicidade , Peixe-Zebra/embriologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiotoxicidade , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Euphorbia/química , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/metabolismo , Coração/embriologia , Fígado/embriologia , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Biomed Pharmacother ; 138: 111531, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311530

RESUMO

Heart failure (HF) is the advanced heart disease with high morbidity and mortality. Compound DanShen Dripping Pill (CDDP) is a widely used Traditional Chinese Medicine for cardiovascular disease treatment. Herein, we investigated if CDDP can protect mice against doxorubicin (DOX) or isoprenaline (ISO)-induced HF. After 3 days feeding of normal chow containing CDDP, mice were started DOX or ISO treatment for 4 weeks or 18 days. At the end of treatment, mice were conducted electrocardiogram and echocardiographic test. Blood and heart samples were determined biochemical parameters, myocardial structure and expression of the related molecules. CDDP normalized DOX/ISO-induced heart weight changes, HF parameters and fibrogenesis. The DOX/ISO-impaired left ventricular ejection fraction and fractional shortening were restored by CDDP. Mechanistically, CDDP blocked DOX/ISO-inhibited expression of antioxidant enzymes and DOX/ISO-induced expression of pro-fibrotic molecules, inflammation and cell apoptosis. Additional DOX/ISO-impaired targets in cardiac function but protected by CDDP were identified by RNAseq, qRT-PCR and Western blot. In addition, CDDP protected cardiomyocytes against oxygen-glucose deprivation-induced injuries. Taken together, our study shows that CDDP can protect against myocardial injuries in different models, suggesting its potential application for HF treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Cardiopatias/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cardiotoxicidade , Linhagem Celular , Modelos Animais de Doenças , Doxorrubicina , Fibrose , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Mediadores da Inflamação/metabolismo , Isoproterenol , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
18.
Biomed Pharmacother ; 139: 111708, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243633

RESUMO

Doxorubicin (Dox) is a secondary metabolite of the mutated strain of Streptomyces peucetius var. Caesius and belongs to the anthracyclines family. The anti-cancer activity of Dox is mainly exerted through the DNA intercalation and inhibiting topoisomerase II enzyme in fast-proliferating tumors. However, Dox causes cumulative and dose-dependent cardiotoxicity, which results in increased risks of mortality among cancer patients and thus limiting its wide clinical applications. There are several mechanisms has been proposed for doxorubicin-induced cardiotoxicity and oxidative stress, free radical generation and apoptosis are most widely reported. Apart from this, other mechanisms are also involved in Dox-induced cardiotoxicity such as impaired mitochondrial function, a perturbation in iron regulatory protein, disruption of Ca2+ homeostasis, autophagy, the release of nitric oxide and inflammatory mediators and altered gene and protein expression that involved apoptosis. Dox also causes downregulation of DNA methyltransferase 1 (DNMT1) enzyme activity which leads to a reduction in the DNA methylation process. This hypomethylation causes dysregulation in the mitochondrial genes like peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1-alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) unit in the heart. Apart from DNA methylation, Dox treatment also alters the micro RNAs levels and histone deacetylase (HDAC) activity. Therefore, in the current review, we have provided a detailed update on the current understanding of the pathological mechanisms behind the well-known Dox-induced cardiotoxicity. Further, we have provided some of the most plausible pharmacological strategies which have been tested against Dox-induced cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
19.
ACS Sens ; 6(7): 2593-2604, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34253023

RESUMO

Among basic taste sensations, bitter taste is vital to the survival of mammals due to its indispensable role in toxin prediction or identification, so the identification of bitter compounds is of great value in the pharmaceutical and food industry. Recently, bitter taste receptor (T2Rs)-based biosensors have been developed for specific bitter detection. However, the taste biosensors based on taste cells/tissues suffer from simple function, low sensitivity, low content, and limited parameters. Here, to establish a high-content, highly sensitive, and multifunctional taste biosensor, we developed a multifunctional hybrid integrated cardiomyocyte biosensor (HICB) for bitter detection. Due to the expression of bitter taste receptors in cardiomyocytes, the HICB can recognize the specific bitter agonists by synchronously recording the extracellular field potential (EFP) and mechanical beating (MB) signals from the cultured cardiomyocytes in vitro. Multiple feature parameters were defined and extracted from the electromechanical signals of cardiomyocytes to analyze the specific responses to four typical bitter compounds. The radar map, heat map, and principal component analysis (PCA) were used to visualize and classify the specific responses. Moreover, bitter-induced cardiotoxicity also was chronically evaluated, and these bitter compounds presented an inhibition effect on the electrophysiological and contractile activities of cardiomyocytes. This high-content HICB offers an alternative platform for both bitter detection and cardiotoxicity assessment, showing promising applications in the fields of taste detection and toxicity screening.


Assuntos
Técnicas Biossensoriais , Paladar , Animais , Cardiotoxicidade , Miócitos Cardíacos , Receptores Acoplados a Proteínas G
20.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281156

RESUMO

Cardiotoxicity is associated with the long-term clinical application of doxorubicin (DOX) in cancer patients. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) including exosomes have been suggested for the treatment of various diseases, including ischemic diseases. However, the effects and functional mechanism of MSC-sEVs in DOX-induced cardiomyopathy have not been clarified. Here, MSC-sEVs were isolated from murine embryonic mesenchymal progenitor cell (C3H/10T1/2) culture media, using ultrafiltration. H9c2 cardiac myoblast cells were pretreated with MSC-sEVs and then exposed to DOX. For in vivo studies, male C57BL/6 mice were administered MSC-sEVs intravenously, prior to a single dose of DOX (15 mg/kg, intraperitoneal). The mice were sacrificed 14 days after DOX treatment. The results showed that MSC-sEVs protected cardiomyocytes from DOX-induced cell death. H9c2 cells treated with DOX showed downregulation of both phosphorylated Akt and survivin, whereas the treatment of MSC-sEVs recovered expression, indicating their anti-apoptotic effects. Three microRNAs (miRNAs) (miR 199a-3p, miR 424-5p, and miR 21-5p) in MSC-sEVs regulated the Akt-Sp1/p53 signaling pathway in cardiomyocytes. Among them, miR 199a-3p was involved in regulating survivin expression, which correlated with the anti-apoptotic effects of MSC-sEVs. In in vivo studies, the echocardiographic results showed that the group treated with MSC-sEVs recovered from DOX-induced cardiomyopathy, showing improvement of both the left ventricle fraction and ejection fraction. MSC-sEVs treatment also increased both survivin and B-cell lymphoma 2 expression in heart tissue compared to the DOX group. Our results demonstrate that MSC-sEVs have protective effects against DOX-induced cardiomyopathy by upregulating survivin expression, which is mediated by the regulation of Akt activation by miRNAs in MSC-sEVs. Thus, MSC-sEVs may be a novel therapy for the prevention of DOX-induced cardiomyopathy.


Assuntos
Cardiomiopatias/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cardiomiopatias/prevenção & controle , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Exossomos/metabolismo , Vesículas Extracelulares/fisiologia , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Survivina/genética , Survivina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...