Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.653
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916928

RESUMO

Osteoarthritis (OA), a degenerative joint disorder, has been reported as the most common cause of disability worldwide. The production of inflammatory cytokines is the main factor in OA. Previous studies have been reported that obeticholic acid (OCA) and OCA derivatives inhibited the release of proinflammatory cytokines in acute liver failure, but they have not been studied in the progression of OA. In our study, we screened our small synthetic library of OCA derivatives and found T-2054 had anti-inflammatory properties. Meanwhile, the proliferation of RAW 264.7 cells and ATDC5 cells were not affected by T-2054. T-2054 treatment significantly relieved the release of NO, as well as mRNA and protein expression levels of inflammatory cytokines (IL-6, IL-8 and TNF-α) in LPS-induced RAW 264.7 cells. Moreover, T-2054 promoted extracellular matrix (ECM) synthesis in TNF-α-treated ATDC5 chondrocytes. Moreover, T-2054 could relieve the infiltration of inflammatory cells and degeneration of the cartilage matrix and decrease the levels of serum IL-6, IL-8 and TNF-α in DMM-induced C57BL/6 mice models. At the same time, T-2054 showed no obvious toxicity to mice. Mechanistically, T-2054 decreased the extent of p-p65 expression in LPS-induced RAW 264.7 cells and TNF-α-treated ATDC5 chondrocytes. In summary, we showed for the first time that T-2054 effectively reduced the release of inflammatory mediators, as well as promoted extracellular matrix (ECM) synthesis via the NF-κB-signaling pathway. Our findings support the potential use of T-2054 as an effective therapeutic agent for the treatment of OA.


Assuntos
Anti-Inflamatórios/farmacologia , Ácido Quenodesoxicólico/análogos & derivados , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Biomarcadores , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Cartilagem/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido Quenodesoxicólico/química , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/uso terapêutico , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Óxido Nítrico/biossíntese , Osteoartrite/tratamento farmacológico , Osteoartrite/etiologia , Osteoartrite/patologia , Células RAW 264.7
2.
Life Sci ; 274: 119324, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711382

RESUMO

AIMS: Intervertebral Disc Degeneration (IDD) is a key factor involved in low back pain (LBP) which affects approximately 540 million individuals worldwide. Chlorogenic Acid (CGA), a natural compound, exerts anti-inflammatory property in several diseases. Here, we aim to investigate the biological effect of CGA on IDD and explore the underlying mechanism. MATERIALS AND METHODS: Lumbar spine instability (LSI) model in mice was utilized to mimic process of IDD. The effects of CGA in response to LSI were evaluated by luminescent imaging, micro-CT, histomorphology, and immunohistochemistry in vivo. Besides, the cytotoxicity of CGA on chondrocytes was detected by cell counting kit-8 (CCK-8) and the biological effects were assessed by polymerase chain reaction (PCR) in vitro. KEY FINDINGS: We found that CGA treatment dramatically suppressed the NF-κB activity in LSI mice. Moreover, administration of CGA mitigated cartilaginous endplate degeneration and postponed IDD development accompanying a decrease of inflammatory and catabolic mediators. Specifically, CGA ameliorated endplate degeneration might be related to its protective effects against endplate chondrocytes apoptosis and trans-differentiation. We further elucidated that CGA exerted these biological effects mainly by repressing NF-κB signaling in cartilage endplate. SIGNIFICANCE: Our study has illustrated, for the first time, the curative effects as well as the latent mechanism of CGA in IDD and our results suggested that CGA administration might be used as an alternative therapy for IDD.


Assuntos
Apoptose , Cartilagem/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Condrócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Degeneração do Disco Intervertebral/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Animais , Cartilagem/patologia , Células Cultivadas , Condrócitos/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Nat Commun ; 12(1): 467, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473114

RESUMO

Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença/genética , Osteoartrite/genética , Animais , Osso e Ossos/patologia , Sistemas CRISPR-Cas , Cartilagem/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Descoberta de Drogas , Edição de Genes , Hormônio Liberador de Gonadotropina/genética , Iodeto Peroxidase , Camundongos , Camundongos Knockout , Osteoartrite/patologia , Osteoartrite/cirurgia , Fatores de Transcrição Box Pareados/genética , Fenótipo
4.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443201

RESUMO

Osteoarthritis (OA), the leading cause of pain and disability worldwide, disproportionally affects individuals with obesity. The mechanisms by which obesity leads to the onset and progression of OA are unclear due to the complex interactions among the metabolic, biomechanical, and inflammatory factors that accompany increased adiposity. We used a murine preclinical model of lipodystrophy (LD) to examine the direct contribution of adipose tissue to OA. Knee joints of LD mice were protected from spontaneous or posttraumatic OA, on either a chow or high-fat diet, despite similar body weight and the presence of systemic inflammation. These findings indicate that adipose tissue itself plays a critical role in the pathophysiology of OA. Susceptibility to posttraumatic OA was reintroduced into LD mice using implantation of a small adipose tissue depot derived from wild-type animals or mouse embryonic fibroblasts that undergo spontaneous adipogenesis, implicating paracrine signaling from fat, rather than body weight, as a mediator of joint degeneration.


Assuntos
Tecido Adiposo/metabolismo , Lipodistrofia/metabolismo , Osteoartrite do Joelho/metabolismo , Tecido Adiposo/fisiopatologia , Tecido Adiposo/transplante , Adiposidade , Animais , Peso Corporal , Cartilagem/patologia , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Suscetibilidade a Doenças/complicações , Suscetibilidade a Doenças/metabolismo , Feminino , Fibroblastos/metabolismo , Hiperplasia/complicações , Inflamação/metabolismo , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/genética , Lipodistrofia/fisiopatologia , Locomoção , Masculino , Camundongos , Força Muscular , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/prevenção & controle , Dor/complicações , Comunicação Parácrina/fisiologia
5.
Development ; 148(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33462117

RESUMO

The regulated expansion of chondrocytes within growth plates and joints ensures proper skeletal development through adulthood. Mutations in the transcription factor NKX3.2 underlie spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD), which is characterized by skeletal defects including scoliosis, large epiphyses, wide growth plates and supernumerary distal limb joints. Whereas nkx3.2 knockdown zebrafish and mouse Nkx3.2 mutants display embryonic lethal jaw joint fusions and skeletal reductions, respectively, they lack the skeletal overgrowth seen in SMMD patients. Here, we report adult viable nkx3.2 mutant zebrafish displaying cartilage overgrowth in place of a missing jaw joint, as well as severe dysmorphologies of the facial skeleton, skullcap and spine. In contrast, cartilage overgrowth and scoliosis are absent in rare viable nkx3.2 knockdown animals that lack jaw joints, supporting post-embryonic roles for Nkx3.2. Single-cell RNA-sequencing and in vivo validation reveal increased proliferation and upregulation of stress-induced pathways, including prostaglandin synthases, in mutant chondrocytes. By generating a zebrafish model for the skeletal overgrowth defects of SMMD, we reveal post-embryonic roles for Nkx3.2 in dampening proliferation and buffering the stress response in joint-associated chondrocytes.


Assuntos
Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Proteínas de Homeodomínio/metabolismo , Osteocondrodisplasias/embriologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Cartilagem/embriologia , Cartilagem/patologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero/anormalidades , Embrião não Mamífero/patologia , Regulação da Expressão Gênica no Desenvolvimento , Arcada Osseodentária/embriologia , Arcada Osseodentária/patologia , Articulações/anormalidades , Articulações/embriologia , Articulações/patologia , Mitose/genética , Morfolinos/farmacologia , Mutação/genética , RNA-Seq , Análise de Célula Única , Crânio/anormalidades , Crânio/embriologia , Crânio/patologia , Coluna Vertebral/anormalidades , Coluna Vertebral/embriologia , Coluna Vertebral/patologia , Estresse Fisiológico/genética , Regulação para Cima/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Life Sci ; 267: 118893, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316267

RESUMO

OBJECTIVE: In recent decades, the role of microRNAs (miRNAs) in human diseases has been widely studied. This research is designed to explore the effect of miR-218-5p on knee osteoarthritis (KOA) progression in a rat model with the involvement of sclerostin (SOST). METHODS: The KOA rat models were constructed by Hulth method, and then were classified into the KOA, miR-218-5p inhibitor, inhibitor negative control (NC), overexpressed (OE)-SOST, OE-NC, miR-218-5p inhibitor + si-SOST, or miR-218-5p inhibitor + si-NC group. The pathological changes of rats' synovial tissues were observed; the apoptosis in rat synovial tissues was assessed; levels of IL-1ß, TNF-α, PGE2 and COX-2 in serum and synovial tissues, along with SOD and MDA contents in synovial tissues were determined. The morphological changes in cartilage tissues were observed. MMP-13 and Col II expression in cartilage tissues was assessed; expression of ß-catenin and Col2A1 in cartilage tissues was assessed. miR-218-5p and SOST expression in rat knee joint tissues was assessed. RESULTS: KOA rats had increased miR-218-5p expression and decreased SOST expression. MiR-218-5p targeted SOST. Rats injected with miR-218-5p inhibitor and OE-SOST had alleviated pathological changes, reduced TUNEL positive cell rate, decreased serum contents of IL-1ß, TNF-α, PGE2, COX-2 and MDA, and increased SOD activity in synovial tissues, alleviated pathological changes, enhanced Col II positive rate and reduced MMP-13 positive rate, decreased ß-catenin expression and increased Col2A1 expression in cartilage tissues. CONCLUSION: The miR-218-5p inhibition could attenuate synovial inflammation and cartilage injury in KOA rats by promoting SOST, which may be helpful for KOA treatment.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Cápsula Articular/patologia , MicroRNAs/antagonistas & inibidores , Osteoartrite do Joelho/metabolismo , Animais , Apoptose/fisiologia , Proteínas Morfogenéticas Ósseas/genética , Cartilagem/metabolismo , Cartilagem/patologia , Ciclo-Oxigenase 2/metabolismo , Marcadores Genéticos/genética , Membro Posterior/patologia , Cápsula Articular/metabolismo , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
7.
PLoS One ; 15(8): e0237479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790806

RESUMO

OBJECTIVE: As native cartilage consists of different phenotypical zones, this study aims to fabricate different types of neocartilage constructs from collagen hydrogels and human mesenchymal stromal cells (MSCs) genetically modified to express different chondrogenic factors. DESIGN: Human MSCs derived from bone-marrow of osteoarthritis (OA) hips were genetically modified using adenoviral vectors encoding sex-determining region Y-type high-mobility-group-box (SOX) 9, transforming growth factor beta (TGFB) 1 or bone morphogenetic protein (BMP) 2 cDNA, placed in type I collagen hydrogels and maintained in serum-free chondrogenic media for three weeks. Control constructs contained unmodified MSCs or MSCs expressing GFP. The respective constructs were analyzed histologically, immunohistochemically, biochemically, and by qRT-PCR for chondrogenesis and hypertrophy. RESULTS: Chondrogenesis in MSCs was consistently and strongly induced in collagen I hydrogels by the transgenes SOX9, TGFB1 and BMP2 as evidenced by positive staining for proteoglycans, chondroitin-4-sulfate (CS4) and collagen (COL) type II, increased levels of glycosaminoglycan (GAG) synthesis, and expression of mRNAs associated with chondrogenesis. The control groups were entirely non-chondrogenic. The levels of hypertrophy, as judged by expression of alkaline phosphatase (ALP) and COL X on both the protein and mRNA levels revealed different stages of hypertrophy within the chondrogenic groups (BMP2>TGFB1>SOX9). CONCLUSIONS: Different types of neocartilage with varying levels of hypertrophy could be generated from human MSCs in collagen hydrogels by transfer of genes encoding the chondrogenic factors SOX9, TGFB1 and BMP2. This technology may be harnessed for regeneration of specific zones of native cartilage upon damage.


Assuntos
Proteína Morfogenética Óssea 2/genética , Hidrogéis/química , Fatores de Transcrição SOX9/genética , Fator de Crescimento Transformador beta1/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Cartilagem/patologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese/genética , Colágeno Tipo I/química , Colágeno Tipo X/genética , Meios de Cultura Livres de Soro/química , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , RNA Mensageiro/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
8.
Life Sci ; 258: 118213, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768583

RESUMO

AIMS: Intermittent cyclic tension stimulation(ICMT) was shown to promote degeneration of endplate chondrocytes and induce autophagy. However, enhancing autophagy can alleviate degeneration partly. Studies have shown that curcumin can induce autophagy and protect chondrocytes, we speculated that regulation of autophagy by curcumin might be an effective method to improve the stress resistance of endplate cartilage. In this study, human cervical endplate cartilage specimens were collected, and expression of autophagy markers was detected and compared. MAIN METHODS: Human cervical endplate chondrocytes were cultured to establish a tension-induced degeneration model, for which changes of functional metabolism and autophagy levels were detected under different tension loading conditions. Changes in functional metabolism of endplate chondrocytes were observed under high-intensity tension loading in the presence of inhibitors, inducers, and curcumin to regulate the autophagy level of cells. In addition, a rat model of lumbar instability was established to observe the degeneration of lumbar disc after curcumin administration. KEY FINDINGS: Through a series of experiments, we found that low-intensity tension stimulation can maintain a stable phenotype of endplate chondrocytes, but high-intensity tension stimulation has a negative effect. Moreover, with increasing tension intensity, the degree of degeneration of endplate chondrocytes was gradually aggravated and the level of autophagy increased. Besides, curcumin upregulated autophagy, inhibited apoptosis, and reduced phenotype loss of endplate chondrocytes induced by high-intensity tension loading, thereby relieving intervertebral disc degeneration induced by mechanical imbalance. SIGNIFICANCE: Curcumin mediated autophagy and enhanced the adaptability of endplate chondrocytes to high-intensity tension load, thereby relieving intervertebral disc degeneration.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Autofagia/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Curcumina/uso terapêutico , Degeneração do Disco Intervertebral/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Autofagia/fisiologia , Cartilagem/patologia , Curcumina/farmacologia , Feminino , Degeneração do Disco Intervertebral/patologia , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/patologia , Masculino , Ratos , Ratos Sprague-Dawley
9.
J Bone Miner Metab ; 38(6): 806-818, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32656644

RESUMO

INTRODUCTION: Our previous studies demonstrated that a high bone turnover state under osteoporotic changes decreased the threshold of skeletal pain. Recent studies reported that the incidence of joint pain due to osteoarthritis (OA) in postmenopausal women was higher than that in males even with the same radiographic OA grade. The aim of this study was to evaluate whether a high bone turnover state affects the induction of pain-like behaviors in mild OA model mice. MATERIALS AND METHODS: We established mild OA model mice with accompanying osteoporotic changes by monosodium iodoacetate injection after ovariectomy. We assessed pain-like behaviors by von Frey test and paw-flick test; histological changes in OA joints; the expression of Runx2, Osterix, Osteocalcin, and Rankl; bone micro-architecture by µCT and measured serum tartrate-resistant acid-phosphatase 5b levels in the model mice. RESULTS: Pain-like behaviors in mice with OA and osteoporotic changes were significantly increased in comparison with those in OA mice without osteoporotic changes. The severity of histological OA changes did not differ significantly between the OA mice with and without osteoporotic changes. Bisphosphonate significantly improved pain-like behaviors accompanied with improvement in the high bone turnover state in the OA mice with osteoporosis, while it had no significant effect on pain-like behaviors in the OA mice without osteoporosis. In addition, the improvement was maintained for more than 4 weeks even after the discontinuation of bisphosphonate treatment. CONCLUSION: These results indicated that a high bone turnover state under osteoporotic changes could affect the induction of pain-like behaviors in mild OA model mice.


Assuntos
Comportamento Animal , Remodelação Óssea , Osteoartrite/complicações , Osteoporose/complicações , Osteoporose/fisiopatologia , Dor/etiologia , Animais , Remodelação Óssea/efeitos dos fármacos , Cartilagem/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Inibidores de Ciclo-Oxigenase/farmacologia , Difosfonatos/farmacologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Iodoacetatos , Masculino , Camundongos Endogâmicos C57BL , Osteoartrite/sangue , Osteoartrite/patologia , Osteoartrite/fisiopatologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/sangue , Ovariectomia , Dor/sangue , Fosfatase Ácida Resistente a Tartarato/sangue , Microtomografia por Raio-X
10.
Sci Rep ; 10(1): 9417, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523027

RESUMO

Cardiovascular diseases, especially idiopathic myocardial fibrosis, is one of the most significant causes of morbidity and mortality in captive great apes. This study compared the structure and morphology of 16 hearts from chimpanzees (Pan troglodytes) which were either healthy or affected by myocardial fibrosis using X-ray microtomography. In four hearts, a single, hyperdense structure was detected within the right fibrous trigone of the cardiac skeleton. High resolution scans and histopathology revealed trabecular bones in two cases, hyaline cartilage in another case and a focus of mineralised fibro-cartilaginous metaplasia with endochondral ossification in the last case. Four other animals presented with multiple foci of ectopic calcification within the walls of the great vessels. All hearts affected by marked myocardial fibrosis presented with bone or cartilage formation, and increased collagen levels in tissues adjacent to the bone/cartilage, while unaffected hearts did not present with os cordis or cartilago cordis. The presence of an os cordis has been described in some ruminants, camelids, and otters, but never in great apes. This novel research indicates that an os cordis and cartilago cordis is present in some chimpanzees, particularly those affected by myocardial fibrosis, and could influence the risk of cardiac arrhythmias and sudden death.


Assuntos
Doenças dos Símios Antropoides/patologia , Osso e Ossos/patologia , Coração/fisiopatologia , Miocárdio/patologia , Pan troglodytes/fisiologia , Animais , Doenças dos Símios Antropoides/metabolismo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Osso e Ossos/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Colágeno/metabolismo , Feminino , Fibrose/metabolismo , Fibrose/patologia , Masculino , Miocárdio/metabolismo , Pan troglodytes/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(22): 12029-12040, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32404427

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a uniformly fatal condition that is especially prevalent in skin, cardiovascular, and musculoskeletal systems. A wide gap exists between our knowledge of the disease and a promising treatment or cure. The aim of this study was to first characterize the musculoskeletal phenotype of the homozygous G608G BAC-transgenic progeria mouse model, and to determine the phenotype changes of HGPS mice after a five-arm preclinical trial of different treatment combinations with lonafarnib, pravastatin, and zoledronic acid. Microcomputed tomography and CT-based rigidity analyses were performed to assess cortical and trabecular bone structure, density, and rigidity. Bones were loaded to failure with three-point bending to assess strength. Contrast-enhanced µCT imaging of mouse femurs was performed to measure glycosaminoglycan content, thickness, and volume of the femoral head articular cartilage. Advanced glycation end products were assessed with a fluorometric assay. The changes demonstrated in the cortical bone structure, rigidity, stiffness, and modulus of the HGPS G608G mouse model may increase the risk for bending and deformation, which could result in the skeletal dysplasia characteristic of HGPS. Cartilage abnormalities seen in this HGPS model resemble changes observed in the age-matched WT controls, including early loss of glycosaminoglycans, and decreased cartilage thickness and volume. Such changes might mimic prevalent degenerative joint diseases in the elderly. Lonafarnib monotherapy did not improve bone or cartilage parameters, but treatment combinations with pravastatin and zoledronic acid significantly improved bone structure and mechanical properties and cartilage structural parameters, which ameliorate the musculoskeletal phenotype of the disease.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Modelos Animais de Doenças , Lamina Tipo A/genética , Progéria , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Fêmur/efeitos dos fármacos , Fêmur/patologia , Glicosaminoglicanos/análise , Articulações/efeitos dos fármacos , Articulações/patologia , Lamina Tipo A/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Fenótipo , Piperidinas/uso terapêutico , Pravastatina/uso terapêutico , Progéria/tratamento farmacológico , Progéria/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Piridinas/uso terapêutico , Microtomografia por Raio-X , Ácido Zoledrônico/uso terapêutico
12.
Nat Methods ; 17(5): 531-540, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371980

RESUMO

Single-molecule localization microscopy is a powerful tool for visualizing subcellular structures, interactions and protein functions in biological research. However, inhomogeneous refractive indices inside cells and tissues distort the fluorescent signal emitted from single-molecule probes, which rapidly degrades resolution with increasing depth. We propose a method that enables the construction of an in situ 3D response of single emitters directly from single-molecule blinking datasets, and therefore allows their locations to be pinpointed with precision that achieves the Cramér-Rao lower bound and uncompromised fidelity. We demonstrate this method, named in situ PSF retrieval (INSPR), across a range of cellular and tissue architectures, from mitochondrial networks and nuclear pores in mammalian cells to amyloid-ß plaques and dendrites in brain tissues and elastic fibers in developing cartilage of mice. This advancement expands the routine applicability of super-resolution microscopy from selected cellular targets near coverslips to intra- and extracellular targets deep inside tissues.


Assuntos
Encéfalo/metabolismo , Cartilagem/metabolismo , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Placa Amiloide/metabolismo , Imagem Individual de Molécula/métodos , Animais , Encéfalo/patologia , Cartilagem/patologia , Núcleo Celular/metabolismo , Células Cultivadas , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Camundongos , Mitocôndrias/metabolismo , Imagem Molecular/métodos , Poro Nuclear/metabolismo , Placa Amiloide/patologia
13.
Libyan J Med ; 15(1): 1753943, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32281500

RESUMO

Knee Osteoarthritis is a considerable public health concern, both in terms of life quality and treatment financial impacts. To investigate this disease, animal models are deemed a promising alternative. In fact, although a perfect model is generally farfetched, the creation of models that simulate human disease as accurately as possible remains an important research stake. This study aims to highlight the usefulness of the model induced by injected Mono-Iodo-Acetate and to standardize it for the rabbit species. Osteoarthritis was induced by an infra-patellar injection of 0.2 ml of an MIA solution in the left knee of 24 female New Zealand rabbits. The right knee served as a control by receiving an injection of physiological serum. The rabbits were divided into 4 groups of 6 individuals each according to the dose of MIA received per knee. All rabbits were euthanized 30 days after the injection. After sacrifice, the knees were carefully dissected and macroscopic and microscopic scores of cartilage, meniscal and synovial lesions were attributed to each group. Our study followed the laboratory animal care and management guideline published in 2017 by the Canadian Council of Animal Care. The control knees of all rabbits showed no macroscopic or microscopic lesions. The macroscopic lesions: osteophytes, meniscal lesions, fibrillation and erosion of the cartilage and microscopic lesions: disorganization of the chondrocytes, decrease in proteoglycans and synovial inflammation clinically diagnosed in human pathology were all detected and were similarly reproducible among the knees of the same group. Through this work, we highlighted the merits of the arthritis model induced by MIA, namely its simulation of several aspects of human pathology. Further advantages are low cost, speed, reproducibility. This model notably avoids delicate and risky surgical operations.


Assuntos
Inibidores Enzimáticos/administração & dosagem , Ácido Iodoacético/administração & dosagem , Osteoartrite do Joelho/induzido quimicamente , Animais , Bolsa Sinovial/patologia , Bolsa Sinovial/ultraestrutura , Canadá/epidemiologia , Cartilagem/patologia , Cartilagem/ultraestrutura , Condrócitos/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/efeitos adversos , Feminino , Humanos , Injeções/métodos , Ácido Iodoacético/efeitos adversos , Menisco/patologia , Menisco/ultraestrutura , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/veterinária , Proteoglicanas/metabolismo , Coelhos , Reprodutibilidade dos Testes
14.
Life Sci ; 253: 117694, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32325132

RESUMO

AIMS: Chondrocyte degeneration is the main cause of osteoarthritis (OA) and increased evidence suggests that miRNAs could have vital roles in the pathology of various cartilage illnesses. miR-1236 has been found to contribute to inflammation in diseases such as pneumonia. However, the exact role of miR-1236 in OA is poorly understood. MATERIALS AND METHODS: H&E staining and saffron fixation experiments were employed to determine OA tissues. qRT-PCR and immunohistochemistry were used to detect the expression levels of miR-1236 and PIK3R3. Western blot was performed to detect the expression levels of proteins. Luciferase reporter assays were utilized to investigate the interaction between miR-1236 and PIK3R3. Cell counting assays and AO/EB were used to quantify cell growth and apoptosis. KEY FINDINGS: miR-1236 was up-regulated in OA knee cartilage compared to normal cartilage. Up-regulated expression of miR-1236 suppressed cell proliferation as well as induced apoptosis in chondrocytes. Bioinformatics identified PIK3R3 as a target of miR-1236. Co-transfection with miR-1236 and PIK3R3 could reverse cell apoptosis induced by the miR-1236 mimic. SIGNIFICANCE: These data enhance our understanding on the role of miR-1236 in OA and identifies miR-1236 as a potential biomarker or possible treatment target within OA.


Assuntos
Apoptose/genética , Condrócitos/patologia , MicroRNAs/genética , Osteoartrite do Joelho/patologia , Fosfatidilinositol 3-Quinases/genética , Cartilagem/patologia , Proliferação de Células/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/genética , Regulação para Cima
15.
Sci Rep ; 10(1): 6620, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313003

RESUMO

Balneotherapy is a common non-pharmacological treatment for osteoarthritis (OA), however, the efficacy is controversial in knee OA. Jeju magma-seawater (JMS) has high contents of various minerals, which has anti-inflammatory and antioxidant properties via an oral route. Thus, we examined the effects of JMS bathing on knee OA and the combination effects with diclofenac sodium as an anti-inflammatory drug. Knee OA was induced by transection of the anterior cruciate ligament and the partial meniscectomy in rat. The rats were administered subcutaneously saline or diclofenac sodium in saline, followed by bathing in thermal distilled water or JMS for 8 weeks. The model represented the characteristic changes of the cartilage degradation, osteophyte formation and synovial inflammation, and the relevant symptoms of the joint swelling and stiffness. However, the JMS bathing reduced the joint thickness and improved the mobility. It also contributed to a well-preserved tissue supported by increases in bone mineral density of the joint and decreases in Mankin scores in the cartilages. The effects involved anti-inflammation, chondroprotection, anti-apoptosis, and chondrogenesis. Overall, the JMS bathing in combination with diclofenac sodium showed a similar trend associated with synergic effects. It suggests that JMS bathing can be promising for a clinical use in knee OA.


Assuntos
Balneologia , Osteoartrite do Joelho/terapia , Água do Mar , Animais , Apoptose , Densidade Óssea , Cartilagem/patologia , Proliferação de Células , Força Compressiva , Modelos Animais de Doenças , Inflamação/complicações , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Articulação do Joelho/patologia , Articulação do Joelho/fisiopatologia , Masculino , Metaloproteinases da Matriz/metabolismo , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/fisiopatologia , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
16.
Sci Rep ; 10(1): 6561, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300128

RESUMO

X-ray Talbot-Lau interferometry is one of the x-ray phase imaging methods that has high sensitivity in depicting soft tissues. Unlike earlier x-ray phase imaging methods that required particular types of x-ray sources, such as a synchrotron or a micro-focus x-ray tube, x-ray Talbot-Lau interferometry enables to perform clinical x-ray phase imaging using a conventional x-ray source with a relatively compact configuration. We developed an apparatus to depict cartilage in the metacarpophalangeal joints of the hands. In addition, we examined the apparatus performance by applying it to healthy volunteers and patients with rheumatoid arthritis (RA). Cartilage deformation, which is thought to be a precursor of destruction of the joints, was successfully depicted by the apparatus, suggesting a potential early diagnosis of RA.


Assuntos
Artrite Reumatoide/diagnóstico por imagem , Cartilagem/diagnóstico por imagem , Imageamento Tridimensional , Interferometria , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/patologia , Cartilagem/patologia , Estudos de Casos e Controles , Feminino , Humanos , Articulações/diagnóstico por imagem , Articulações/patologia , Masculino , Pessoa de Meia-Idade , Raios X , Adulto Jovem
17.
Sci Rep ; 10(1): 6935, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332842

RESUMO

This manuscript reports a novel procedure to imaging growth plate chondrocytes by using confocal microscopy. The method is based on fixed undecalcified bone samples, in-block staining with eosin, epoxy resin embedding and grinding to obtain thick sections. It is simple, inexpensive and provides three-dimensional images of entire chondrocytes inside their native lacunae. Quantitative analysis of volume, shape and cytoplasm density of chondrocytes at different strata of the growth plate allowed to objectively grade chondrocytes of the growth plate in seven different clusters. These seven categories of chondrocytes were subsequently evaluated by immunohistochemistry of some well-defined molecular landmarks of chondrocyte differentiation. Furthermore, immunohistochemical analysis of proteins responsible for ionic changes and water transport allowing chondrocyte swelling during hypertrophy was also performed. Results obtained indicate that four subphases can be defined in the pre-hypertrophic zone and three subphases in the hypertrophic zone, a fact that raises that chondrocytes of the growth plate are less homogeneous than usually considered when different zones are defined according to subjective cell morphological criteria. Results in the present study provide a technological innovation and gives new insights into the complexity of the process of chondrocyte differentiation in the growth plate.


Assuntos
Condrócitos/citologia , Lâmina de Crescimento/citologia , Microscopia Confocal/métodos , Animais , Cartilagem/patologia , Proliferação de Células , Forma Celular , Análise por Conglomerados , Feminino , Hipertrofia , Proteínas/metabolismo , Ratos Sprague-Dawley , Fixação de Tecidos
18.
Sci Adv ; 6(11): eaay5352, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32201724

RESUMO

Aging or injury leads to degradation of the cartilage matrix and the development of osteoarthritis (OA). Because of a paucity of single-cell studies of OA cartilage, little is known about the interpatient variability in its cellular composition and, more importantly, about the cell subpopulations that drive the disease. Here, we profiled healthy and OA cartilage samples using mass cytometry to establish a single-cell atlas, revealing distinct chondrocyte progenitor and inflammation-modulating subpopulations. These rare populations include an inflammation-amplifying (Inf-A) population, marked by interleukin-1 receptor 1 and tumor necrosis factor receptor II, whose inhibition decreased inflammation, and an inflammation-dampening (Inf-D) population, marked by CD24, which is resistant to inflammation. We devised a pharmacological strategy targeting Inf-A and Inf-D cells that significantly decreased inflammation in OA chondrocytes. Using our atlas, we stratified patients with OA in three groups that are distinguished by the relative proportions of inflammatory to regenerative cells, making it possible to devise precision therapeutic approaches.


Assuntos
Cartilagem/metabolismo , Cartilagem/patologia , Citometria de Fluxo , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais , Análise de Célula Única , Biomarcadores , Antígeno CD24/metabolismo , Condrócitos/metabolismo , Citometria de Fluxo/métodos , Humanos , Osteoartrite/etiologia , Análise de Célula Única/métodos
19.
Am J Sports Med ; 48(5): 1207-1212, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32150443

RESUMO

BACKGROUND: Patients with posterior shoulder instability may have bone and cartilage lesions (BCLs) in addition to capsulolabral injuries, although the risk factors for these intra-articular lesions are unclear. HYPOTHESIS: We hypothesized that patients with posterior instability who had a greater number of instability events would have a higher rate of BCLs compared with patients who had fewer instability episodes. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Data from the Multicenter Orthopaedic Outcomes Network (MOON) Shoulder Group instability patient cohort were analyzed. Patients aged 12 to 99 years undergoing primary surgical treatment for shoulder instability were included. The glenohumeral joint was evaluated by the treating surgeon at the time of surgery, and patients were classified as having a BCL if they had any grade 3 or 4 glenoid or humeral cartilage lesion, reverse Hill-Sachs lesion, bony Bankart lesion, or glenoid bone loss. The effects of the number of instability events on the presence of BCLs was investigated by use of Fisher exact tests. Logistic regression modeling was performed to investigate the independent contributions of demographic variables and injury-specific variables to the likelihood of having a BCL. Significance was defined as P < .05. RESULTS: We identified 271 patients (223 male) for analysis. Bone and cartilage lesions were identified in 54 patients (19.9%) at the time of surgical treatment. A glenoid cartilage injury was most common and was identified in 28 patients (10.3%). A significant difference was noted between the number of instability events and the presence of BCLs (P = .025), with the highest rate observed in patients with 2 to 5 instability events (32.3%). Multivariate logistic regression modeling indicated that increasing age (P = .019) and 2 to 5 reported instability events (P = .001) were significant independent predictors of the presence of BCLs. For bone lesions alone, the number of instability events was the only significant independent predictor; increased risk of bone lesion was present for patients with 1 instability event (OR, 6.1; P = .012), patients with 2 to 5 instability events (OR, 4.2; P = .033), and patients with more than 5 instability events (OR, 6.0; P = .011). CONCLUSION: Bone and cartilage lesions are seen significantly more frequently with increasing patient age and in patients with 2 to 5 instability events. Early surgical stabilization for posterior instability may be considered to potentially limit the extent of associated intra-articular injury. The group of patients with more than 5 instability events may represent a different pathological condition, as this group showed a decrease in the likelihood of cartilage injury, although not bony injury.


Assuntos
Lesões de Bankart/patologia , Instabilidade Articular , Luxação do Ombro , Articulação do Ombro , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artroscopia , Cartilagem/patologia , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Instabilidade Articular/cirurgia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Luxação do Ombro/cirurgia , Articulação do Ombro/cirurgia , Adulto Jovem
20.
Pathologe ; 41(2): 143-152, 2020 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-32060685

RESUMO

Cartilage tumors are a heterogeneous group of mesenchymal tumors whose common characteristic is the formation of a chondroblastic differentiated groundsubstance by the tumor cells. The basic features of their histological classification were already developed in the 1940s and supplemented by further entities in the following decades. Only in the past 10-15 years have fundamental new insights been gained through molecular genetic analysis. So, osteochondromas are characterized by alterations in the EXT1 and EXT2 genes. The description of mutations of isocitrate dehydrogenase 1 and 2 (IDH 1 and 2) in chondromas and chondrosarcomas is particularly important. The mesenchymal chondrosarcoma is characterized by a fusion of the HEY1-NCOA2 genes. The molecular genetic alterations characteristic for the individual tumor entities are first of all an essential supplement for the differential diagnosis of radiologically and histologically difficult cases. They also provide the basis for the establishment of molecular target therapies for malignant chondrogenic tumors. This applies in particular to conventional chondrosarcoma, for which all approaches to chemo- and radiotherapy have proven to be ineffective. However, the use of target therapies is still in its beginnings.


Assuntos
Neoplasias Ósseas , Cartilagem/patologia , Terapia de Alvo Molecular , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...